User Modeling in Search Logs via a Nonparametric
Bayesian Approach

Hongning Wang!, ChengXiang Zhait,
Feng Liang?

!Department of Computer Science
2Department of Statistics
University of lllinois at Urbana-Champaign
Urbana IL, 61801 USA
{wang296,czhai,liangf}@illinois.edu

ABSTRACT

Searchers’ information needs are diverse and cover a broad
range of topics; hence, it is important for search engines to
accurately understand each individual user’s search intents
in order to provide optimal search results. Search log data,
which records users’ search behaviors when interacting with
search engines, provides a valuable source of information
about users’ search intents. Therefore, properly character-
izing the heterogeneity among the users’ observed search be-
haviors is the key to accurately understanding their search
intents and to further predicting their behaviors.

In this work, we study the problem of user modeling in
the search log data and propose a generative model, dpRank,
within a non-parametric Bayesian framework. By postulat-
ing generative assumptions about a user’s search behaviors,
dpRank identifies each individual user’s latent search inter-
ests and his/her distinct result preferences in a joint man-
ner. Experimental results on a large-scale news search log
data set validate the effectiveness of the proposed approach,
which not only provides in-depth understanding of a user’s
search intents but also benefits a variety of personalized ap-
plications.

Categories and Subject Descriptors

H.4 [Information Systems Applications|: Miscellaneous

Keywords

User modeling, search log mining, nonparametric Bayesian

1. INTRODUCTION

Among various ways of mining search engine logs, such
as studying the distribution of queries and query categories
that users frequently search for [11] and recognizing tem-
poral dynamics of search topics [15], identifying individual
user’s search intent from search logs is of particular impor-
tance. Given the huge diversity of search engine users’ in-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WSDM’14, February 24-28, 2014, New York, New York, USA.

Copyright 2014 ACM 978-1-4503-2351-2/14/02 ...$15.00.
http://dx.doi.org/10.1145/2556195.2556262.

Anlei Dong, Yi Chang
Yahoo! Labs
701 First Avenue, Sunnyvale CA, 94089 USA

{anlei,yichang}@yahoo-inc.com

formation needs, accurate understanding of a user’s search
interests and preferences is arguably one of the most critical
research challenges in information retrieval studies [9, 24,
26]. It is, however, impractical to ask users to give explicit
feedback about their search intents; and thus studying how
to effectively mine such diverse information needs of users
from the search logs becomes a valuable research direction.

Search log mining has drawn a considerable amount of
attention in research. White and Drucker investigated the
variability in people’s search behaviors, and suggested two
typical types of searchers: navigators and explorers, whose
search interaction pattern is highly consistent or highly vari-
able [26]. The studies in [1, 13] showed that implicit feed-
back extracted from the aggregated users’ clickthroughs is
reasonably accurate to interpret the generic ranking pref-
erences over the retrieved documents. Although much ef-
fort has been devoted to mining general search behaviors of
users, little attention has been paid to identifying individual
user’s search preferences from the search log data. Liu et al.
[16] profiled a user’s search interest by classifying his/her
queries into predefined categories and tailored the ranking
model for each individual user accordingly. Sontag et al.
[23] proposed a probabilistic model to estimate topic-based
profiles for both documents and users, and used such profiles
to calibrate the relevance estimation of retrieved documents
for each individual user, i.e., search personalization.

A major limitation of existing work is that the analysis
of a user’s query distribution and that of his/her associ-
ated click behaviors are isolated. We should note that both
queries and clickthroughs convey useful clues about a user’s
search intent. Taking news search as an example, a user
who frequently issues celebrity queries has distinct search
interest from another user who often searches for the past
political news events. Such difference can be captured by
modeling the query distributions of different users and be
used to adjust the search results. However, it is insufficient
to only model a user’s query distribution. For example, even
for the same celebrity query, some users tend to click on the
most recent news exhibiting his/her unique preference on the
latest report about the celebrities, while other users might
only click on the reports from authority sources. There-
fore, in order to provide a comprehensive understanding of
a user’s search intent, we must capitalize on the following
two aspects simultaneously: 1) user’s search interest, i.e.,
the distribution of queries a user frequently enters; 2) user’s
unique result ranking preference, i.e., the probability of ob-
serving a particular click pattern from the user. Such a joint
analysis, however, is missing in the previous work.

In this paper, we study the problem of user modeling in
search logs, and develop a generative model, dpRank, in the
non-parametric Bayesian framework to enable joint model-
ing of query distributions and clickthrough patterns in each
individual user. To capture the heterogeneity among all
search users, we introduce a novel concept of latent user
groups. In detail, each latent user group possesses a unique
distribution over the queries: for instance, in news search,
one group of users may frequently issue celebrity queries,
while another group may only look for breaking news events.
Meanwhile, the click preference of each latent user group is
portrayed by the corresponding relative importance of the
ranking features, which leads to distinct click patterns over
the returned documents. For example, for the same input
query, some group of users may want high authority websites
(i.e., larger weight on the pagerank score), while the other
groups may prefer the documents better matched with their
queries (e.g., larger weight on the relevance features such as
BM25). In order to characterize the heterogeneity among
the queries and clickthroughs in a single user’s search his-
tory, we model each user’s search intent as a mixture over
those latent user groups, where the mixing proportion gov-
erns each user’s unique search behavior pattern.

By postulating such generative assumptions, homogene-
ity of users’ aggregated search behaviors is captured by the
latent user groups, while the variability of individual user’s
interaction patterns is captured by modeling each user as a
mixture over the latent user groups. As a mixture model,
the number of mixture components, which is usually manu-
ally set, determines the granularity of the model. However,
due to the dynamic nature and scale of search logs, it is in-
feasible for us to manually exhaust the optimal number of
the latent user groups. An appealing alternative is to adopt
a fully data-driven approach, i.e., postulating Dirichlet pro-
cess priors [8] over the mixture components, to exploit the
clustering property of users’ search behaviors. In dpRank,
we assume the parameters characterizing each latent user
group are drawn from a shared Dirichlet process; accord-
ingly, the mixing proportion in each user over the latent
groups is drawn from another Dirichlet process to accom-
modate such infinite number of components. As a result,
the number of latent user groups can be automatically de-
termined based on the data characteristics.

Knowledge discovered by dpRank from the search logs can
be useful for many applications. Characteristics of latent
user groups, such as those different criteria for document
ranking, provide an in-depth understanding of search en-
gine users. The estimated mixing proportion of latent user
groups in each user can be used as a proxy to measure sim-
ilarity between users for collaborative filtering based tasks,
or for many other personalized applications.

To investigate the effectiveness of the proposed dpRank
model for user modeling in search logs, we collected a large
collection of search logs from a commercial news search en-
gine. Experimental results validated our basic hypothesis
that joint modeling of users’ search behaviors, i.e., their
queries and clicks, in search logs provides a more comprehen-
sive and accurate understanding of users’ search intents than
those isolated modeling approaches. And the mined knowl-
edge about users can benefit a variety of applications, e.g.,
search result ranking, collaborative query recommendation,
and document re-ranking, to improve task performance. In
addition, the proposed dpRank model is general; and thus it
can be directly applied to many other types of search logs,
e.g., web search and blog search logs.

2. RELATED WORK

A great amount of effort has been devoted to turning the
massive search usage data in search engine logs into action-
able knowledge: Jansen et al. [11] explored search logs to
analyze the types of information users search for and how
people do search within a web search engine; Kulkarni et al.
studied the dynamics of search topics over time [15]; White
and Drucker investigated variability in people’s search inter-
action behaviors [26]. A comprehensive survey of research
about search log mining can be found in [22].

While many studies have been performed on mining gen-
eral interests of users from search logs, little work has been
done on discovering knowledge about individual users. The
related work in this direction can be summarized into two
major categories.

One type of studies focuses on the semantic interpretation
of queries. Liu et al. [16] categorized a user’s queries into
a set of ODP categories and tailored the ranking results
for each individual user according to such identified search
interest. Rose and Levinson [19] grouped the queries from
the same user into search tasks, in which the user exhibits
consistent information need.

Another type of work aims at accurately modeling and
interpreting a user’s ranking preferences from their click
feedback. Joachims et al. [13] and Agichtein et al. [1]
analyzed the reliability of implicit feedback generated from
clickthrough data and designed a set of click heuristics to
extract relative search result preferences from clicks in the
search logs. Probabilistic click models [5, 7, 28] have been
proposed for modeling user click behaviors and extracting
intrinsic relevance information from the clickthroughs.

However, the aforementioned work isolated the analysis of
query distribution in a user and that of associated click be-
haviors. Our approach extends the previous work to enable
joint modeling of the queries and click behaviors of individ-
ual users. By postulating generative assumptions about a
user’s search behaviors, the proposed dpRank model identi-
fies each individual user’s latent search interests and his/her
distinct ranking preferences in a unified way, which is neces-
sary to capture subtle preference variations of user interests.

In terms of methodology, the most similar work to ours is
Bian et al.’s “divide-and-conquer” approach for web search
[3] and Giannopoulos et al.’s method for learning to rank
user intent [10], although they isolated the analysis of users’
query distribution and click patterns. In [3], Bian et al. rep-
resented the queries by the aggregated ranking features from
pseudo-feedback documents, and clustered the queries into
groups by the k-means algorithm. Within each identified
query group, a separate RankSVM [12] model was trained to
satisfy the group-specific ranking requirement. Giannopou-
los et al. [10] took a similar procedure to cluster queries
and estimate independent RankSVM models for each query
group. In particular, they represented the queries by the
weight vectors from RankSVM models learned in each query.
However, in both of these two methods, query is the major
focus of study, and they grouped the queries either by the
derived query features or click patterns. But neither of them
model the users, who generated the queries and clicks.

3. METHOD

In this work, we propose a generative model, dpRank, to
enable joint modeling of users’ queries and clicks in search
logs. Given a collection of search logs, including the queries
from users, documents returned by a search engine, and the

corresponding clicks from the users, dpRank aims to iden-
tify each individual user’s latent search interests and their
distinct ranking preferences in a unified way. An efficient
Markov chain Monte Carlo sampling algorithm is developed
to estimate the posterior distribution of latent variables in
the proposed dpRank model.

3.1 Problem Definition

Denote a collection of users as U = {u1, u2,...,us} in the
given search log data, in which each user u; is associated with
a set of queries Q"' = {¢\",qy",...,qni }. Each query g¢;"
is represented by a T-dimensional vector of query features,
e.g., query length and query frequency in the collection; and
q;-” is associated with a list of retrieved documents together
with user clicks D} = {(d}{,y;{), (d}3,v;3), -, (d}}, y;1)
where dﬁ is a V-dimensional vector of ranking features de-
scribing the relevance quality of document dj; to query g;",
and v} indicates if the document d} is clicked by user u;
(e.g., 1 for the clicked documents and 0 for the skipped ones).

The problem of user modeling in search log data is to
characterize different users’ search intents by analyzing the
association patterns of their issued queries and correspond-
ing clicks. Using the language of probabilistic models, one
needs to estimate the joint distribution of queries and click
preferences in user w, i.e., p(@, D,u). In-depth knowledge
about individual users can then be discovered by posterior
inference on various conditional distributions. For exam-
ple, p(Q|u) reveals a user’s search interest via his/her query
distribution; and p(D|Q, u) reflects a user’s unique ranking
preferences over the returned documents.

3.2 Generative Story in dpRank

The basic idea behind the proposed dpRank model is to
define the joint probability p(Q@, D, u) in a generative way.
To model the diversity among different users’ search inter-
ests (i.e., heterogeneity among the distribution of queries)
and ranking preferences (i.e., heterogeneity among users’
clicks in search engine returned documents), we introduce
the concept of latent user groups. We assume that to issue
a query to the search engine, the user would first select a
particular user group he/she belongs to, from which he/she
wound then pick a query according to its generation prob-
ability within this group. Once the search engine returns
a list of documents for the input query, the user will care-
fully examine those documents, and selectively click the ones
that match his/her result preferences for this type of queries
specified in the latent user group. As a result, by modeling
each individual user’s search intents as a mixture over those
latent user groups, patterns of users’ search behaviors can
be automatically identified.

3.3 User Modeling via dpRank

In dpRank, each latent user group indexed by c refers to
a homogeneous generative model for p(q, D). Within the
user group ¢, we employ a T-dimensional multivariate Nor-
mal distribution to model the generation of queries, i.e.,
p(q;”) ~ N(pte,02I), where we assume a diagonal covari-
ance matrix. It is known that users’ clicks may be biased
by the displayed ranking positions [5, 7, 28], but the rela-
tive preferences of clicked documents over skipped ones are
reasonably accurate [1, 13]. Therefore, to learn a user’s re-
sult ranking preference reflected in his/her clicks, we employ
a pairwise preference model on the returned document list,
. (D} a)) = Lo ,m by}t > wji|d:,d25). Specifi-

U
Figure 1: Graphical model representation of
dpRank. Light circles denote the latent random

variables, and shadow circles denote the observed
random variables. The outer plate indexed by U
denotes the users in the given search log, the in-
ner plated indexed by QU denotes the queries and
the associated documents and clicks from user wu,
and the upper plate denotes the parameters for the
countably infinite number of latent user groups in
the collection.

cally, we use a logistic function to model such pairwise rank-
ing preferences as,

1
1+ exp (= BI(dj; — dj}))

plyje > yildys, diis Be) =

(1)

where (. is a V-dimensional weight vector indicating the

relative importance of ranking features in latent group c.
Based on these specifications, each latent user group can

be fully characterized by a set of parameters, 0. = (e, 02, Be).

The joint distribution of query ¢} and corresponding click-

J
throughs in D;” is thus modeled as,

Py, DY 0e) = p(aq)i e o0) [plufd > yiildsi, dii, Be)
i

2)
given that they are generated from a particular user group
c. Note that we do not model the generation of returned
documents for query q;-”, but just the corresponding click
preferences conditioned on them, since the documents are
returned by the search engine and thus are independent of
the users given the query (i.e., without considering the per-
sonalization feature in search engines).

To construct a fully generative model, we need to spec-
ify the generation of the parameter 6. for each latent user
group. In dpRank, in order to avoid manually specifying
the configuration of 0., e.g., how many unique 6. should be
used for a given collection, we assume 6. itself is also a ran-
dom variable and is drawn from a Dirichlet process (DP).
A Dirichlet process DP(Go,) with a base distribution Go
and a scaling parameter « is a distribution over distribu-
tions [8]. An important feature of the DP is that draws
from a DP often share some common values, and therefore
naturally form clusters. The number of unique draws, i.e.,
the number of clusters, varies with respect to the data and
therefore is random, instead of being pre-specified.

As a result, in dpRank, the global distribution of queries
and corresponding clicks in a given collection of search logs
distributes as a DP, and it can then be expressed using a

stick-breaking representation [21]:

7= i%%k 3)
k=1

where 0, ~ Go, 6 is a distribution of (QY, DY) concen-
trated at @ and v = (yx)pe1 ~ Stick(a) represents the
global distribution of mixture components in the whole col-
lection. The stick-breaking process Stick(a) for «y is defined
as: v, ~ Beta(l,0), vk = 5 Hi:ll(l ~:). Specifically, we
further assume that each dimension of parameters for gen-
erating the query features, i.e., (ug, U/%), and each dimension
of the linear weights for the ranking features, i.e., B, are in-
dependently drawn from their corresponding prior distribu-
tions defined in Go: fort =1... T, g ~ N(/,Lo,O'O) l/akt ~
Gamma(ag, Bo) and for v = 1. V Brw ~ N(0,a3).

The global distribution deﬁned in Eq (3) captures the ho-
mogeneity of users’ search behaviors for the whole popu-
lation (characterized by the group parameter), but tells
us little about each individual user. Therefore, we need to
inject the information about the variabilities of individual
users to the dpRank model.

Because the global distribution defined in Eq (3) only has

finite supports at the points of § = {Gk}LQ:[i |, the distribution
of mixture components in each user will only have support at
those points as well. Based on Eq (2), the joint probability
of queries and clicks in user u; can be naturally modeled as,

(q;“) Dul = Z ﬂ-uikp(q‘;'ti) D;M |0%) (4)
k=1
where my;, = (Tu;x)he1 ~ DP(v,7n), i.e., we introduce an-

other layer of DP with the global proportion ~ as the base
distribution for modeling the mixing of latent user groups
in each user.

The benefit of such an approach is two-fold. From a mod-
eling aspect, this modeling approach reveals the information
of users both at the aggregated level (i.e., the shared latent
user groups) and also at the individual level (i.e., the user-
specific mixing proportions). From a learning aspect, it al-
lows information sharing across different users, and therefore
makes learning more efficient.

Based on the above discussions, we can formalize the gen-
eration process of queries and clickthroughs in search logs
defined in dpRank using the language of probabilistic graph-
ical models in Figure 1.

3.4 Posterior Inference

To apply the proposed model for user modeling in search
logs, we need to calculate the posterior distribution of latent
variables. In dpRank, the latent variables of interest are:
(w, 02) that characterize the generation of queries in a latent
user group; (3 that depicts a user’s relative emphasis over the
ranking features in a latent user group; and 7 that profiles
an individual user’s search intent over the global latent user
groups.

Following the sampling scheme proposed in [17, 25|, we
develop an efficient Markov chain Monte Carlo (MCMC) al-
gorithm, or more precisely, a Gibbs sampler, to perform the
posterior inference for dpRank. To facilitate later descrip-
tion of the employed sampling scheme, we assume that at a
particular sampling step, there are in total K active compo-
nents (i.e., components that associate with data instances),
and by permuting the indices, we can index them from 1

to K. We define v =1 — Zszl Yk to be the total mixing
proportion for the remaining inactive components.

The key to perform Gibbs sampling is to derive the full
conditional distribution for each latent variable. In the fol-
lowing, we will discuss about detailed derivation of the con-
ditional posterior distributions of interest.

e Sampling c,;: Given user u, the conditional distribution
of ¢, and m, is given by

p(’JTu,Cu|’7,9,qu,Du,Go,0(,77) (5)

o p(muly,m) [[p(a, D} 16e,;)p(cus|ma)
J
To sample the latent user group assignment c,,; for a par-

ticular query ¢j from user u, we can integrate over m, in
Eq (5) analytically because of the conjugacy between the
Dirichlet distribution p(my|y,n) and the multinomial distri-
bution p(cu;|mu), and get the conditional probability of c.;
given v and 7 as:

- 177 + k)

k uk

H (6)

I'(n + M) INGTS)

pleusly,n) =

where m,, is the number of queries user v has and myy is
the number of queries in user u assigned to group k.

As a result, the conditional probability of c,; = k given
query g;, corresponding clicks in D and other latent vari-
ables is,

Np(aj, D} 10k) (7)

where k takes values in {1,..., K, e}, m_,* is the number of
queries from user u assigned to group k except the current
query gj, and 0. is an auxiliary component drawn from the
base distribution Gjg.

If the sampling result of c,; makes an active component
associate with no observations, we need to remove it from
the list of active components, set K = K — 1 and update e
accordingly; and if the sampling result of c,; is e, we need
to append 6. to the list of active components, and draw a
new global proportion vk 1 for it. To achieve so, we sample
b ~ Beta(l,a) and set Yx+1 = bye, Ye = (1 — b)e.

e Sampling ~: Following the sampling scheme introduced
in [25], we employ the same auxiliary variable method for
sampling the global mixture proportion ~.

By expanding the ratios of Gamma functions in Eq (6) and
including the Stick-breaking prior for 7, we get the posterior
distribution for v conditioned on the auxiliary variable h as:

Hk”h““ ®)

where h,,;; is a random variable based on the occurrence of
group k in user u;, which takes value from 1 to m,x. And
the corresponding distribution of h given ¢ and 7 is,

P(huk = h‘c77) X S(muik7h)(n7k)h (9)

where s(m, h) is the unsigned Stirling numbers of the first
kind.

Due to the conjugacy between v and c, the posterior dis-
tribution of + given h still follows a Dirichlet distribution
with parameters of @ and h in Eq (8); and hy,x acts as
an estimated number of occurrence of group k in user w; in
Eq (9) (more explanation of h can be found in [25]). Based
on Eq (8) and Eq (9), iterative sampling between v and h
is performed to get the posterior samples for ~.

pleus = klgy, D}, 0,7v,m) o< (nyx + my

p(ylenh) oc g™

e Sampling 0: Conditioned on the group assignments c of
all the users in the collection, the posterior distributions of
0 are determined by the queries (from all users) assigned to
each group, namely,

p(0kle, Q, D, Go) x p(6i|Go) [] plas', Dil6x) (10)

c¥=k
i

Because of the Normal-Normal and Normal-Gamma con-
jugacy, the posterior distributions for p;, and ¢ can be ana-
lytically calculated. Since we have assumed each dimension
of ur and oy, is independently drawn from the priors, we can
calculate the posteriors of them separately. To simplify the
notations, we denote ny as the total number of queries as-
signed to group k given ¢, and Ay; = 1/03,, i.e., the precision
of a Normal distribution. As a result, we have,

p(pwele, @) = N(pnye, o, 1) (11)
Pou—p ajt
where o7, , = ﬁ and fin,t = U%kt(%g + JUT)
A d kt 0
n b
p(Akt|c, d) = Gamma(om,t, Bryt) (12)

where an,+ = a0+ 2 and Bt = Bo + % Zc}izk(q‘;@ — pnt)>.

Based on the posterior distributions specified in Eq (11)
and Eq (12), iterative sampling is performed for the poste-
rior update of pux and o2 in each user group.

However, because there is no proper conjugate prior for

the linear weight £ in the click preference modeling module
as defined in Eq (1), the posterior distribution of Eq (10)
with respect to 8 cannot be analytically calculated. In this
work, we appeal to the Metropolis Hasting sampling algo-
rithm with Hamiltonian dynamics [18] to perform §’s poste-
rior update. Briefly, this sampling scheme uses Hamiltonian
dynamics to produce proposals for the Metropolis Hasting
algorithm. Because the proposal is generated based on the
gradient of energy function defined by the target distribu-
tion (as in Eq (10)), it provides faster exploration of the
state space comparing to simple random-walk proposals.
e Gibbs sampling procedure: the Gibbs sampling for
the proposed dpRank model can be performed by alternating
the sampling steps for ¢, v and 6 described above iteratively.
We should note that the sampling of ¢ is performed for every
query from the users in the given collection, and the sam-
plings of v and @ are performed for the whole collection given
the newly updated latent user group assignments c. As an
MCMC algorithm, samples from the sampling chain are usu-
ally correlated with nearby samples. To collect independent
samples, we only kept the samples from every five iterations,
i.e., thinning the sampling chain. Besides, samples from the
beginning of the sampling chain (i.e., the burn-in period)
may not accurately represent the desired distribution. We
only kept the posterior samples after the burn-in period (in
our experiment, we discarded the first 20% of samples).

3.5 Discussion

Compared to the two-step query-clustering-based ranking
methods introduced in [3, 10], the proposed dpRank model is
user-centric and for the first time enables the joint modeling
of a user’s search query distribution and corresponding click
behaviors. As explicitly expressed in Eq (7), the assignment
of latent user group for a particular query ¢“ in user u is
determined by two factors: 1) the current proportion of the
latent user groups in u; and 2) the likelihood of observing
the given query and corresponding clicks in a candidate user

group. As aresult, the chosen user group for query ¢* in user
u should not only well explain both of the query ¢* and clicks
in D¥ but also closely align with his/her general search
interest, i.e., the proportion of user group assignments in
his/her rest queries. In [3, 10], no user-specific information
is considered for clustering the queries, and those clusterings
are solely determined by either the queries or clickthrough
patterns independently. In [3], only the characteristics of
queries were modeled based on the derived query features.
As a result, users who issued the same query but clicked
on different documents will be assumed to have the same
search intent and served with the same ranking result. In
[10], to capture users’ distinct click preferences, independent
ranking models are estimated for each query. But the same
user’s click preference in different queries cannot be modeled,
and sparsity becomes a serious issue for estimating ranking
models in each individual query.

In dpRank, by inferring the posterior distribution of the
latent variables in a given collection of search logs, important
knowledge about a user’s search intent can be discovered.
First, the posterior distribution of parameter 6 = (u, o2,)
reveals the distribution of queries and clickthrough patterns
in a particular user group. For instance, by analyzing (3, we
can understand users’ relative emphasis of the ranking fea-
tures in each user group. Based on such knowledge, we can
directly influence the general ranking model training (e.g.,
create new ranking features for each user group) or estimate
a separate ranking model if the ranking criterion in this spe-
cific group is very different from that in the global rank-
ing model. Second, the posterior distribution of latent user
group assignments in user w, i.e., p(mu|q®*, D%, v,n), sum-
marizes an individual user’s search intent in history. This
distribution can serve as a compact user profile for many
personalized applications. For example, we can compute the
similarity between users based on it for collaborative query
recommendation and document re-ranking [20].

Besides, the proposed user modeling method can be flex-
ibly applied in the real dynamic search environment, where
new users or new queries keep emerging. As it is a Bayesian
model, we do not need to re-estimate the model for the whole
data set, but just to perform the posterior update discussed
in Section 3.4 on the newly arrived data. This property
renders dpRank a wider application scenario in practice.

4. EXPERIMENTAL RESULTS

To evaluate the proposed method for user modeling in
search logs, we conducted experiments on a large-scale search
log data set. First, we qualitatively demonstrated the knowl-
edge discovered by dpRank from the search logs, e.g., distri-
bution of queries in the identified user groups and the cor-
responding result ranking preferences. Then, we performed
a series of quantitative evaluations to validate our main hy-
pothesis in this work that joint modeling of users’ search
behaviors could provide a more comprehensive and accurate
understanding of users’ search intents than those isolated
approaches in a variety of scenarios.

4.1 Data Set

A large set of search logs are collected from Yahoo! news
search engine! in a two-months period, from late May to
late July 2011. During this period, a subset of users are ran-
domly selected and all their search activities are collected,
including the anonymized user ID, query string, timestamp,

"http://news.search.yahoo.com

top 10 returned documents and the corresponding user clicks.
In this data set, each document is represented by 65 basic
ranking features, such as document age, website authority,
and query matching in document title and body.

Since we are modeling users in a per-user basis, we must
ensure every user has his/her own training and testing queries
in our evaluation. To achieve so, we ordered the queries in
each user by their timestamps, and used the first 60% queries
for training and the rest 40% for testing in each user.

Simple pre-processing is applied on this data set: 1) fil-
ter out the queries without clicks; 2) discard the users with
less than two queries; 3) normalize the ranking features by
their mean and standard deviation estimated in the training
queries, i.e., z-score. After the pre-processing steps, there
are 42,642 users with 288,786 queries selected in this collec-
tion, among which 189,757 queries are used for training and
99,029 queries for testing. The basic statistics about this
evaluation search log set are summarized in Table 1.

Table 1: Basic statistics of evaluation search log set.

Ffuser 42,642 #query 288,786
#document | 2,483,486 query/user | 6.77+6.21
click/query | 1.2240.57 | uni-user/query | 17.9+£121.7

However, in this data set, there is no predefined query
feature. We appealed to the method proposed in [3] to cre-
ate query features from the search engine returned docu-
ments. In detail, we computed the mean vector of ranking
features in the documents associated with the given query
as its query feature representation.

In dpRank, there is a set of hyper-parameters to be de-
termined in the prior distribution Go. Uninformative prior
is often used in Bayesian models when the number of obser-
vations is large. In our experiments, we found that the per-
formance of dpRank was not sensitive to the setting of such
hyper-parameters due to the large volume of observations
we have. Therefore, in the following experiments, we fixed
the hyper-parameters in Go: puo = 0, o2 = 0.5, ap = 1.0,
Bo = 0.5, a0 = 1.0, « = 1.0, n = 0.1. And we set the total
number of Gibbs sampling iterations to be 1000.

4.2 Qualitative Evaluation

The posterior distribution of latent variables in dpRank
reveals in-depth knowledge about a user’s information need
buried in the search log data. In this experiment, we quali-
tatively illustrate some interesting findings from dpRank in
our news search log data set.

By averaging the group assignment c for each training
query ¢ in the posterior samples, we can estimate the pos-
terior distribution of queries within each user group as,

plale=k)oc Y D" d(cig =k) (13)

seS’uelU

where S’ is a set of effective posterior samples and ¢, is the
sampling result of group assignment for query ¢ from user
u in s-th effective sample. Because in dpRank the number
of user groups might change during the sampling iterations
(i.e., generating/removing groups), we only collected sam-
ples after the sampling chain is stabilized in this estimation.
From one run of Gibbs sampling, 47 different user groups
were created for our training set. Due to space limit, in
Table 2, we only list the top 5 most probable queries from
10 selected user groups. We reassigned the IDs of these
selected groups in the table for illustration purpose.

Table 2: Top 5 most probable queries under 10 se-
lected latent user groups.

Group Top Ranked Queries
1 iran, china, libya, vietnam, syria
2 selena gomez, lady gaga, britney spears, jennifer

aniston, taylor swift
3 fake tupac story, pbs hackers, alaska earthquake,
southwest pilot, arizona wildfires

4 joplin missing, apple icloud, sony hackers, google
subpoena, ford transmission

5 casey anthony trial, casey anthony jurors, casey
anthony, crude oil prices, air france flight 447

6 tree of life, game of thrones, sonic the hedgehog,
world of warcraft, mtv awards 2011

7 the titanic, the bachelorette, cars 2, hangover 2,
the voice

8 los angeles lakers, arsenal football, the dark
knight rises, transformers 3, manchester united

9 miami heat, los angeles lakers, liverpool football

club, arsenal football, nfl lockout
10 today in history, nascar 2011 schedule, today
history, this day in history

As shown in Table 2, the query distributions in the auto-
matically identified user groups are quite meaningful. The
queries in groups 1 and 2 are mostly the names of coun-
tries and celebrities. Those queries account for the users’
constant interest of obtaining the latest update about these
countries and celebrities over time. The queries in groups
3 to 5 are mainly for breaking news events in the summer
of 2011, e.g., “alaska earthquake” and “casey anthony trial.”
Queries in groups 6 and 7 are entertainment-focused, and
those in groups 8 and 9 are sports related. We should note
that we did not utilize any external knowledge, e.g., entity
lexicon or taxonomy, about the queries in our query feature
representation, but the proposed model automatically dis-
covered such meaningful association among the queries by
exploring the users’ search behaviors.

One thing we want to emphasize is that the query distri-
bution within each user group as illustrated in Table 2 is not
solely determined by the query features, but also governed
by the users’ click preferences. Therefore, it is interesting
to further investigate how different the users’ ranking pref-
erences are in those seemly distinct groups. In dpRank, the
posterior distribution of linear weight 3 reflects a user’s rel-
ative emphasis over the ranking features, and thus can be
used to analyze users’ ranking preferences in each group. In
Figure 2, we visualized the corresponding posterior mean
of s from the same user groups as shown in Table 2. For
comparison purpose, we also included the linear weights esti-
mated by a globally trained RankSVM model and named it
as Group 0. To make the scale of those linear weights compa-
rable across different groups, we followed the approach used
in [10] to normalize the weight vectors by I norm. After nor-
malization, we computed the variance in the linear weights
of those features across different groups and selected the top
20 features with the largest variance for illustration. In par-
ticular, the first 4 features in the figure are document age,
query match in title, proximity in title, and site authority.

Comparing to the globally estimated feature weights, users
in different groups exhibit distinct ranking requirements.
The users belonging to groups 1, 2, 8 and 9 highly empha-
size the freshness quality of the returned documents, i.e.,
document age. And for those in groups 4, 5 and 6, they not

Group ID

6 8 10 12 14 16
Feature ID

Figure 2: Heat map visualization of 20 selected fea-
ture weights in 11 different user groups (including a
global RankSVM as group 0). Features are ordered
by the variance of the estimated weights across dif-
ferent groups in descending order.

only prefer the latest news reports, but also emphasize the
relevance quality of the documents, i.e., higher weight on
query document matching. One interesting group of users
identified by dpRank is group 10: they repeatedly issued the
queries of “today in history.” They did not mind the fresh-
ness of results, but stressed the query-document matching
quality and site authority. In this sense, their search intent is
more like navigational web search, rather than news search.

From the above results, it is evident that users’ search
intents are distinct, and dpRank captures such diversity and
properly groups them by jointly modeling the users’ issued
queries and corresponding clicks in the search logs.

4.3 Quantitative Evaluation

In this section, we performed quantitative evaluation to
test the main hypothesis in our work: the joint modeling of
users’ queries and clicks is better than those isolated mod-
eling approaches. To test this, we compared our dpRank
model with several state-of-the-art methods, which take sep-
arated steps for modeling the queries and clicks in the search
logs, on the tasks of document ranking, collaborative query
recommendation and document re-ranking.

Due to the randomness of sampling-based inference, the
performance of dpRank varies across different runs of Gibbs
sampler. In the following experiments, we report the average
performance of dpRank over 5 different runs of sampling.

4.3.1 Baselines

As we discussed in Section 2, the two query-clustering-
based ranking approaches [3, 10] analyzed the queries and
clicks in an isolated manner. To test our hypothesis, we
employed them as our major baselines for comparison.

Bian et al. proposed Topical RankSVM (TRSVM) for
separating the training corpus into query-specific groups [3].

RankSVM models are trained on each of the identified groups.

In TRSVM, k-means algorithm is used to cluster queries
into groups based on the aggregated ranking features from
pseudo-feedback documents for each query. In addition, to
incorporate the knowledge of feature’s importance in rank-
ing, they weighted each dimension of query features by the
weight vector from a global RankSVM model. To predict the
ranking scores of documents in a new query, they assembled
the independent RankSVM models’ output by,

K

f(g,d) = plc = klq) fr(d) (14)

k=1

where fi(d) is the output of RankSVM in the k-th group.
The ensemble weight p(c = k|q) is calculated by p(c = k|q) x
exp(—||g — gx||*), in which g is the mean feature vector of
cluster k given by the k-means algorithm.

Giannopoulos et al. performed similar procedures to clus-
ter queries and estimate RankSVM models for each query
group [10]. But they represented queries by the linear weights
from RankSVM models learned in each query, and assumed
it reflected users’ search intents. We will refer to this method
as Intent RankSVM (IRSVM). In the original IRSVM, the
ensemble weight p(c = k|g) for a new testing query is es-
timated by the assignments of query groups in its similar
training queries. But the authors did not clearly explain
how to define such similarity between queries, and whether
the model’s performance is sensitive to such similarity met-
ric. In our experiment, we estimated this ensemble weight
by averaging the query group assignments in the same user’s
training queries,

plc=klu) x Zd(cuq =k) (15)

We randomly sampled 20% training queries and performed
5-fold cross-validation to select the best performing cluster
size K in TRSVM and IRSVM (according to MAP metric
for document ranking). As a result, we fixed K in TRSVM
and IRSVM to be 30 and 20 in the following experiments.

4.3.2 Document Ranking

In dpRank, a document’s ranking score s for a given query
in user group c can be calculated by the inner product be-
tween the linear weight vector 8. and document’s ranking
features, i.e., s(qj, dj;|c) = 8T . To rank documents for a
testing query, we can compute the expectation of document
dj’s ranking score s for query ¢; in user u, and order the
documents by the descending order of such scores,

U u 1 S u S U
s(dji. q5) = E ZZP(C<)= klq)ﬁ;i T gt (16)

s€S k

where S is a set of posterior samples for the testing query

q}‘ after burn-in period; the group index k takes value in

{1,...,K® ¢}, and K is the number of active groups in

the s-th sample; and p(c®) = k|¢") p(q“|u;:), a,(:)?')p(c(s) =
k\mSS)) is the posterior group assignment for the new query

q; estimated by the s-th sample.

We also included two standard baselines for comparison:
1) a global RankSVM model is estimated based on all the
training queries; 2) a set of independent RankSVM models
are estimated for each user based on his/her own training
queries, and applied to their testing queries accordingly. We
named these two baselines as GRSVM and URSVM.

To quantitatively compare different models’ ranking per-
formance, we employed a set of standard IR evaluation met-
rics: by treating all the clicked documents as relevant, we
calculated Mean Average Precision (MAP), Precision at 1
(P@1), Precision at 3 (P@3) and Mean Reciprocal Rank
(MRR). Definitions of these metrics can be found in [2].

The ranking performance of different models is listed in
Table 3, in which the proposed dpRank outperformed all
the baseline methods. As we have demonstrated in Sec-
tion 4.2, users’ search intents are diverse, the global ranking
model, i.e., GRSVM, failed to satisfy such divergent ranking
requirements by using the one-size-fits-all ranking strategy.
On the other hand, estimating separate ranking models for
each individual user did not work as well. Because of the

Table 3: Comparison of ranking performance.

MAP pPai1 P@3 MRR

URSVM 0.4865 0.2979 0.2195 0.5010
GRSVM 0.6161 0.4464 0.2826 0.6315
TRSVM 0.6223 0.4585 0.2825 0.6378
IRSVM 0.6165 0.4492 0.2814 0.6318

dpRank 0.6424" 0.4854" 0.2897" 0.6578"
*p-value<0.05 under paired t-test against TRSVM

sparsity of training queries in each user (on average each
user only has 4 training queries in this data set), URSVM
cannot get accurate estimation of model parameters. For
the same reason, IRSVM did not perform well either, since
it depends on the ranking models estimated on each single
query to perform the grouping. TRSVM and dpRank ad-
dressed the problems of diversity and sparsity by clustering
the queries/users. But in TRSVM no user-related infor-
mation is explored in query clustering, and thus the same
queries from users with distinct ranking preferences will be
ranked in the same way. dpRank solves this limitation by
jointly exploring user-specific heterogeneity in their search
behaviors (as shown in Eq (7)), which provides more accu-
rate ranking for each individual user.

As having been demonstrated in Table 3, dpRank alone
can already provide promising ranking performance. We
want to further explore the merit of such joint modeling
approach in helping general ranking model training. In
this experiment, we chose LambdaMART [27] as our base
ranking model. LambdaMART is one of the best perform-
ing learning-to-rank algorithms [4], which estimates a set
of boosted regression trees to directly optimize IR-related
metrics, e.g., MAP or MRR.

A set of additional ranking features are created based on
dpRank’s output for all the query-document pairs in the
collection. In detail, beside the dpRank’s output ranking
score for a particular query-document pair (as defined in
Eq (16)), we also treated the product of a document’s pre-
dicted ranking score s(qj', dj;|c) in each user group and the
corresponding posterior weight of this group inferred in the
given query as a new ranking feature:

r u u 1 s u s u
Ie(djesq5) = m Z p(c()= klq)ﬂz(g)det (17)

ses’

where p(c(s) = k|¢“) is the group assignment solely esti-
mated on query ¢g* (the same as in Eq (16)) and S’ is a set
of effective posterior samples collected in the same way as
in Eq (13) to avoid the change of number of user groups
during Gibbs sampling. As a result, K + 1 additional rank-
ing features are introduced by dpRank. We did not include
the auxiliary user group 6., because its prediction is random
across different documents.

Similar procedures can be applied to TRSVM and IRSVM
to extract corresponding ranking features. We computed the
new query-group-based ranking features by,

o5, qi) & ple = Kla}') fir(dje) (18)

where fi(dj:) and p(c = k|g}') are RankSVM’s output and
the ensemble weight as defined in TRSVM and IRSVM.
These newly introduced ranking features are appended to
the original 65 relevance-driven ranking features, and fed
into LambdaMART together. We used the implementation
in RankLib [6] with the default parameter settings (500 re-
gression trees with 20 nodes in each tree), and MAP was

Table 4: Comparison of LambdaMART performance
with ranking features derived by different methods.

Features MAP Pail Pa@3 MRR
original 0.6643 0.5142 0.2975 0.6797
+TRSVM 0.6620 0.5108 0.2974 0.6774
+IRSVM 0.6361 0.4767 0.2872 0.6516

+dpRank 0.6696" 0.5212 0.2989* 0.6833"

*p-value<0.05 under paired t-test against original

chosen to be optimized during training. To avoid overfit-
ting, we held out 25% training queries as validation set, and
applied the best performing model from validation set to the
testing queries. The ranking performance of LambdaMART
with different features is shown in Table 4.

As we can notice in the results, only the features generated
by dpRank improved LambdaMART’s ranking performance
against the original features. To investigate the contribution
of the new features introduced by dpRank, we computed the
relative feature importance in the estimated LambdaMART
model according to the method used in [14]. The top 10 im-
portant features are listed in Table 5. The most important
feature selected by LambdaMART is dpRank’s predicted
document ranking score, which has already been proved to
be highly correlated with users’ click preferences by the re-
sults shown in Table 3. In addition, many features newly
derived by dpRank were also considered as important, i.e.,
predicted document ranking score in different clusters, which
correspond to coherent user groups, e.g., those who keep
searching for celebrity or breaking news. As a result, the fea-
tures from dpRank provide informative signals about each
user’s search intents and unique ranking preferences that
enhance LambdaMART.

Table 5: Relative feature importance determined by
LambdaMART.

Feature Relative Importance

dpRank-score 1.000
c12-score 0.464

co-score 0.250

query match in body 0.235
document age 0.228
perplexity in body 0.221
c13-score 0.220

c4-score 0.163

query match in title 0.141
site authority 0.135

4.3.3 Collaborative Filtering

The distribution of user group assignment 7, in each user
naturally serves as a profile of user’s search intent. It can be
used as a proxy to measure similarity between the users. To
study the quality of such user profile generated by our join
modeling approach, we test it in the applications of collab-
orative query recommendation and document re-ranking.

The basic idea of collaborative filtering based method is
to promote the items from users who share similar interest
as the target user [20]. Therefore, the quality of employed
similarity metric between users is crucial for this type of
algorithms. In dpRank, we defined user similarity based on
the posterior distribution of m, as,

1
sim(ui, u;) = 1= 2 [KL(ma,|lm,) + KL(ma,lIma,)] - (19)

Recall@10

=& QuerySim

0.1 x° =¥ =TRSVM
* =%='IRSVM

=—4—dpRank

0'0510 20 30 40 50 60 70 80 90 100 00 10 20 30 40 50 60 70 80 90 100
Number of Most Similar Users

Figure 3: Comparison of collaborative query recom-
mendation performance.

No user profiles can be directly extracted from TRSVM

or IRSVM, because neither of them explicitly model the in-
dividual users. To make them applicable in this experiment,
we used the same approach defined in Eq (15) to estimate
the proportion of query groups in each user as his/her pro-
file. In addition, we smoothed the estimation in Eq (15) by
the global query group distributions in TRSVM and IRSVM
to avoid zero probabilities. Based on this derived user pro-
file, similarity between users is computed in the same way
as defined in Eq (19) for TRSVM and IRSVM.
e Collaborative Query Recommendation. A good user
profile for query recommendation should capture a user’s
specific search interest. To perform collaborative query rec-
ommendation, we calculated the weighted frequency of a
candidate query in the M most similar users of the tar-
get user u, and selected the top 10 queries as recommenda-
tion. In detail, we only used the testing queries in each user
for recommendation, since the training queries have already
been used for creating the user’s profile. Each candidate
query g¢’s recommendation score in user w is computed as,

rgu) =y

u; EN(u,M)

sim(u, u;)0(q, u;) (20)

where N(u, M) is the set of M most similar users to the
target user u, and 6(q,u;) = 1 if the candidate query ¢
occurs in u;’s testing query set.

In addition, we included a baseline method that only uses
the vector of queries from a user’s training query set as user
profile. The similarity between users was measured by the
cosine similarity between the query vectors of two users. We
named this baseline as QuerySim.

To evaluate the recommendation performance, we treated
the testing queries in the target user as relevant, and com-
puted Recall (percentage of relevant queries occurred in the
recommendation query set) and MRR as the performance
metrics. We did not measure the precision of recommended
queries, because in our setting it is uncertain whether the
users did not like the recommended query or they just did
not know about it when they did the search.

We varied the setting of M from 10 to 100 and summarized
different methods’ performance in Figure 3.

The user profile generated by dpRank outperformed those
from TRSVM and IRSVM, because neither of these base-
lines explicitly model the distribution of queries in different
users; but it was worse than QuerySim. We examined the
recommendation results and found that a large portion of
users tend to repeat their queries over time, e.g., celebrity
queries. QuerySim captured such property by directly ex-
ploring a user’s issued queries in history; while the granular-
ity of profiles generated by dpRank is too coarse to capture
such details of a user’s search interest (user-group level v.s.

Table 6: Query recommendation performance with
combined user profile (M=100).

Recall@10 MRR@10

QuerySim 0.2929 0.1991

QuerySim+TRSVM 0.3133 0.2262

QuerySim+IRSVM 0.2763 0.2001
QuerySim+dpRank 0.3280* 0.2365"

*p-value<0.05 under paired t-test against QuerySim

query level). However, because QuerySim relies on strictly
query matching for measuring user similarities, its coverage
is limited: it cannot align the users with too few queries or
those who shared the same search interest but issued differ-
ent queries (e.g., vocabulary gap).

Since dpRank does not suffer from such a coverage issue as
QuerySim, it would be beneficial to take advantage of both
types of profiles for better query recommendation perfor-
mance. In Table 6, we list the recommendation performance
given by the combined user profiles with M = 100. In partic-
ular, we linearly interpolated the similarity scores given by
dpRank and QuerySim, and gave QuerySim a higher weight
(0.8 versus 0.2) due to the scale difference between cosine
similarity and KL distance. We applied similar procedures
on TRSVM and IRSVM for comparison purpose.

We can find that by combining the profiles from QuerySim

all the model-based profiles, i.e., those generated by TRSVM,
IRSVM and dpRank, achieved improved recommendation
performance. And the combined profiles from TRSVM and
dpRank further outperformed QuerySim profiles, and be-
tween them dpRank got better improvement.
e Collaborative Document Re-ranking. An effective
user profile for collaborative document re-ranking should
precisely reflect a user’s result ranking preference. Similar
procedure as we used in collaborative query recommenda-
tion can be applied here: given a list of documents ordered
by a global ranking model, we promote the documents that
have been clicked by the users who share similar profile as
the target user. In particular, we define the collaborative
ranking score for document d under query ¢ in user u as,

r(dgu)= Y

u; EN(u,M)

Sim(uv ui)(s(da q, ui) (21)

where 6(d, g, u;) = 1 if user u; has clicked document d under
query gq.

The re-ranking procedure is performed as follows: given a
list of documents ordered by a global model, we give extra
credit to the documents that have been clicked by the target
user’s most similar peers (u; € N(u, M)) according to the
score defined in Eq (21); for documents that have not been
clicked by the target user’s peers, we will keep their original
ranking. For the same consideration as in the collaborative
query recommendation, we only performed such re-ranking
in each user’s testing queries.

In this experiment, we also included a simple baseline
method by re-ranking the documents according to its click-
through rate (CTR) in all the users except the target user.
We named this method as GlobalCTR.

Table 7 lists the re-ranking performance based on differ-
ent user profiles, where the global ranking order is given by
GRSVM and we computed the recommendation score in 100
most similar users, i.e., M = 100 in N(u, M).

The profile generated by the user’s queries in history (i.e.,
QuerySim) performed much worse than the simple Glob-
alCTR baseline. This result validates our hypothesis that

Table 7: Performance comparison of collaborative
document re-ranking with different user profiles.

MAP a1l pP@3 MRR

GRSVM 0.6161 0.4464 0.2826 0.6315
GlobalCTR 0.6444 0.4832 0.2945 0.6601
QuerySim 0.6360 0.4738 0.2908 0.6521
TRSVM 0.6461 0.4861 0.2953 0.6619
IRSVM 0.6455 0.4855 0.2951 0.6614
dpRank 0.6539* 0.5016" 0.2957 0.6711"

*p-value<0.05 under paired t-test against GlobalCTR

only modeling a user’s queries alone cannot well explain
his/her search intent, and one also needs to capture the fac-
tors that affect the user’s clicks on the retrieved documents.
Comparing to TRSVM and IRSVM, which performed very
similarly as the GlobalCTR baseline, profile generated by
dpRank performed significantly better than GlobalCTR. Be-
cause we are evaluating in the news search log data, where
new documents keep emerging. Omnly a small number of
users who issued the same query will have overlap on the
returned documents. As a result, the number of effective
peers where we can collect click statistics for the target user
is very limited; and thus the final performance is very sensi-
tive to the quality of similarity metric between the users. In
dpRank, the identified latent user groups explicitly encode
different users’ click preferences, so that when we weight the
clicks from similar users by such profiles, we can get more
accurate click predictions for the target user.

5. ACKNOWLEDGMENTS

Hongning Wang is supported by a Google Ph.D. Fellow-
ship. This work is partly supported by the National Science
Foundation under Grant Number CNS-1027965.

6. CONCLUSIONS

In this work, we studied the problem of joint modeling of
users’ queries and clicks in the search log data, and proposed
a generative model, dpRank, to enable such a joint modeling.
By introducing the concept of latent user groups and mod-
eling each individual user’s search intent as a mixture over
such latent user groups, dpRank effectively identifies each
individual user’s search interests and their distinct ranking
preferences in a unified way. Experimental results on a large-
scale news search log data set validate our hypothesis that
joint modeling of user’s search behaviors provides a more
comprehensive and accurate understanding of users’ search
intents, and the mined knowledge about the users is benefi-
cial for a variety of personalized applications, e.g., document
ranking and collaborative query recommendation.

The proposed modeling approach is general, and thus can
be easily applied to many other types of search logs, e.g.,
web search and blog search. Besides, the current model only
considers the users’ logged search behaviors, but it would be
interesting to incorporate more information about the users,
e.g., gender, location, and social networks, to explore a more
comprehensive understanding of users’ search intents.

7[.1] El{ Agg];:gg}n],th gr]?f,ﬁs Dumais, and R. Ragno. Learning

user interaction models for predicting web search result
preferences. In SIGIR’06, pages 3—10. ACM, 2006.

[2] R. Baeza-Yates and B. Ribeiro-Neto. Modern information
retrieval, volume 463. ACM press New York, 1999.

[3] J. Bian, X. Li, F. Li, Z. Zheng, and H. Zha. Ranking
specialization for web search: a divide-and-conquer

[4

5

6

(8]

[9]

[10]

(11]

(12]

(13]

[14]

(15]

(16]

17]

(18]
(19]

20]

21]

(22]

23]

[24]

[25]

(26]

(27]

(28]

approach by using topical ranksvm. In WWW’2010, pages
131-140. ACM, 2010.

O. Chapelle and Y. Chang. Yahoo! learning to rank
challenge overview. Journal of Machine Learning
Research-Proceedings Track, 14:1-24, 2011.

O. Chapelle and Y. Zhang. A dynamic bayesian network
click model for web search ranking. In WWW’09, pages
1-10. ACM, 2009.

V. Dang. Ranklib-v2.1.

http://people.cs.umass.edu/ vdang/ranklib.html.

G. E. Dupret and B. Piwowarski. A user browsing model to
predict search engine click data from past observations. In
SIGIR’08, pages 331-338. ACM, 2008.

T. Ferguson. A bayesian analysis of some nonparametric
problems. The annals of statistics, pages 209230, 1973.
R. Fidel and M. Crandall. Users’ perception of the
performance of a filtering system. In SIGIR’97, pages
198-205. ACM, 1997.

G. Giannopoulos, U. Brefeld, T. Dalamagas, and T. Sellis.
Learning to rank user intent. In CIKM’2011, pages
195-200. ACM, 2011.

B. Jansen, A. Spink, and T. Saracevic. Real life, real users,
and real needs: a study and analysis of user queries on the
web. Information processing & management,
36(2):207-227, 2000.

T. Joachims. Optimizing search engines using clickthrough
data. In KDD’02, pages 133—-142. ACM, 2002.

T. Joachims, L. Granka, B. Pan, H. Hembrooke, and

G. Gay. Accurately interpreting clickthrough data as
implicit feedback. In SIGIR’05, pages 154-161. ACM, 2005.
A. C. Konig, M. Gamon, and Q. Wu. Click-through
prediction for news queries. In SIGIR’09, pages 347-354.
ACM, 2009.

A. Kulkarni, J. Teevan, K. Svore, and S. Dumais.
Understanding temporal query dynamics. In WSDM’11,
pages 167-176. ACM, 2011.

F. Liu, C. Yu, and W. Meng. Personalized web search by
mapping user queries to categories. In CIKM’02, pages
558-565. ACM, 2002.

R. Neal. Markov chain sampling methods for dirichlet
process mixture models. Journal of computational and
graphical statistics, 9(2):249-265, 2000.

R. Neal. Mcmc using hamiltonian dynamics. Handbook of
Markov Chaitn Monte Carlo, 54:113-162, 2010.

D. Rose and D. Levinson. Understanding user goals in web
search. In WWW’04, pages 13-19. ACM, 2004.

B. Sarwar, G. Karypis, J. Konstan, and J. Riedl.
Item-based collaborative filtering recommendation
algorithms. In WWW’2001, pages 285-295. ACM, 2001.

J. Sethuraman. A constructive definition of dirichlet priors.
Statistica Sinica, 4:639—650, 1994.

F. Silvestri. Mining query logs: Turning search usage data
into knowledge. Foundations and Trends in Information
Retrieval, 4(1-2):1-174, 2010.

D. Sontag, K. Collins-Thompson, P. N. Bennett, R. W.
White, S. Dumais, and B. Billerbeck. Probabilistic models
for personalizing web search. In WSDM’12, pages 433—-442.
ACM, 2012.

J. Teevan, S. Dumais, and D. Liebling. To personalize or
not to personalize: modeling queries with variation in user
intent. In SIGIR’08, pages 163-170. ACM, 2008.

Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei.
Hierarchical dirichlet processes. Journal of the American
Statistical Association, 101(476):1566-1581, 2006.

R. W. White and S. M. Drucker. Investigating behavioral
variability in web search. In WWW’07, pages 21-30. ACM,
2007.

Q. Wu, C. Burges, K. Svore, and J. Gao. Adapting
boosting for information retrieval measures. Information
Retrieval, 13(3):254-270, 2010.

Y. Zhang, W. Chen, D. Wang, and Q. Yang. User-click
modeling for understanding and predicting search-behavior.
In KDD’2011, pages 1388-1396. ACM, 2011.

