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ABSTRACT
In online advertising, one of the central questions of ad campaign
assessment is whether the ad truly adds values to the advertisers. To
measure the incremental effect of ads, the ratio of the success rates
of the users who were and who were not exposed to ads is usually
calculated to represent ad effectiveness. Many existing campaigns
simply target the users with high predicted success (e.g. purchases,
searches) rate, which often neglect the fact that even without ad
exposure, the targeted group of users might still perform the suc-
cess actions, and hence show higher ratio than the true ad effective-
ness. We call such phenomena ‘smart cheating’. Failure to discount
smart cheating when assessing ad campaigns may favor the target-
ing plan that cheats hard, but such targeting does not lead to the
maximal incremental success actions and results in wasted budget.
In this paper we define and quantify smart cheating with a smart
cheating ratio (SCR) through causal inference. We apply our ap-
proach to multiple real ad campaigns, and find that smart cheating
exists extensively and can be rather severe in current advertising
industry.

Categories and Subject Descriptors: G.3 Probability and Statis-
tics: Statistical Computing; J.1 Administrative Data Process-
ing: Business, Marketing

Keywords: Advertising, Targeting, Causal Inference

1. INTRODUCTION
One of the major purposes of advertising is to draw extra suc-

cess actions and hence additional revenue for the advertisers. To
measure the incremental effect of ads, the ratio of the success rates
of the users who were and who were not exposed to ads is usually
calculated to represent ad effectiveness. Such a ratio is referred
to as a naive amplifier of the ad [3] since it is supposed to repre-
sent the ad’s amplifying effect. However, the naive amplifier can
be falsely inflated by targeting the users with high success inten-
tion even without ad exposures, and hence results in wasted bud-
get. For example, consider an ad campaign for a cosmetic product
that is already popular among teenage females. The campaign is
designed to show impressions to teenage females who would regu-
larly buy the product regardless of ad exposures. Such a campaign
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Figure 1: Exposed and Unex-
posed Groups: Different Network
Activity and Age Distributions
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Figure 2: Probability to Be Exposed
along with Success Rates

might reach a high ratio of the success rates of two groups of users,
since the exposed group of users have high purchase intention. If
one fairly compares the success rates of the exposed users with the
other teenage females with no ad exposure, one can obtain the true
amplifier, which may be much smaller. Such a fair comparison
may not always be available since in observational dataset, the un-
exposed group is usually the majority of the population, which can
be rather different than the exposed group of users. We describe
such way of campaign design, namely, targeting the users with high
intention to make success actions even without ad exposures and
hence showing untruthful high amplifier, ‘smart cheating’.

Smart cheating exists extensively in online advertising via target-
ing the users who are more likely to perform success actions. Even
the campaigns without explicitly targeting criterion may also con-
duct implicit smart cheating. The reason is that, the adversing strat-
egy, especially in real-time bidding (RTB), usually involves success
rate prediction that incorporates user characteristics [1]. Hence it
may implicitly choose the users who are more likely to perform
success actions regardless of ad exposures. By recognizing smart
cheating in the campaigns, advertisers can compare the true impact
of targeting strategies, and hence choose the campaigns that lead
to more incremental success actions. A scientific way to define and
quantify smart cheating has long been demanded by the advertisers,
and yet few studies have been focused on this topic.

In this paper, we define and quantify smart cheating by mea-
suring the fake inflation of the naive amplifier, comparing to the
true amplifier on the exposed users estimated through causal infer-
ence, which leads to a smart cheating ratio (SCR). We apply our
approach to multiple campaigns, and successfully reveal that some
of the campaigns are conducting severe smart cheating.

2. SMART CHEATING
We quantify smart cheating based on the difference of the naive

amplifier and the true amplifier. The naive amplifier is formally

133



defined as follows. In an observational dataset, suppose we ob-
serve N users indexed by i = 1, 2, ..., N , each with a character-
istic vector with K elements Xi = (Xi,1, ..., Xi,K). A user is
either exposed to ads or not, and the exposure indicator is repre-
sented by zi, where zi = 1 indicates exposures and zi = 0 indi-
cates no exposure. Hence the users are divided into two groups:
the exposed group and control (i.e., unexposed) group. The user-
level outcomes, for example purchases, are indicated by yi, where
yi = 1 indicates success action(s) and yi = 0 indicates no suc-
cess action. The naive success rates of the exposed and control
groups are rnaive,exposed = 1∑

i zi

∑
i ziyi and rnaive,control =

1∑
i(1−zi)

∑
i(1− zi)yi receptively. The naive amplifier is simply

the ratio Rnaive = rnaive,exposed/rnaive,control.
However, as illustrated in Section 1, the naive amplifier is bi-

ased since the control group may have different user character-
istics than the exposed group. One would need to ‘match’ the
control group to the exposed group, and then by comparing the
observed exposed group and the matched control group, one can
obtain the true amplifier on the exposed users. There are vari-
ous approaches to obtain the success rate of the ‘matched’ con-
trol group [2, 4] through causal inference, utilizing user charac-
teristics Xi for the matching. In this paper, we estimate the suc-
cess rate of the ‘matched’ control group with the method described
in [3] as rmatched,control, and obtain the matched success rate
ratio Rmatched as Rmatched = rnaive,exposed/rmatched,control.
Rmatched represents the measurement of the true amplifier as it
matches the control group to the exposed group.

We quantify smart cheating as the inflation of the naive amplifier
Rnaive, comparing to the true amplifier estimated byRmatched. To
eliminate the impact of the scale of the amplifier, we define a smart
cheating ratio (SCR) to quantify the severity of smart cheating as
SCR = Rnaive−Rmatched

Rmatched
.

The sign of SCR reflects the existence of smart cheating. Specif-
ically we summarize three possible cases as below. 1) SCR > 0:
The naive amplifier is larger than the truth. This means that the
naive amplifier is untruthfully inflated, resulting from the different
user characteristics of the exposed and control groups. The larger
the absolute value of SCR, the more severe the smart cheating.
2) SCR < 0: The naive amplifier is smaller than the truth. The
true amplifier is underestimated by naive method, which means the
campaign is reaching out to ‘hard users’, who are not likely to per-
form success actions comparing to the control group. 3) SCR = 0:
The naive amplifier equals to the truth. This means that the ads
reach users with the same success intention as the control group.

We further embed the SCR calculation in a bootstrap framework
to obtain the estimation error and confidence interval (CI), which
enables hypothesis testing. We repeatedly generate bootstrap sam-
ples (i.e., a set of random samples drawn with replacement from
the dataset), and estimate the SCR based on the samples. Suppose
we draw B bootstrap samples and the estimated SCR from the B
bootstrap samples are ŜCR

∗
b , b = 1, 2, ..., B respectively. Based

on ŜCR
∗
b , one can obtain: 1) the final estimated ŜCR by averag-

ing ŜCR
∗
b ; 2) the standard error of the estimated SCR, σ̂SCR, by

calculating the standard deviation of ŜCR
∗
b ; and 3) the 1 − α CI

(qα/2, q1−α/2), where qa is the a’th empirical quantile of ŜCR
∗
b ’s

(i.e., qa is the value such that the proportion of ŜCR
∗
b ’s smaller

than qa equals to a.). Usually one can set α = 0.05, and then the
95% CI is (q0.025, q0.975). One can also perform hypothesis test
H0 : SCR = 0 Versus Ha : SCR 6= 0. One rejects the null
hypothesis when 0 is not within the 1− α CI (qα/2, q1−α/2).

3. ASSESSMENT OF REAL CAMPAIGNS
Smart cheating exists extensively in online advertising. In this

section, we illustrate the smart cheating assessment with multiple
real campaigns from a premium Internet media company, involving
millions of unique users. We collect 1000 user-level characteristics,
including website visitation, ad exposure, demographic informa-
tion, market interest, etc., repeatedly on a daily basis 1. We ran-
domly select four campaigns, including companies from wireless
service, finance, information technology, and phone system indus-
tries, each involving millions of users. The results are shown in
Table 1. The SCR’s of the first three campaigns are hugely posi-
tive under 0.05 significance level and hence indicate severe smart
cheating. Note that after matching the control group to the exposed
group and hence discounting for smart cheating, the finance indus-
try ad shows negative amplifier, which reveals the negative impact
of this campaign. In such case, failure to consider smart cheating
may even harm the advertiser. The SCR of the phone system com-
pany is negative, meaning that this campaign reaches out to ‘hard
users’ and had positive impact on those users.

Table 1: Compaign Summaries

Advertiser Rnaive Rmatched ŜCR σ̂SCR CI
Wireless
Service 2.52 1.75 0.43 0.03 (0.37, 0.49)

Finance 1.31 0.88 0.33 0.04 (0.25, 0.41)
Information
Technology 1.80 1.21 0.33 0.03 (0.27, 0.40)

Phone
System 0.51 1.27 -0.60 0.04 (-0.66, -0.53)

To further visualize the targeting bias of the exposed group,
we empirically calculate the success probabilities of the ex-
posed group along with ad exposure probabilities. Specifi-
cally, we estimate the probability that each user is exposed as
p̂i = P (zi = 1|Xi), ∀i, utilizing the method described in
[3]. We determine a series of probability buckets, for example
[0, 0.05), [0.05, 0.10), ..., [0.95, 1]. For each bucket k, we select
the exposed users with p̂i within the probability bucket, count the
number of such exposed users as bek and the number of such ex-
posed users with success action as aek, and calculate the success rate
of the corresponding bucket as aek/b

e
k. We then draw the estimated

success rates along with the probability buckets. The visualization
of the wireless service campaign is demonstrated in Figure 2. The
figure shows that, a user with larger success tendency (as in the x-
axis) is more likely to be exposed, i.e. the campaign is conducting
smart cheating, which confirms the conclusion from SCR.

The results from real-world ad campaigns show that smart cheat-
ing exists extensively and can be rather severe in online advertising.
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1The reported datasets and results are deliberately incomplete and
subject to anonymization, and thus do not necessarily reflect the
real portfolio at any particular time.
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