
Time is of the Essence: Improving Recency Ranking Using
Twitter Data

Anlei Dong Ruiqiang Zhang Pranam Kolari Jing Bai
Fernando Diaz Yi Chang Zhaohui Zheng

Yahoo! Inc.
701 First Avenue, Sunnyvale, CA 94089

{anlei, ruiqiang, pranam, jingbai, diazf, yichang, zhaohui}@yahoo-inc.com
Hongyuan Zha

College of Computing
Georgia Institute of Technology

Atlanta, GA 30032
zha@cc.gatech.edu

ABSTRACT
Realtime web search refers to the retrieval of very fresh content
which is in high demand. An effective portal web search engine
must support a variety of search needs, including realtime web
search. However, supporting realtime web search introduces two
challenges not encountered in non-realtime web search: quickly
crawling relevant content and ranking documents with impover-
ished link and click information. In this paper, we advocate the
use of realtime micro-blogging data for addressing both of these
problems. We propose a method to use the micro-blogging data
stream to detect fresh URLs. We also use micro-blogging data
to compute novel and effective features for ranking fresh URLs.
We demonstrate these methods improve effective of the portal web
search engine for realtime web search.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval

General Terms
Algorithms, Experimentation

Keywords
Twitter, recency ranking, recency modeling

1. INTRODUCTION
An effective portal web search engine must satisfy a wide range

of queries. At a high level, these include, for example, naviga-
tional queries (e.g. ‘yahoo’) and transactional queries (e.g. ‘red
shoes’) [5]. However, a portal’s query population can be further
segmented into more granular categories. Each query class may re-
quire a different ranking strategy and an effective system will sup-
port a broad set of query classes.

Recency sensitive queries refer to queries where the user expects
documents which are both topically relevant as well as fresh. For

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2010, April 26–30, 2010, Raleigh, North Carolina, USA.
ACM 978-1-60558-799-8/10/04.

example, consider the occurrence of some natural disaster such as
an earthquake. A user interested in this topic probably wants to
find documents which are both relevant (e.g. discuss aspects of the
earthquake) and timely (e.g. discuss very recent information).

A web search engine must effectively handle time sensitive queries
because failures can be more severe for this class than for other
query classes. This is case for two reasons. First, time sensitive
queries are more likely to suffer from the zero recall problem, the
failure to index any relevant documents for a query. This results
from the fact that these queries often refer to events for which
documents have been lightly published. Zero recall queries are
detrimental because no amount of effort—through reformulation
or scanning—can expose the user to relevant content. Second, even
when relevant content exists in the index, a user’s need for relevant
content is immediate. She may be less willing to invest the effort
to search for relevant content through reformulation.

We hypothesize that information from a micro-blogging site can
be exploited to improve search engine performance for recency sen-
sitive queries. Micro-blogging refers to a web publishing system
where posts are severely constrained in size. These constraints
allow rapid publishing from a variety of interfaces (e.g. laptops,
SMS) and encourage low-cost, realtime updates and links on de-
veloping topics. In our experiments, we use data from Twitter, a
micro-blogging site where posts consist of no more than 140 char-
acters. These posts are generated frequently and include a rich link-
ing structure.1

In this paper, we provide empirical evidence supporting the fol-
lowing claims,

1. Twitter is likely to contain URLs of uncrawled documents
likely to be relevant to recency sensitive queries.

2. The text of Twitter posts can be used to expand document
text representations.

3. The social network of Twitter users can be used to improve
ranking.

We test these claims using a real portal web search engine and eval-
uate performance using queries submitted to this engine.
1There are a variety of other sources which fall under our defi-
nition of micro-blogging. These include instant messaging status
messages and social network status updates.



2. RELATED WORK

2.1 Ranking Twitter Content
Most of the prior work on Twitter and ranking deals with ranking

individual tweets. Although Twitter maintains a specialized search
engine (http://search.twitter.com/), there exist several ver-
tical search engines which index content across realtime data (e.g.
blogs, collaborative bookmarking sites)2. While these search en-
gines are able to return very fresh documents, they can often suffer
from coverage or ranking issues. For example, consider a breaking-
news query. Ranked tweets consist of very brief comments on the
news topic from random Twitter users. While such content may
satisfy some searchers, other searchers may desire a more sophisti-
cated ranking algorithm incorporating authority or integrating con-
tent outside of Twitter. As an alternative, a portal web search engine
may decide to integrate Twitter content into general web search re-
sults. However, for these queries, Twitter content might obscure
more relevant documents. Furthermore, this content also may hurt
the user experience for those who are not familiar with Twitter; this
is especially true for general web search users. Besides ranking
individual tweets, Bing Twitter Search 3 also provides search re-
sults for the URLs referred to by Twitter users. The contents of
this dedicated search website are all extracted from Twitter data.
Our approach is to surface the URLs posted to Twitter on a gen-
eral search results page. Even though we use the Twitter content
in order to perform this blending, we never expose the user to this
content. In this way, we can be more confident that the results are
both high quality and comprehensive.

2.2 Studying Twitter
Twitter as a research topic has been investigated by researchers

in social network anaslysis. Java et al. [18] study the topological
and geographical properties of Twitter social network, and find that
people use Twitter to talk about their daily activities and to seek
or share information. More importantly, their analysis shows that
users with similar intentions connect with each other. Huberman
et al. [14] use Twitter data to confirm that users’ attentions limit
the number of people with whom they interact in a social network.
Hughes et al. [15] examine Twitter usage as a result of an unex-
pected event. Compared to general Twitter behavior, they find that
Twitter messages sent during unexpected events contain more in-
formation broadcasting. Jansen et al. [16] investigate Twitter as a
form of sharing consumer opinions concerning brands, and found
that discuss the implications for corporations using microblogging
as part of their overall marketing strategy. Krishnamurthy et al. [21]
identify distinct classes of Twitter users and their behaviors, geo-
graphic growth patterns and current size of the network, and com-
pare crawl results obtained under rate limiting constraints. Shamma
et al. [25] compare Twitter messages in the context of live media
events. They find that analysis of Twitter usage patterns around this
media event can yield significant insights into the semantic struc-
ture and content of the media object.

Twitter has also been studied in the context of education [3, 10],
communication [27] and collaboration [13].

2.3 Recency Ranking
We use Twitter in order to address recency sensitive queries. Pre-

vious work has focused on detecting recency sensitive queries in
the context of selectively displaying news articles [8, 20]. As we
2http://collecta.com/
http://www.oneriot.com/
http://www.yourversion.com/
3http://bing.com/twitter

will see in Section 3, this approach has several shortcomings which
would be addressed by incorporating recency into the general web
search results. In this respect, our work builds on our prior results
work in recency ranking [9]. We extend this work by using Twitter
to quickly update our index and generate new features.

3. MOTIVATION

3.1 Challenges in Recency Ranking
Many existing search engines address recency sensitive queries

by selectively integrating content from a specialized news index
[8, 20]. The integration process usually comes in the form of a
small display containing a small number of documents from the
news index. Unfortunately, relying on this approach alone suffers
from several problems,

• For some recency sensitive queries, relevant documents are
not news documents but web pages.

• A relevant document may be published on a low-priority news
site.

• Even when relevant news content exists, the web search re-
sults may remain stale.

In order to provide for a consistently relevant experience for all
users, we believe that addressing the recency ranking should focus
on web results directly.

General web search algorithms incorporate a wide variety of sig-
nals when computing the rank of a document. These include query
match signals (e.g. how often query words appear in different sec-
tions) as well as query-independent signals (e.g. PageRank, popu-
larity, aggregated clicks). Unfortunately, many of these latter fea-
tures may not be accurately represented in fresh documents. There-
fore, even when relevant documents have been indexed, several is-
sues might exist which prevent effective retrieval for time sensitive
queries. For example,

• Fresh documents may have very few—if any—in-links, af-
fecting link-based authority metrics.

• Fresh documents may have very few—if any—clicks, affect-
ing click-based authority metrics.

Coping with poor link information can be problematic because it
would require a second tier of crawling to monitor links to fresh
content. Coping with poor click information requires the search to
surface the fresh documents; this is precisely the problem we are
addressing.

3.2 An Opportunity
In the context of recency ranking, micro-blogging data can ad-

dress challenges in recency ranking. First, micro-blogging links
include both news and non-news URLs. This allows us to gather
information about relevant non-news documents and improve the
web results. Second, micro-blogging links are posted according
to users’ diverse and dynamic browsing priorities, as opposed to a
crawl policy attempting to predict that priority. Third, the social
network unique to our micro-blogging data provides a method for
computing authority for fresh documents. Furthermore, a micro-
blogged URLs often include meta-data such as the messages con-
taining this URL. This meta-data can be used to compute ranking
features likely to be correlated with relevance.

Our system naturally breaks down into two parts: crawling and
ranking. Crawling micro-blogged URLs requires addressing spam



Figure 1: A typical tweet message accompanying a tiny URL.
This specific tiny URL is tweeted by five unique users with their
respective tweet messages. Such tweet messages are indicative
of the content of the tiny URL. The users’ photos and names
are mosaicked to protect privacy.

and non-recency URLs (Section 4). Ranking micro-blogged URLs
requires incorporating these documents into a larger web ranking
system (Section 5). In the subsequent sections, we will address
each of these tasks in the context of Twitter data.

4. CRAWLING TWITTER URLS
There are several disadvantages to naïvely crawling all Twit-

ter URLs. The URLs posted by Twitter users include a signif-
icant amount of links to spam, adult and self-promotion pages,
which probably should not be included in results for time sensi-
tive queries. Furthermore, realtime crawling and indexing of all
Twitter URLs would require considerable overhead.

We employ simple heuristics to filter out most of the undesired
Twitter URLs. In order to address spam and self-promotion URLs,
we discard URLs referred to by the same Twitter user more than
two times. Furthermore, we discard URLs only referred to by one
Twitter user. This removes spurious URLs from our crawl.

We did an experiment to study the effect of these filtering rules.
During the period of 15:00∼20:00 (UTC) on September 9th, 2009,
there are a total of 1,069,309 URLS that were posted in Twitter.
After applying the first rule, 713,178 URLs remained, 66.7% of the
original URLs. In other words, 33.3% of the URLs are filtered out
as they are very likely to be spam, adult or self-promotion pages.
After applying the second rule, 63,184 URLs remained, only 5.9%
of the original URLs. We also manually inspected a sample of
discarded URLs and found that most of them were undesirable.

5. RANKING TWITTER URLS
Machine-learned ranking, the underlying algorithm for many web

search engines, refers to the automatic construction of a ranking
function which optimizes retrieval performance metrics [6,7,11,19,
22,26,29]. Machine-learned rankers have demonstrated significant
and consistent gains over many manually tuned rankers for a variety
of data sets. Optimization usually is formulated as learning a rank-
ing function from preference data in order to minimize a loss func-
tion (e.g., the number of incorrectly ordered documents pairs in the
training data). Different algorithms view the preference learning
problem from different perspectives. For example, RankSVM [19]

uses support vector machines; RankBoost [11] applies the idea of
boosting from weak learners; GBrank [28] uses gradient boosting
with decision tree; RankNet [6] uses gradient boosting with neural
network.

A typical learning-to-rank framework must be trained using some
editorially labeled data. This is accomplished by sampling a set
of query-url pairs for human judgment. Each of these query-url
pairs is given a grade based on the degree of relevance (e.g. bad
match, excellent match, etc). Each query-url pair is then repre-
sented by a feature vector consisting of variables indicating query
term matches, link-structure-based features of the document (e.g.
PageRank), and click-based features of the document. Using the
features of each document as well as the editorially labeled train-
ing data, a machine learned ranking system can predict effective
rankings for queries unseen in the training data.

One of the most important aspects of a learning-to-rank system
is the feature set. We differentiate between the types of features we
use in our work. Content features refer to those features which are
functions of the content of the document (e.g. query term matches,
proximity between query terms). We expect these features to be-
have normally for fresh URLs. Aggregate features refer to those
features which represent a document’s long term popularity and
usage (e.g. in-link statistics, PageRank, clicks). We expect that
these features will be poorly represented for fresh URLs. Twitter
features refer to those features which are related to tweets contain-
ing a URL pointing to the document (e.g. tweet content, number of
tweets containing the URL). We expect that these features will be
poorly represented—and often non-existent—for those documents
not crawled from the Twitter feed.

In the subsequent subsections, we will describe our Twitter fea-
tures in detail. We will also describe a special training method
required for recency sensitive queries. Content and aggregate fea-
tures are thoroughly described in [1, 23, 28].

5.1 Twitter Features
Twitter is comprised of two parts: a publishing system and a

subscription system. Data about the publishing system (i.e. what
are users posting) allows us to detect new URLs. The publishing
system also provides textual information associated with these new
URLs. Data about the subscription system (i.e. which users are
following which other users) allows us to measure the qualities of
the new URLs. This is only possible because Twitter subscriptions
are exposed to the public.

5.1.1 Textual Features
A URL posted to twitter can be associated with the text surround-

ing it. Figure 1 depicts a set of tweets from users about a common
tiny URL. The text in tweets accompanying the tiny URL can pro-
vide useful additional information.

Assume we havem tweets andw URLs. Let M be them×w bi-
nary matrix represent the occurrence of a URL in a tweet. Assume
we have observed v words in all tweets. We define the m× v ma-
trix D so thatDij represents the number of times a tweet i contains
a term j. In practice, we remove stop words from our vocabulary.
We can construct a term vector for a URL, j, as,

uT
j =

X
i

MijDi· (1)

where Di· represents row i of D. This represents a URL by the
combination of tweet contents. A query can also be represented
as the v × 1 vector, q, of term occurrences. These representations
allow us to use text similarity features in order to predict URL rel-
evance. For example, we can use the cosine similarity between



the URL term vector (Equation 1) and q in order to determine the
similarity between a URL and a query. For a URL, j, the cosine
similarity feature is defined as,

φjcosine =
uT
j q

‖uj‖2‖q‖2
(2)

By design, tweets are very short pieces of text and therefore are
susceptible to problems when applying classic text ranking meth-
ods [24]. For example, unmatched terms should be more severely
penalized than they are in cosine similarity. For this reason, we also
inspect the term overlap as another textual feature. Let D̃ be the bi-
nary version of D (i.e. D̃ij = 1 if Dij > 0; D̃ = 0 otherwise).
Define q̃ similarly. The term overlap between a query and the text
of a tweet can be represented as,

ωiq = (D̃i·)
Tq̃ overlapping terms

εiq = ‖D̃i·‖1 − ωiq extra terms
µiq = ‖q‖1 − ωiq missing terms

were ‖x‖1 is the `1 norm of x. For a candidate URL j, the unit
match feature is defined as,

φjunit =
1

‖q‖1

mX
i=1

εαiqµ
β
iqωiqMij (3)

The parameters α and β control the importance of extra and miss-
ing terms. In our experiments, parameters α and β are set to be 0.5
and 0.65 respectively, based on earlier experience with this param-
eter in a popular search engine.

Finally, we also include a simple exact match feature. The fea-
ture counts the number of tweet messages in which all query tokens
appear contiguously, and in the same order,

φjexact =
1

‖M·j‖1

mX
i=1

phraseMatch(q, i)Mij (4)

where M·j returns column j of M and phraseMatch(q, i) return
one if there exact phrase q occurs in tweet i.

5.1.2 Social Network Features
We adopt the convention of representing user data as a social net-

work where vertices represent twitter users and edges represent the
follower relationship between them. Mathematically, we represent
this graph as a u×u adjacency matrix, W, whereWij = 1 if user i
follows user j. In practice, we normalize W so that

P
jWij = 1.

Given this matrix and an eigensystem, Wπ = λπ, the eigenvec-
tor, π, associated with the largest eigenvalue, λ, provides a natural
measure of the centrality of the user [2]. The analog in web search
is the PageRank of a document [4]. This eigenvector, π, can be
computed using power iteration,

πt+1 = (λW + (1− λ)U)πt (5)

where U is a matrix whose entries are all 1
m

. The interpolation
of W with U ensures that the stationary solution, π, exists. The
interpolation parameter, λ, is set to 0.85. In our experiments, we
perform fifteen iterations (i.e. π̃ = π15). If we assume that a user i
posted URL j, we define the authority feature of URL j as

φjauthority = πi (6)

We can also use the authority of the user in the computation
of our unit match score (Equation 3). In particular, we define the

φother-1 average number of followers for the users who issued the tiny
URL

φother-2 average post number for the users who issued the tiny URL
φother-3 average number of users who retweeted the tweets containing

the tiny URL
φother-4 average number of users who replied those users that issued

the tiny URL
φother-5 average number of followings for the users who issued the

tiny URL
φother-6 average Twitter score of all the users who issued the tiny URL
φother-7 number of followers for the user who first issued the tiny URL
φother-8 number of posts by the user who first issued the tiny URL
φother-9 number of users who retweeted the user who first issued the

tiny URL
φother-10 number of users who replied the user who first issued the tiny

URL
φother-11 number of followings for the user who first issued the tiny

URL
φother-12 Twitter score of the users who first issued the tiny URL
φother-13 number of followers for the user who issued the tiny URL

with the highest Twitter score
φother-14 number of posts by the user who issued the tiny URL with the

highest Twitter score
φother-15 number of users who retweeted the user who issued the tiny

URL and has the highest Twitter score
φother-16 number of users who replied the user who issued the tiny

URL and has the highest Twitter score
φother-17 number of followings for the user who has the highest Twitter

score among the users that issued the tiny URL
φother-18 Twitter score of the users who issued the tiny URL and who

is the highest Twitter score
φother-19 number of different users who sent the tiny URL.

Table 1: Twitter features.

authority-weighted unit match score as

φjunit-π =
1

‖q‖1

mX
i=1

εαiqµ
β
iqωiqMijφ

i
authority (7)

5.1.3 Other Features
In addition to the features described in the preceding sections, we

can compute simple aggregate metrics of the URL over a period of
time (the details on the period selection are in Section 6.1.1). We
present these features in Table 1. Some of the features are designed
to improve relevance ranking by incorporating Twitter specific fea-
tures: user’s authority estimation from twitter rank (5), which we
also call Twitter user score or Twitter score. For example, the fea-
ture φother-6 is the average Twitter score of all the users who issued
the tiny URL. Over a period of time, there could be many users who
issued, replied, or retweeted the tiny URL. This feature is to calcu-
late the average twitter score of all the users. The feature φother-12 is
the Twitter score of the users who first issued the tiny URL.

The features in Table 1 can be grouped into three set. Features
φother-1−φother-6 are the average statistics of the users who issued the
tiny URL. Using average statistics can improve feature’s robustness
and discount any bias on a single user. Features φother-7 − φother-12

are the features related to the user who is the first that issued the
tiny URL. We assume the authority of the first issuer may affect the
URL importance. Features φother-13−φother-18 are the features related
to the user who issued the tiny URL but has the highest Twitter
score. The user with the highest Twitter score means he/she is the
one with the most authority among the users.

In each set, we consider the number of followers, tweets, users
being retweeted and replied, and user’s Twitter score. Those fea-
tures estimate the tiny URL’s popularity from different aspects. The
last feature, φother-19, is the number of different users who issued the



tiny URL. The higher the number, the more popular the tiny URL
is.

Algorithm 1 Ranking functions used in the ranking system, includ-
ing ranking functions for documents represented using content and
aggregated features (Mregular), only content features (Mcontent), and
twitter and content features (Mtwitter). D represents data set includ-
ing query-URL pairs with labeled relevance grades. F represents
feature set. TRAIN-MLR(D,F) is the ranking function learning
algorithm, which is based on the training data set D using feature
set F. PREDICT(D,M) scores the data set, D using modelM.

TRAIN-MODELS(Dregular,DTwitter)

Dregular: training data set from regular data
DTwitter: training data set from Twitter data

1 Mregular ← TRAIN-MLR(Dregular, {Fcontent,Faggregate})
2 MTwitter ← TRAIN-MLR(DTwitter, {Fcontent,FTwitter})
3 Mcontent ← TRAIN-MLR(Dregular,Fcontent)
4 yTwitter ← PREDICT(DTwitter,Mcontent)
5 Mcomposite ← TRAIN-MLR(DTwitter, {yTwitter,FTwitter})

5.2 Ranking

5.2.1 Relevance Models
The most straightforward method to train a ranking function for

Twitter documents is to follow the standard procedure prescribed
above: sample query-URL pairs (including both regular URLs and
Twitter URLs) and label them, train a ranking function, and apply
this function on future queries. Unfortunately, there are far more
regular URLs than Twitter URLs. Twitter feature values will be
missing from the majority amount of regular URLs. As a result, the
machine-learned ranking system will likely ignore these features.

We employ a divide-and-conquer strategy, which fully exploits
the available ranking features for regular URLs and Twitter URLs
respectively. As shown in Algorithm 1, for regular URLs, we learn
a regular ranking function Mregular based on content features and
aggregate features; for Twitter URLs, we learn a Twitter ranking
function Mtwitter based on content features and Twitter features.
In addition to these two ranking functions, we also learn a rank-
ing functionMcontent only based on content features. We train this
model for comparison in our experiments.

We use the Gradient Boosted Decision Tree (GBDT) algorithm
[12] to learn a ranking function for TRAIN-MLR in Algorithm 1.
GBDT is an additive regression algorithm consisting of an ensem-
ble of trees, fitted to current residuals, gradients of the loss function,
in a forward step-wise manner. It iteratively fits an additive model
as

ft(x) = Tt(x; Θ) + λ
TX
t=1

βtTt(x; Θt)

such that certain loss functionL(yi, fT (x+i)) is minimized, where
Tt(x; Θt) is a tree at iteration t, weighted by parameter βt, with
a finite number of parameters, Θt and λ is the learning rate. At
iteration t, tree Tt(x;β) is induced to fit the negative gradient by

(Mregular,Mregular) Use Mregular on regular and Twitter
URLs.

(Mcontent,Mcontent) Use Mcontent on regular and Twitter
URLs.

(Mregular,Mcontent) Use Mregular on regular URLs and
Mcontent on Twitter URLs.

(Mregular,Mtwitter) Use Mregular on regular URLs and
Mtwitter on Twitter URLs.

(Mregular,Mcomposite) Use Mregular on regular URLs and
Mcomposite on Twitter URLs.

Table 2: Runs used in our experiments

least squares. That is

Θ̂ := argminβ

NX
i

(−Git − βtTt(xi); Θ)2

where Git is the gradient over current prediction function

Git =

»
∂L(yi, f(xi))

∂f(xi)

–
f=ft−1

The optimal weights of trees βt are determined by

βt = argminβ

NX
i

L(yi, ft−1(xi) + βT (xi, θ))

5.2.2 Ranking Models
To rank the URLs (both regular URLs and Twitter URLs) with

the given query, we apply our relevance models to regular URLs
and Twitter URLs. We then rank the URLs by sorting their ranking
scores. Because we always model a relevance grade, the predicted
grades are calibrated and comparable. As a result, we can directly
blend regular URLs and Twitter URLs according to their ranking
scores.

We study the five ranking approaches listed in Table 2. We adopt
the convention of representing algorithms as model tuples where
(Mx,My) means ‘applyMx to regular URLs andMy to Twitter
URLs’.

Our two baseline approaches apply Twitter-unaware models to
all URLs being considered. The (Mregular,Mregular) baseline can be
interpreted as applying a general ranking algorithm to all URLs. In
the cases where URLs lack valid aggregate features, we set their ag-
gregate feature values as default value zeros. The (Mcontent,Mcontent)
baseline indirectly promotes the Twitter URLs focusing the ranking
on features shared between both regular and Twitter URLs.

We also consider approaches which apply different models to
different URLs. The (Mregular,Mcontent) run preserves the produc-
tion ranking for regular URLs but applies a content-only model to
Twitter URLs. We expect this model to leverage the content fea-
tures learned across the pooled data to rank Twitter URLs. This
behavior may not be present in a model which was trained using
both content and aggregate features. The (Mregular,Mtwitter) run
explores the benefit of combining features specific to Twitter with
content features. One drawback of the Mtwitter model is the rela-
tively small training pool: we expect far fewer example documents
with both Twitter and content features defined compared to those



with only content features defined. As a result, we also consider a
final run, (Mregular,Mcomposite), which uses the content model score
as a feature for Twitter URLs.

6. METHODS AND MATERIALS

6.1 Data

6.1.1 Documents and Queries
Our data set of queries and tweets was collected over a few differ-

ent days. We use a web index from a large-scale commercial search
engine. Our Twitter stream consists of all tweets from the Twitter
Firehose.4 On each day of the study, we collected queries issued
to the search engine between 23:00∼23:59 UTC. Recall that we
are interested using Twitter only for time-sensitive queries, those
queries which expect fresh URLs. Therefore, we only consider
queries which are classified as “time-sensitive” queries using an
automatic classifier [9].

We constructed two sets of URLs for each day,

• regular URLs: in the search engine index during 23:00∼23:59,

• Twitter URLs: posted by Twitter users during the 9-hour pe-
riod before the query time (i.e., 14:00∼22:59).

The 9-hour period is heuristically determined only for experimen-
tal purposes. This period corresponds to the hours during which
Twitter volume is highest. For each query, we apply simple text-
matching rules on Twitter URLs in order to remove non-relevant
URLs. For example, we remove URLs from consideration if there
are no query term matches in the body or title.

For the regular URLs, we consider the top ten URLs as decided
by the production ranking algorithm of the search engine. We also
consider all Twitter URLs. Recall that we train the ranking function
Mcontent in Section 5.2, which is only based on content ranking
features (from document title and body). For each query, we apply
Mcontent to the Twitter URLs and heuristically determine a ranking
score threshold: if a Twitter URL has higher ranking score than this
threshold, we keep this Twitter URL for the query; otherwise, we
discard this Twitter URL. Therefore, we obtain Twitter URLs with
reasonable relevance to the query.

6.1.2 Labels
Given these queries, we are interested in labeling the relevance

of documents in both sets. We ask human editors to label each tuple
〈query,URL, tquery〉 with a relevance grade. We apply five judge-
ment grades on query-URL pairs: perfect, excellent, good, fair and
bad. For editors to judge the tuple, we ask them to first grade it by
non-temporal relevance, such as intent, usefulness, content, user
interface design, and domain authority.

Because we are interested in time-sensitive queries, we catego-
rize documents according to their temporal properties. We present
the classes we consider in Table 3. We would like to promote ‘very
fresh’ documents and demote ‘outdated’ documents. Those docu-
ments which are ‘temporally insensitive’ or ‘somewhat fresh’ are
unlikely to affect the recency of a ranking so we leave those docu-
ments in the original order. We can combine these temporal cate-
gories with the relevance judgments using recency demotion [9],

• shallow demotion (1-grade demotion): if the result is ‘some-
what outdated’, it should be demoted by one grade (e.g., from
excellent to good);

4http://apiwiki.twitter.com/

document class example document
time insensitive wikipedia entry

time sensitive
very fresh very recent news article
somewhat fresh a day-old news article
somewhat outdated old news article
totally outdated very old news article

Table 3: Document classes for time-sensitive queries. The “very
fresh” documents are those which were published on the same
day as the query.

• deep demotion (2-grade demotion): if the result is ‘totally
outdated’, it should be demoted by two grades (e.g., from
excellent to bad).

6.1.3 Testing Data
We collect testing data from the search engine and Twitter stream

on the day of October 14th, 2009. The time-windows and proce-
dures are described in Section 6.1.1. The testing data consists of
3781 regular query-URL pairs and 769 Twitter query-URL pairs,
in which there are unique 392 queries.

For regular query-URL pairs, content features and aggregate fea-
tures are extracted. For Twitter query-URL pairs, content features
and Twitter features are extracted. In the experiment, there are 66
content features, 454 aggregate features and 23 Twitter features.

6.1.4 Training Data
There are two training data sets. One set is used to train ranking

function for regular URLs, another set is to train ranking function
for Twitter URLs.

For regular training data set, we collect a large amount of 206,249
query-URL pairs. Content features and aggregate features are ex-
tracted from this training set.

For Twitter training data set, we collect the Twitter data from
two days: October 12th, 2009 and October 19th, 2009. The time-
windows and procedures are described in Section 6.1.1. The data
from these two days are combined together, and there are totally
8025 query-URL pairs.

To make it fair for our experiment evaluations, we remove the
queries from this training set that are similar to or same as the
queries in the testing set. After removing these similar (same)
queries, the Twitter training data set consists of 5006 query-URL
pairs and there are 1800 associated unique queries. Content fea-
tures and Twitter features are extracted.

6.2 Evaluation
We desire an evaluation metric which supports graded judgments

and penalizes errors near the beginning of the ranked list. In this
work, we use discounted cumulative gain (DCG) [17],

DCGn =
nX
i=1

Gi
log2(i+ 1)

(8)

where i is the position in the document list, Gi is the function of
relevance grade. Because the range of DCG values is not consis-
tent across queries, we adopt the normalized discounted cumulative
gain (NDCG) as our primary ranking metric,

NDCGn = Zn

nX
i=1

Gi
log2(i+ 1)

(9)



where Zn is a normalization factor, which is used to make the
NDCG of ideal list be 1. We use NDCG1 and NDCG5 to evalu-
ate the ranking results.

Our recency demotion guidelines conflate relevance and recency.
In order to evaluate freshness in isolation, we also include a fresh-
ness metric based on DCG, discounted cumulative freshness (DCF),

DCFn =

nX
i=1

Fi
log2(i+ 1)

(10)

where i is the position in the document list, Fi is the freshness label
(1 or 0). A query may have multiple very fresh documents, for ex-
ample when multiple news sources simultaneously publish updates
to some ongoing news story. Note that DCF is a recency measure-
ment that is independent of overall relevance. Therefore, when we
evaluate a ranking, we should first consider demoted NDCG which
represents the overall relevance, then inspect the value of the DCF.
We define normalized discounted cumulative freshness (NDCF) as
in Equation 9.

In our experiments, we use the following freshness criterion: if
the main content of a document is created on the same day as query
time, this document is labeled as a very fresh document. Using this
criterion, editors can easily and quickly evaluate documents. For
a very small portion of breaking-news queries, it is possible that
a document becomes stale only a few hours after its creation be-
cause more related documents are created with significantly newer
contents. However, the current criterion, in general, appropriately
reflects the fresh document distribution for most breaking-news
queries.

7. RESULTS

7.1 Data analysis
Before presenting results demonstrating our ranking improve-

ments, we offer some descriptive statistics of our collected data.
Recall that we used an automatic classifier to extract our candi-

date queries. We were interested in validating the accuracy of this
pool of queries. For the queries in the testing set, we randomly se-
lected 242 queries and asked editors to judge whether these queries
were breaking news queries or not. Our criterion for breaking-news
query was stricter than those used to train the automatic classi-
fier [9] we use in Section 6.1.1. Specifically, we asked editors to
label a query as a breaking news query only if there is at least one
new document created within the last 24 hours that is relevant to
the query. Our editorial experiment confirmed that 212 (91.7%) of
the queries were breaking new queries.

We can also measure the quality of Twitter URLs in aggregate
by inspect the freshness and relevance grades of our Twitter and
regular URLs. We present the distribution of grades broken down
by source in Table 5. We observe that the quality of Twitter URLs
is better than Regular URLs in sense of both relevance and recency.
Of the Twitter URLs, 53.8% are very fresh documents while, for
Regular URLs, this fraction is only 19.4%. Furthermore, the rel-
evance grade distribution does not change after recency demotion,
which means there are no stale documents in Twitter URLs. This
confirms our assumption that the URLs extracted from Twitter data
are generally very fresh. At same time, the overall relevance quality
of Twitter URLs is also higher than of regular URLs. The percent-
ages of perfect and excellent Twitter URLs are higher than those of
Regular URLs, while the percentages of fair and bad Twitter URLs
are lower than those of regular URLs. This means Twitter URLs
are potentially useful to improve ranking for time sensitive queries.

Finally, while we use our user authority feature, π̃ as a ranking

(a) relevance grade (demoted)
Perfect Excellent Good Fair Bad

Regular 0.7% 17.0% 44.9% 26.6% 10.9%
Twitter 13.0% 33.4% 41.0% 20.7% 3.6%

(b) relevance grade (non-demoted)
Perfect Excellent Good Fair Bad

Regular 0.9% 23.0% 61.0% 36.1% 14.8%
Twitter 13.0% 33.4% 41.0% 20.7% 3.6%

(c) recency label
Fresh Non-fresh

Regular 19.4% 80.6%
Twitter 53.8% 46.2%

Table 4: Data distribution in sense of relevance grade and re-
cency label.

feature, it is also worth noting that it can be used in isolation to
qualitatively inspect a set of users. We computed π̃ for ten million
users and present the top users associated with high values of π̃i
in Table 5. Though the top users are largely dominated by celebri-
ties, many popular bloggers, and news sources are also surfaced as
highly authoritative. Therefore, we expect that this feature will be
valuable when used in conjunction with our other features.

7.2 Ranking results
As shown in Table 6, our proposed approach which blends Twit-

ter content into the standard ranked list significantly improves rank-
ing in sense of both relevance and recency. We notice this improve-
ment across all of our metrics.

The baseline approach, (Mregular,Mregular), uses content and ag-
gregate features for both regular and Twitter URLs. This prevents
Twitter URLs from being promoted because Twitter URLs suffer
from feature impoverishment. We expect this behavior given our
discussion of the role aggregate features in Section 5.

The content-only approach, (Mcontent,Mcontent), underperforms
the baseline approach, (Mregular,Mregular), because it does not use
aggregate features. Nevertheless, as a result, Twitter URLs have no
disadvantage when they compete with regular URLs. The NDCF
values are improved which means more fresh documents (i.e., Twit-
ter documents) are promoted to the top ranking results. However,
in sense of relevance represented by NDCG values, there is no
improvement because the absence of aggregate features hurts the
ranking of regular URLs.

When we consider models which leverage the representational
strength of each URL class, performance improves across metrics.
For example, using the content and aggregate features for regular
URLs and content features for Twitter URLs, (Mregular,Mcontent),
improves both relevance and recency metrics. If we enrich the rep-
resentation of the Twitter URLs, (Mregular,Mtwitter), we get the best
performance across all metrics. This means that we were able to
successfully incorporate realtime web content without hurting rel-
evance. In fact, we improve relevance.

Our experiments did not confirm that (Mregular,Mcomposite) lever-
aged the additional training data from regular URLs for content
features. Our results show that the performance of this algorithm is
very similar to usingMtwitter, a model built with much less training
data.

Table 7 qualitatively illustrates the behavior of our algorithms.
Compared with the baseline result, (Mregular,Mregular), our Twitter-



Table 6: Ranking results comparison. All the improvements are statistically significant (p-value < 0.01). Bold entries indicate the
top performance for that metric.

Top 1 Top 5

NDCGdemote,1 NDCGnodemote,1 NDCF1 NDCGdemote,5 NDCGnodemote,5 NDCF5
(Mregular,Mregular) 0.588 0.611 0.474 0.666 0.681 0.518
(Mcontent,Mcontent) 0.570 −3.2% 0.610 −0.2% 0.513 +7.5% 0.652 −2.1% 0.682 +0.3% 0.587 +11.7%
(Mregular,Mcontent) 0.600 +1.8% 0.618 +1.2% 0.520 +8.8% 0.680 +2.1% 0.690 +1.3% 0.569 +8.9%
(Mregular,Mtwitter) 0.720 +18.4% 0.708 +13.7% 0.717 +33.8% 0.739 +9.9% 0.729 +6.5% 0.736 +29.6%
(Mregular,Mcomposite) 0.715 +17.9% 0.702 +13.0% 0.747 +36.5% 0.735 +9.4% 0.723 +5.8% 0.756 +31.4%

Table 7: An example of ranking recency improvement. The query is wwe captain lou albano, and the query issue time is during
23:00∼23:59 UTC on October 14th, 2009.

(a) Ranking result by baseline approach (Mregular,Mregular).
rank (rank in (b)) URL grade fresh from Twitter
1 (2) http://en.wikipedia.org/wiki/Captain_Lou_Albano good no no
2 (3) http://www.wwe.com/superstars/halloffame/inductees/captainloualbano/ excellent no no
3 (6) http://www.wrestlingmuseum.com/pages/bios/halloffame/albanobio.html good no no
4 (4) http://www.wwe.com/superstars/halloffame/inductees/captainloualbano/photos/ good no yes
5 (7) http://wjz.com/entertainment/captain.lou.albano.2.1248290.html excellent yes no

(b) Ranking result by new approach (Mregular,MTwitter).
rank (rank in (a)) URL grade fresh from Twitter
1 (8) http://edition.cnn.com/2009/SHOWBIZ/TV/10/14/obit.albano/ excellent yes yes
2 (1) http://en.wikipedia.org/wiki/Captain_Lou_Albano good no no
3 (2) http://www.wwe.com/superstars/halloffame/inductees/captainloualbano/ excellent no no
4 (4) http://www.wwe.com/superstars/halloffame/inductees/captainloualbano/photos/ good no yes
5 (12) http://www.wrestling-edge.com/wwe-news/wwe-hall-of-famer-capt-lou-albano-passes-away.html fair yes yes

userID User/Type

twitter Twitter Official
kimkardashian Kim Kardashian
aplusk Ashton Kutcher
denise_richards Denise Richards
ddlovato Demetria Lovato
katyperry Katy Perry
khloekardashian Khloe Kardashian
johncmayer John Mayer
astro_mike Mike Massimino
robdyrdek Rob Dyrdek
... ...
nasa NASA Space Program
mcuban Mark Cuban
wired Wired Magazine
problogger Darren Rowse
chrispirillo Chris Pirillo
cbsnews CBS News
jkottke Jason Kottke

Table 5: Result of Markov chain analysis on the twitter fol-
lower graph. The top half shows the top ten users, most, if not
all dominated by celebrities. However, a select sub-set from
the top hundred users features many news media sites, popular
bloggers, and technology authorities.

Table 8: Twitter feature importance list. The Twitter feature
definitions can be found in Table 1.

Twitter feature importance rank importance score
φunit 9 31.1
φother-17 10 27.1
φother-15 11 26.6
φother-3 13 22.8
φother-1 18 16.7

based algorithm significantly promotes relevant and recent content
to the top of the ranked list. Note that in this example, none of
the displayed URLs is stale; thus, the recency demotion grades and
non-demotion grades are always equal.

7.3 Feature importance
We have demonstrated that Twitter features can significantly boost

the performance of a recency sensitive ranker. It is worth investigat-
ing which Twitter features in particular were highly valued by our
model. As presented in Algorithm 1, the Twitter ranking function,
MTwitter, uses both content features and Twitter features. We can
compute the importance of each feature by the method proposed
in [12]. We rank features by the descending order of the impor-
tance and show the top five Twitter features in Table 8. The feature
importance score is on a scale of [0, 100].

The most important Twitter feature is φunit, which is the unit
match feature between query and tweet text as defined in (3). This
means the text similarity between a query and a tweet in general
highly correlates with the relevance between the query and the



Twitter URL posted in the tweet. Furthermore, this text-proximity
feature is highly complementary to the content ranking features
(e.g., text-proximity features based on document title and body)
and can be see as a proto-‘anchor text’ for new URLs.

The other important Twitter features include φother-17, φother-15,
φother-3 and φother-1, which are described in Table 1. These features
represent the authority and activity of the users that are related to
the Twitter URLs from different aspects. For example, φother-17 is
the number of the followings for the user who has the highest twit-
ter user score among the users that issued the Twitter URL.

8. DISCUSSION
Our experiments demonstrate that there is a clear advantage to

using Twitter both as a source of URLs as well as a source of ev-
idence for fresh URLs. These results complement existing Twitter
ranking results insofar as they demonstrate the efficacy of a blend-
ing approach as opposed to a vertical selection approach [8]. On
the other hand, our Twitter features can be further developed with
a knowledge from social studies of Twitter (Section 2.2).

There is also an opportunity for more sophisticated spam detec-
tion in our work. The Twitter URLs we used in our study have
undergone multiple filtering steps during both crawling (Section 4)
and ranking (Section 6.1.1). As shown in Table 5, the Twitter URLs
in our experiments are both highly relevant and fresh. We can po-
tentially increase the size of candidate Twitter URLs by relaxing
our filtering rules. However, as a result, the quality of the candidate
Twitter URLs will almost certainly become degrade. Our model,
then, would need to incorporate spam filtering. For example, it
would need to learn that certain features (e.g. number of users post-
ing the URL) are even more indicative of a low quality (or spam)
document. Fortunately, our training procedure supports such an ap-
proach. As a search system begins to index Twitter URLs in near
real time, spam detection will become increasingly important.

We have also assumed that the set of Twitter URLs is disjoint
from the set of regular URLs. This models a retrieval system as be-
ing composed of two parts: a long term index and a realtime index.
The long term index contains content whose freshness is limited
by the effectiveness of the crawler finding and incorporating new
data. The realtime index consists of very fresh content with impov-
erished representation. In many cases an overlap will exist. In our
experiments, using a commercial search engine, roughly 10% of
the Twitter URLs were already indexed. To simplify experimenta-
tion, we treated these URLs as Twitter URLs. However, as the long
term index begins to accumulate fresher and fresher content—for
example, through more effective/adaptive crawl policies or supe-
rior indexing architectures, the overlap will increase. As a result,
developing models which support Twitter, content, and aggregate
feature will be important.

Finally, we have only touched the surface of blended ranking.
In our experiments we combined scores based on relevance alone.
This suffers from a few problems inherent to ranking in general.
For example, this creates a problem for multiple intent queries (e.g.
‘election results’ could refer to one of several regional elections)
or queries which deserve summarization (e.g. ‘candidate speeches’
may be satisfied by a summary including documents which together
discuss several candidates’ recent speeches ). As a result, ranking
diversity will be an important area of research. Traditional diversi-
fication approaches focus on content-based similarity of documents
from the same index. It is unclear how these approaches can be ex-
tended to rankings which combine content from several indexes.

9. CONCLUSION
We have presented preliminary evidence supporting the claim

that micro-blogging data can be exploited to improve web ranking
for recency sensitive queries. Our approach is based on preserving
the quality of data presented to the general web searcher by only us-
ing micro-blog data as evidence for discovering and ranking URLs.
For recency queries, we demonstrated that both relevance-based
and freshness-based metrics can be improved with our approach.

More generally, our results demonstrate the power of leveraging
widespread user behavior for recency sensitive queries. Although
other sources of user behavior information exist (e.g. click logs,
toolbar data), Twitter is one of the only sources which is both pub-
lic and widely adopted. This makes Twitter a valuable source of
realtime user behavior for institutions lacking access to more sen-
sitive log data.

In the future, we are interested in improving spam detection, en-
riching the features we extract from Twitter using regular URL in-
formation and results from Section 2.2, and incorporating diversity.
Furthermore, we are interested in synthesizing signals from Twitter
streams with other sources of realtime evidence into a cohesive re-
cency ranking module. Finally, if demographic information about
Twitter users can be extracted or predicted, then this resource can
also be used for conducting personalization experiments.

10. ACKNOWLEDGES
We thank Alex Smola, Tamas Sarlos, Deepayan Chakrabarti,

Ciya Liao and Jyh-Herng Chow for their helpful discussions.

11. REFERENCES
[1] E. Agichtein, E. Brill, and S. Dumais. Improving web search

ranking by incorporating user behavior information. In
Proceedings of 29th ACM SIGIR, 2006.

[2] P. Bonacich. Factoring and weighting approaches to clique
identification. Journal of Mathematical Sociology,
2:113–120, 1972.

[3] K. Borau, C. Ullrich, J. Feng, and R. Shen. Microblogging
for language learning: Using twitter to train communicative
and cultural competence. In International Conference on
Web Based Learning (ICWL) 2009, 2009.

[4] S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine. Proceedings of
International Conference on World Wide Web, 1998.

[5] A. Broder. A taxonomy of web search. SIGIR Forum,
36(2):3–10, 2002.

[6] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds,
N. Hamilton, and G. Hullender. Learning to rank using
gradient descent. Proc. of Intl. Conf. on Machine Learning,
2005.

[7] Z. Cao, T. Qin, T. Liu, M. Tsai, and H. Li. Learning to rank:
From pairwise approach to listwise. Proceedings of ICML
conference, 2007.

[8] F. Diaz. Integration of news content into web results.
Proceedings of the Second ACM International Conference on
Web Search and Data Mining (WSDM), pages 182–191,
2009.

[9] A. Dong, Y. Chang, Z. Zheng, G. Mishne, J. Bai, R. Zhang,
K. Buchner, C. Liao, and F. Diaz. Towards recency ranking
in web search. In WSDM ’10: Proceedings of the third ACM
international conference on Web search and data mining,
pages 11–20, New York, NY, USA, 2010. ACM.



[10] J. C. Dunlap and P. R. Lowenthal. Tweeting the night away:
Using twitter to enhance social presence. In Journal of
Information Systems Education Special Issue, Impacts of
Web 2.0 and Virtual World Technologies on IS Education,
2009.

[11] Y. Freund, R. D. Iyer, R. E. Schapire, and Y. Singer. An
efficient boosting algorithm for combining preferences.
Proceedings of International Conference on Machine
Learning, 1998.

[12] J. H. Friedman. Greedy function approximation: A gradient
boosting machine. Annals of Statistics, 29(5):1189–1232,
2001.

[13] C. Honeycutt and S. C. Herring. Beyond microblogging:
Conversation and collaboration via twitter. In System
Sciences, 2009. HICSS ’09. 42nd Hawaii International
Conference on, pages 1–10, 2009.

[14] B. A. Huberman, D. M. Romero, and F. Wu. Social networks
that matter: Twitter under the microscope. Dec 2008.

[15] A. L. Hughes and L. Palen. Twitter adoption and use in mass
convergence and emergency events. In Proceedings of the
6th International Conference on Information Systems for
Crisis Response and Management, 2009.

[16] B. J. Jansen, M. Zhang, K. Sobel, and A. Chowdury. Twitter
power: Tweets as electronic word of mouth. Journal of the
American Society for Information Science and Technology,
pages 1–20, 2009.

[17] K. Jarvelin and J. Kekalainen. Cumulated gain-based
evaluation of ir techniques. ACM Transactions on
Information Systems, 20:422–446, 2002.

[18] A. Java, X. Song, T. Finin, and B. Tseng. Why we twitter:
understanding microblogging usage and communities. In
WebKDD/SNA-KDD ’07: Proceedings of the 9th WebKDD
and 1st SNA-KDD 2007 workshop on Web mining and social
network analysis, pages 56–65, New York, NY, USA, 2007.
ACM.

[19] T. Joachims. Optimizing search engines using clickthrough
data. In Proceedings of the ACM Conference on Knowledge
Discovery and Data Mining (KDD), 2002.

[20] A. C. König, M. Gamon, and Q. Wu. Click-through
prediction for news queries. In SIGIR 2009, 2009.

[21] B. Krishnamurthy, P. Gill, and M. Arlitt. A few chirps about
twitter. In WOSP ’08: Proceedings of the first workshop on
Online social networks, pages 19–24, New York, NY, USA,
2008. ACM.

[22] T. Y. Liu. Learning to rank for information retrieval. Tutorial
on WWW conference, 2009.

[23] C. Manning, P. Raghavan, and H. Schütze. Introduction to
Information Retrieval. Cambridge University Press, 2008.

[24] D. Metzler, S. T. Dumais, and C. Meek. Similarity measures
for short segments of text. In ECIR, pages 16–27, 2007.

[25] D. Shamma, L. Kennedy, and E. Churchill. Tweet the
debates: Understanding community annotation of
uncollected sources. In Proceedings of the ACM
International Conference on Multimedia. ACM, 2009.

[26] X. Wang and C. Zhai. Learn from web search logs to
organize search results. In Proceedings of the 30th ACM
SIGIR, 2007.

[27] D. Zhao and M. B. Rosson. How and why people twitter: the
role that micro-blogging plays in informal communication at
work. In GROUP ’09: Proceedings of the ACM 2009
international conference on Supporting group work, pages
243–252, New York, NY, USA, 2009. ACM.

[28] Z. Zheng, H. Zha, K. Chen, and G. Sun. A regression
framework for learning ranking functions using relative
relevance judgments. In Proceedings of the 30th ACM SIGIR
conference, 2007.

[29] Z. Zheng, H. Zha, T. Zhang, O. Chapelle, K. Chen, and
G. Sun. A general boosting method and its application to
learning ranking functions for web search. NIPS, 2007.


