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ABSTRACT
Learning to rank arises in many information retrieval appli-
cations, ranging from Web search engine, online advertising
to recommendation systems. Traditional ranking mainly fo-
cuses on one type of data source, and effective modeling
relies on a sufficiently large number of labeled examples,
which require expensive and time-consuming labeling pro-
cess. However, in many real-world applications, ranking over
multiple related heterogeneous domains becomes a common
situation, where in some domains we may have a relatively
large amount of training data while in some other domains
we can only collect very little. Theretofore, how to lever-
age labeled information from related heterogeneous domain
to improve ranking in a target domain has become a prob-
lem of great interests. In this paper, we propose a novel
probabilistic model, pairwise cross-domain factor model, to
address this problem. The proposed model learns latent fac-
tors(features) for multi-domain data in partially-overlapped
heterogeneous feature spaces. It is capable of learning ho-
mogeneous feature correlation, heterogeneous feature corre-
lation, and pairwise preference correlation for cross-domain
knowledge transfer. We also derive two PCDF variations
to address two important special cases. Under the PCDF
model, we derive a stochastic gradient based algorithm, which
facilitates distributed optimization and is flexible to adopt
different loss functions and regularization functions to ac-
commodate different data distributions . The extensive ex-
periments on real world data sets demonstrate the effective-
ness of the proposed model and algorithm.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
I.5.1 [Pattern Recognition]: Models-statistical

General Terms
algorithms
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1. INTRODUCTION
Ranking is the core component of many important infor-

mation retrieval problems, such as web search, recommen-
dation, computational advertising. Learning to rank rep-
resents an important class of supervised machine learning
tasks with the goal of automatically constructing ranking
functions from training data. As many other supervised ma-
chine learning problems, the quality of a ranking function is
highly correlated with the amount of labeled data used to
train the function. Due to the complexity of many rank-
ing problems, a large amount of labeled training examples
are usually required to learn a high quality ranking function.
However, in general, it is very expensive and time-consuming
to acquire labeled data.

On the other hand, in many real-world applications, rank-
ing over multiple related domains becomes a common situa-
tion, where in some domains we may have a relatively large
amount of training data while in some other domains we can
only collect very little. In those situations, making use of
labeled data from related domain to is a desirable direction
to address the data scarcity in the target domain.

Besides ranking applications, this learning scenario is also
popular for other applications and in general it has been
studied as transfer learning in the literature. Existing trans-
fer learning approaches mainly focus on knowledge transfer
in the same feature space, i.e., the data from different do-
mains are assumed in a common feature space (we refer to
this scenario as homogeneous transfer learning). However, in
practice, we often face the problem where the labeled data
are scarce in their own feature space, whereas there may
be a large amount of labeled heterogeneous data in another
feature space. In fact, this problem arises frequently in to-
day’s information retrieval systems, such as search engines
and recommendation systems. For example, a search en-
gine system often conducts ranking learning tasks in various
domains with different languages (e.g., English text search,
Spanish text search, etc.), or different verticals/topics (e.g.,
news search, product search, etc.); here, data from an En-
glish language domain may be helpful for a Spanish language
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domain; however their data usually exist in different feature
spaces which are language dependent. Similarly, different
vertical search data could benefit each other with knowledge
transfer; but they lie in different feature spaces. In such situ-
ations, it would be desirable to transfer the knowledge from
heterogeneous domains to a target domain where we have
relatively little training data available (we refer to this sce-
nario as heterogeneous transfer learning). Note that unlike
multiple view learning [7], there is no data instance corre-
spondence between two domains in heterogeneous transfer
learning.

For the homogeneous transfer learning, since the data are
in a common feature space, the main challenge is to over-
come the data distribution difference to learn domain cor-
relation for knowledge transfer. On the other hand, for the
heterogeneous transfer learning, the domain difference is be-
yond distribution difference, since distributions from het-
erogeneous spaces are not even comparable. Therefore, in
general heterogeneous transfer learning is more challenging.

When it comes to ranking, the problem becomes heteroge-
neous transfer ranking, which is even more challenging due
to the following facts. First, unlike in classification or regres-
sion, in ranking the labels (relevance scores) for different
domains may not be comparable. For example, a domain
can have five grade relevance scores; another domain can
have binary relevance scores. In fact, since the relevance
scores may be query-dependent, the absolute values are not
important and the preference order between instances are
more important. Therefore, heterogeneous transfer ranking
needs to catch correlations between preference orders from
different domains, instead the traditional label correlations
in classification and regression. Second, in general, a rank-
ing application needs thousands of (or millions of) training
examples. It is important to develop the method that can
scale well to large data sets.

In this paper, we propose a general probabilistic model,
Pairwise Cross-Domain Factor (PCDF) model, for hetero-
geneous transfer ranking. PCDF model is a feature-based
transfer ranking model that learns common latent factors
(features) to transfer knowledge cross multiple heterogeneous
ranking domains. PCDF assumes that (1) homogeneous fea-
tures, heterogeneous features, and hidden relevance scores
are generated conditioning on latent factors and (2) prefer-
ence orders are generated conditioning on hidden relevance
scores. Through direct and indirect parameter sharing for
the generative processes in different domains, the latent fac-
tors catch different types of domain correlations to extract
the common knowledge for different domains. Our contri-
butions can be summarized as follows.

• We introduce the concepts of two-component latent
factor and hidden relevance score as key concepts to
model the the feature heterogeneity and preference
pair in heterogeneous transfer ranking;

• We propose a novel heterogeneous transfer learning
model, PCDF model, which is capable of learning ho-
mogeneous feature correlation, heterogeneous feature
correlation, and preference order correlation. PCDF
is applicable to various cross-domina ranking applica-
tions with different data distribution assumptions.

• We also derive two variations of the PCDF model to
address two important special cases, which provide a

new homogeneous transfer ranking model and a gen-
eral transfer learning model beyond ranking applica-
tions.

• Under PCDF model, we derive an efficient stochas-
tic gradient descent algorithm that is ready for dis-
tributed computation and is flexible to adopt different
loss functions and regularization functions to accom-
modate different data distributions.

2. RELATED WORK
Transfer ranking is an overlapping field of , transfer learn-

ing, and learning to rank.

2.1 Transfer Learning
Transfer learning approaches can be mainly categorized

into three classes.
A popular class of transfer learning methods is instance-

based [4, 15, 31, 5, 25, 17, 35], which assumes that certain
parts of the data in the source domain can be reused for
the target domain by re-weighting. [26] proposed a heuris-
tic method to remove “misleading” training instances from
source domain so as to include“good” instances from labeled
source-domain instances and unlabeled target-domain in-
stances. [15] introduced a boosting algorithm, TrAdaBoost,
which assumes that the source and target domain data use
exactly the same set of features and labels, but the distri-
butions of the data in the two domains are different. TrAd-
aBoost attempts to iteratively re-weight the source domain
data and target domain data to reduce the effect of the
“bad” source data while encourage the “good” source data
to contribute more for the target domains. [4] proposed a
framework to simultaneously re-weight the source domain
data and train models on the re-weighted data with a kernel
logistic regression classifier.

Another category of approaches can be viewed as model-
based approaches [34, 28, 18, 8], which assumes that the
source tasks and the target tasks share some parameters or
priors of their models. An efficient algorithm MT-IVM [28],
which is based on Gaussian Process (GP), was proposed to
handle multi-domain learning case. MT-IVM tries to learn
parameters of GP over multiple tasks by assigning the same
GP prior to the tasks. Similarly, Hierarchical Bayes (HB)
is used with GP for multi-task learning [34]. [18] borrowed
the idea of [34] and used SVMs for multi-domain learning.
The parameters of SVMs for each domain is assumed to be
separable into two terms: a common term across tasks and
a task specific term. [32] proposed a consensus regulariza-
tion framework for transfer learning from multiple source
domains to a target domain.

The third category of transfer learning approaches are fea-
ture based. [6, 33, 14, 1, 2, 3, 30], where a feature represen-
tation is learned for the target domain and used to trans-
fer knowledge across domains. A structural correspondence
learning (SCL) algorithm [6] is proposed to use unlabeled
data from the target domain to extract features so as to re-
duce the difference between source and target domains. A
simple kernel mapping function is introduced in [16], which
maps the data from both domains to a high-dimensional
feature space. [33] proposed to apply sparse coding, an un-
supervised feature construction method, to learning higher
level features across domain. On the other hand, heteroge-
neous transfer learning starts to attract attention very re-

114



cently. We notice that [39] extends PLSA to a specific appli-
cation, using social Web data to help image clustering; [37]
proposes a manifold alignment based approach for hetero-
geneous domain adaptation; [24] formulates heterogeneous
transfer learning as multi-task and multi-view learning and
proposes a graph-based solution; [23] focus on single task
learning with multiple outlooks, which is also related to het-
erogeneous transfer learning.

2.2 Learning to Rank
In recent years, the ranking problem is frequently formu-

lated as a supervised machine learning problem [27, 9, 19,
38, 13, 41, 22]. These learning-to-rank approaches are capa-
ble of combining different kinds of features to train ranking
functions. The problem of ranking can be formulated as
that of learning a ranking function from pair-wise prefer-
ence data. The idea is to minimize the number of contra-
dicting pairs in training data. For example, RankSVM [27]
uses support vector machines to learn a ranking function
from preference data. RankNet [9] applies neural network
and gradient descent to obtain a ranking function. Rank-
Boost [19] applies the idea of boosting to construct an effi-
cient ranking function from a set of weak ranking functions.
The studies reported in [41] proposes a framework called
GBRank using gradient descent in function spaces, which is
able to learn relative ranking information in the context of
web search. [10] proposes a new probabilistic method for
listwise ranking. Specifically it introduces two probability
models, respectively referred to as permutation probability
and top k probability, to define a listwise loss function for
learning.

A few studies have been applied the idea of transfer learn-
ing for learning to rank problem. Zha et al.[40] uses multi-
task learning technique to incorporate query difference, where
each query is regarded as a task. However, the objective of
this work is to learn a single ranking function instead of
multiple functions for multiple tasks. TransRank[11] con-
siders cross-domain information to attack transfer learning
problem for ranking, which utilizes the labeled data from
a source domain to enhance the learning of ranking func-
tion in the target domain with augmented features. How-
ever, this approach does not make use of unlabeled data.
Gao et al.[21] explore several model adaptation methods for
Web search ranking. They trained two ranking functions
separately, then interpolated the two functions for the final
result, and their experiments show that the simple model
interpolation method achieves the best results. Similarly,
heterogeneous transfer ranking is rarely touched in the lit-
erature. We notice that [36] proposes a regularized frame-
work to addresses ranking cross heterogeneous domains. It
simultaneously minimize two loss functions corresponding to
two related domains by mapping each domain onto a shared
latent space.

Among those transfer learning approaches, in general instance-
based and model-based approaches depend on the assump-
tion of homogeneous feature more strongly than feature-
based approaches. Another advantage of feature-based ap-
proaches is its flexibility of adopting different base ranking
learners in real applications, i.e., after the common latent
features learnt from different domains, it is flexible to use
any ranking learner on the new training data with common
latent features to train ranking functions. Those motivate
us to focus on deriving a feature-based model in this study.

3. PCDF MODEL

3.1 Problem Formulation
For ease of exposition and to avoid notational clutter, we

use the terms, target domain and source domain, to distin-
guish two given domains in a transfer learning task, though
the discussions in this study are applicable to the situation
that two domains are exchangeable and mutually helpful and
can also be easily extended to multiple domains.

We begin with notations. We consider that the target do-
main data exist in a dt + dc dimension space and the source
domain data exist in a ds + dc dimension space, where dc is
the number of dimensions for their overlapped feature space
(denoted as Sc); dt and ds are the number of dimensions
for their dedicated feature spaces (denoted as St and Sd),
respectively. For traditional homogeneous transfer learning
, all data are in the same feature space, i.e., dt = 0 and
ds = 0. For totally heterogeneous transfer learning, the fea-
ture spaces for the different domains has no overlapping, i.e.,
dc = 0. In this study, we consider the most general case, par-
tially overlapped heterogeneous feature spaces, which arises
frequently in real applications.

We let nt and ns denote the numbers of instances in the
target domain and the source domain, respectively. We let
X(t) = [X(td)X(tc)] denote the target domain data, where

X(td) ∈ Rnt×dt denote the target domain data in its dedi-
cated feature space, and X(tc) ∈ Rnt×dc denote target do-
main data in the common feature space. Similarly, X(s) =
[X(sd)X(sc)] denotes the source domain data, where X(sd) ∈
Rns×ds denote the source domain data in its dedicated fea-
ture space, and X(sc) ∈ Rns×dc denote the source domain
data in the overlapped feature space. To denote the ith data

instance in the target domain or source domain, we use X
(t)
i.

or X
(s)
i. .

Furthermore, we let R
(t)
ij denote the preference value be-

tween ith instance and jth instance in the target domain
such that

R
(t)
ij





> 0 if ith instance is preferred over jth instance,

= 0 if ith and jth instance are equally preferred,

< 0 if jth instance is preferred over ith instance.

(1)
where 1 ≤ i, j ≤ nt (however it is not necessary that there is

R
(t)
ij for any pair of i and j in the data). In general R

(t)
ij ∈ R.

In the special case that only the preference order matters,

R
(t)
ij ∈ {−1, 0, +1}. Note that even the data are given with

relevance labels or lists of ordered instances, they can be
easily converted to the pairwise preferences. Similarly, we

let R
(s)
ij denote the preference value between ith instance

and jth instance in the source domain.
In heterogeneous transfer ranking, given target domain

data, X(td), X(tc), and R(t), and source domain data, X(sd),
X(sc), and R(s), they are three types of domain difference to
impede us from directly applying target domain data to the
target domain: different feature distributions in the shared
feature space; different dedicated feature spaces; different
distributions for pairwise preference values.

On the other hand, we need to catch three types of domain
correlations for knowledge transfer. The first one is homo-
geneous feature correlation hidden in the overlapped feature
space, i.e., correlation between X(tc) and X(sc), which is
the focus of traditional homogeneous transfer learning. The
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second one is heterogeneous feature correlation hidden in
the dedicated feature spaces, i.e., correlation between X(td)

and X(sd). The third one is preference correlation, i.e., the
correlation between R(t) and R(s).

3.2 Model Formulation
In this study, we consider a generative model, in which

features and pairwise preferences are generated conditioning
on the latent variables.

3.2.1 Feature Generating
Fist we assume that the two domains’ features are gener-

ated conditioning on the common latent factors with maxi-
mum domain correlations and minimum domain differences.
In heterogenous transfer ranking, there are two type of fea-
ture correlations between the two domains and intuitively it
is difficult to catch them in one type of latent factor. Base on
this observation, we propose of the concept, two-component
latent factor. The two-component latent factors for the two
domains are given as follows,

Z(t) = [Z(td)Z(tc)] (2)

and

Z(s) = [Z(sd)Z(sc)], (3)

where Z(t) ∈ Rnt×(kd+kc), Z(td) ∈ Rnd×kc , Z(tc) ∈ Rnt×kc ,
Z(s) ∈ Rns×(kc+kd), Z(sd) ∈ Rns×kd , Z(sc) ∈ Rns×kc , kc

is the dimension of latent factors for the common features,
and kd is the dimensions of latent factors for the dedicated
features. In the target domain latent factor Z(t), the com-
ponent Z(td) is to catch heterogeneous feature correlation
and the component Z(tc) is to catch homogeneous feature
correlation.

Then, the common features in the overlapped feature space
are generated according to the following probabilities,

X(tc) ∼ p(X(tc)|f(Z(tc); P (c))) (4)

X(sc) ∼ p(X(sc)|f(Z(sc); P (c))), (5)

where f(·) is a link function and P (c) is the function pa-

rameter. Through the shared parameter P (c), the latent
factors Z(tc) and Z(sc) catch common knowledge from the
two domains’ common features.

However, for the dedicated features X(td) and X(sd), since
they are in the different feature spaces, in general direct
knowledge transfer by sharing the link function parameter
is not feasible. For example, if X(td) and X(sd) have different
dimensions and we use the popular linear link function such
that f(Z; P ) = ZP , then it is not feasible for a shared pa-

rameter matrix P (c) to make the latent factor Z(td) and Z(sd)

have the same dimension kd. In other words, the parame-
ter sharing is a too strong assumption for the heterogeneous
features. On the other hand, it is more reasonable to learn
the heterogeneous feature correlation indirectly through the
interaction between different types of latent factors and in-
teraction between latent factors and pairwise preferences (we
discuss more details later). Therefore, we assume that the
dedicated features are generated with their own link function
parameters as follows,

X(td) ∼ p(X(td)|g(Z(td); P (td))) (6)

X(sd) ∼ p(X(sd)|g(Z(sd); P (sd))). (7)

where g(·) is a link function and P (td) and P (sd) are the
function parameters.

Furthermore, we assume prior distributions for P (c), P (td),
and P (sd) to reduce over fitting,

P (c) ∼ p(P (c); λc), (8)

P (td) ∼ p(P (td); λtd), (9)

P (sd) ∼ p(P (sd); λsd), (10)

3.2.2 Pairwise Preferences Generating
To generate another observed variable, the pairwise pref-

erence score Rij , we propose the concept of latent relevance
score. We assume that each instance i has a latent relevance
score yi such that comparing a pair of yi and yj will give
the pairwise preference between instance i and j.

In other words, we assume that Rij is generated condi-
tioning on yi and yj for the both domains,

R
(t)
ij ∼ p(R

(t)
ij |r(y(t)

i , y
(t)
j )). (11)

R
(s)
ij ∼ p(R

(s)
ij |r(y(s)

i , y
(s)
j )). (12)

where r is a link function. An intuitive choice for r is the
difference function, i.e., r(a, b) = a− b. For example, we can
assume that the distribution of Rij is the normal distribution
with the difference of yi and yj as the mean such that

Rij |yi, yj ∼ N(yi − yj , σ
2). (13)

We further assume that the latent relevance score is gen-
erated conditioning on the latent factor.

y(t) ∼ p(y(t)|h(Z(t); w)) (14)

y(s) ∼ p(y(s)|h(Z(s); w)), (15)

where h(;) is a link function, w ∈ Rk is the function param-

eter, and Z(t) and Z(s) are defined as in (2) and (3). There-
fore, through the latent relevance scores and the shared pa-
rameter w , the latent factor is able to catch the pairwise
preference correlation in addition to homogeneous feature
correlation and heterogeneous feature correlation.

Similarly, we assume prior distributions for P (w) to reduce
over fitting,

w ∼ p(w; λw), (16)

3.2.3 PCDF and Its Variations
Figure 1 summarizes the PCDF mode as a Bayesian net-

work. From Figure 1, we can observe that the two do-
mains share two parameters P (c) and w, which are bridges of
knowledge transfer. Through the information propagation
among the Bayesian network, the two-component latent fac-
tors catch the three types of domain correlations, i.e., the
common knowledge cross the two domains.

As a general model for heterogenous transfer ranking,
PCDF can be easily modified to accommodate special cases.

First, it can be easily applied to homogeneous transfer
ranking, i.e., two domains in a shared feature space. Figure
2 shows the PCDF model for homogenous data. From Figure
2, we observe that without the heterogeneous features and
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Figure 1: PCDF Bayesian network

Figure 2: PCDF model for Homogeneous Data

heterogeneous latent factors, PCDF model is reduced to a
new homogeneous transfer ranking model.

Second, with a little modification, the PCDF model can
also be applied to the situation that data with absolute rel-
evance scores. In such situation, y(t) and y(s) become ob-
served variables and pairwise preferences are omitted. Hence,
PCDF model is reduced to point-wise cross-domain factor
model, which is shown in Figure 3. More interestingly, point-
wise cross-domain factor model is beyond ranking applica-
tions, i.e., it can be directly applied to general regression
and classification applications.

4. ALGORITHM DERIVATION
In this section, we derive the algorithm to learn the pa-

rameters for the PCDF model.

4.1 Objective Specification
The likelihood function of the PCDF model is given in

Eq.(17), in which D denotes observed data; Ω denotes all
parameters; Φm denotes the set of observed pairwise prefer-
ences of instances i and j for domain m.

Figure 3: Pointwise Cross-domain Factor Model

p(D; Ω) =
∑

m=t,s

(
∑

(i,j)∈Φm

(p(X
(mc)
i. |f(Z

(mc)
i. ; P (c)))

p(X
(md)
i. |g(Z

(md)
i. ; P (md)))p(y

(m)
i |h(Z

(m)
i. ; w))

p(X
(mc)
j. |f(Z

(mc)
j. ; P (c)))p(X

(md)
j. |g(Z

(md)
j. ; P (md)))

p(y
(m)
j |h(Z

(m)
j. ; w)))p(R

(m)
ij |r(y(m)

i , y
(m)
j ))

p(P (md); λmd))p(P (c); λc)p(w; λw),

(17)

Eq. (17) is a general objective function. In this study,
to instantiate Eq. (17), we adopt popular linear function
for the link functions f,g, and h; we use intuitive difference
function for r. Furthermore, It has been observed in the
literature [12] that maximizing likelihood under a certain
distribution corresponds to minimizing distance under the
corresponding distortion measure. For example, the normal
distribution, Bernoulli distribution, multinormial distribu-
tion and exponential distribution correspond to Euclidean
distance, logistic loss, KL-divergence and Itakura-Satio dis-
tance, respectively. Therefore, the problem of minimizing
the the negative log posterior of PCDF boils down to the
following objective:

min
Ω

∑
m=t,s

(
∑

(i,j)∈Φm

(αmcl(X
(mc)
i. , Z

(mc)
i. P (c))+

αmdl(X
(md)
i. , Z

(md)
i. P (md)) + βml(y

(m)
i , Z

(m)
i. w)+

αmcl(X
(mc)
j. , Z

(mc)
j. P (c))+

αmdl(X
(md)
j. , Z

(md)
j. P (md)) + βml(y

(m)
j , Z

(m)
j. w)+

γml(R
(m)
ij , y

(m)
i − y

(m)
j )) + λmdω(P (md))+

λcω(P (c)) + λwω(w),

(18)

where α, β, γ, and λ are trade-off parameters; l(., .) are the
loss functions (for convenience, we use l for all terms; in gen-
eral, it could be different for different terms) corresponding
to conditional distributions in Eq. (17); ω(.) is the regular-
ization loss function corresponding to the prior distribution
in Eq. (17).

The motivations for a computational framework instead
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of direct probabilistic inference are mainly two-fold: First,
the two formulations are somewhat equivalent, i.e., the con-
ditional distributions can be encoded precisely through the
choice of loss functions; likewise, the prior distributions over
parameters could also be readily translated into the regu-
larization penalties. Secondly, computational models allow
more scalable algorithms, e.g. via stochastic gradient de-
scent, whereas probabilistic reasoning often requires Monte
Carlo sampling or quite nontrivial variational approxima-
tions.

4.2 Optimization and Implementation
In general, minimizing (18) is a nonconvex problem re-

gardless of the choice of the loss functions and regulariz-
ers. While there are convex reformulations for some set-
tings, they tend to be computationally inefficient for large
scale problems - the convex formulations require the manip-
ulation of a full matrix which is impractical for anything
beyond thousands of instances.

We established algorithms for distributed optimization based
on the Hadoop MapReduce framework. The basic idea is to
decompose the objective in (18) by optimizing with respect

to each pairwise preference R
(m)
ij and to combine the results

for the parameters in the Reduce phase.
We briefly describe a stochastic gradient descent algo-

rithm to solve the optimization of (18). The algorithm is
computationally efficient and decouples different pairwise
preferences. For a detailed discussion please see [42]. The
algorithm loops over all the observations and updates the
parameters by moving in the direction defined by negative

gradient. Specifically, for each observation R
(m)
ij , the algo-

rithm performs the following sequence of updating. First,
the hidden variables related to instance i are updated as
follows:

y
(m)
i = y

(m)
i −δ(βml′(y(m)

i , Z
(m)
i. w)+γml′(R(m)

ij , y
(m)
i −y

(m)
j ));
(19)

Z
(md)
i. = Z

(md)
i. − δ(αmdl′(X(md)

i. , Z
(md)
i. P (md))¯ P (md)1+

βml′(y(m)
i , Z

(md)
i. w(d))¯ w(d)),

(20)

Z
(mc)
i. = Z

(mc)
i. − δ(αmcl

′(X(mc)
i. , Z

(mc)
i. P (c))¯ P (c)1+

βml′(y(m)
i , Z

(mc)
i. w(c))¯ w(c)),

(21)

where δ is the learning rate, ¯ denotes elementwise multipli-
cation, 1 denotes vector of 1’s, and for convenience we write

w into
[

w(d)

w(c)

]
.

Second, the latent variables related to instance j are up-
dated as follows:

y
(m)
j = y

(m)
j −δ(βml′(y(m)

j , Z
(m)
j. w)−γml′(R(m)

ij , y
(m)
i −y

(m)
j ));
(22)

Z
(md)
j. = Z

(md)
j. − δ(αmdl′(X(md)

j. , Z
(md)
j. P (md))¯ P (md)1+

βml′(y(m)
j , Z

(md)
j. w(d))¯ w(d)),

(23)

Z
(mc)
j. = Z

(mc)
j. − δ(αmcl

′(X(mc)
j. , Z

(mc)
j. P (c))¯ P (c)1+

βml′(y(m)
j , Z

(mc)
j. w(c))¯ w(c)),

(24)

Algorithm 1 General PCDF Algorithm

Input:{X(t), R(t), X(s), R(s)} and an integer b (number of
instances for batch updating parameters).

Output:{P (td), P (sd), P (c), w}.
Method:

1: Initialize {Z(t), Z(s), y(t), y(s), P (td), P (sd), P (c), w}
2: repeat
3: for m=t,d do
4: Randomly shuffle R(m)

5: Let count = 0
6: for Each observed R

(m)
ij do

7: Let count = count + 1
8: Perform updating rules (19)-(21).
9: Perform updating rules (22)-(24)

10: if count%b == 0 then
11: Perform updating rules (25)-(27)
12: end if
13: end for
14: end for
15: until convergence

Third, the parameters are updated as follows:

P (md) = P (md) − δ(αmdl′(X(md), Z(md)P (md))Z(md)+

λmdω′(P (md))),

(25)

P (c) = P (c) − δ(
∑

m=t,s

(αmcl
′(X(mc), Z(mc)P (c))Z(mc))+

λcω
′(P (c))),

(26)

w = w − δ(
∑

m=t,s

(βml′(y(m), Z(m)w)Z(m))+

λwω′(w)).

(27)

In summary, the algorithm loops over all the R
(m)
ij ’s to

perform updating rules (19)-(27) until it converges. In prac-
tice, the algorithm may not need to update parameters for

each R
(m)
ij , since the changes of parameters may not be sig-

nificant for one observation. Instead it could be more effi-
cient to perform updating rules (25)-(27) after performing
updating rules (19)-(24) on a batch of observations. Gen-
eral PCDF algorithm is summarized in Algorithm 1. Note
that following the similar procedure, it is easy to derive the
algorithms for the variations of the PCDF model in Figure
2 and Figure 3, PCDF for homogenous data and point-wise
(regression-based) cross-domain factor model.

The proposed stochastic gradient descent based algorithm
has two desirable properties. First, it is ready for distributed
optimization based on the Hadoop MapReduce framework,
since it decouples different pairwise preference observations.
Second, it is flexible to adopt different loss functions and reg-
ularization function for different types of data with different
distributions.

5. EXPERIMENTAL EVALUATION
As a general heterogeneous ranking algorithm, PCDF can

be applied to different ranking applications with different
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data distributions. In this section, we apply PCDF to Web
search data to demonstrate the properties and effectiveness
of PCDF.

Although PCDF model is flexible to adopt different loss
and regularization functions, in this study we evaluate PCDF
with the most popular loss function, L2 loss, corresponding
to normal distribution, i.e., we use L2 loss for all l in min-
imization (18). For the regularization functions, we eval-
uate both L2 loss (normal distribution prior) and L1 loss
(laplace distribution prior). We denote those two algorithms
as PCDF-n-he and PCDF-l-he (”n” is for normal distribu-
tion prior; ”l” is for laplace distribution prior; ”he” is for
heterogeneous ranking).

To our best knowledge, there is no existing transfer learn-
ing algorithms directly applicable to partially overlapped
heterogeneous feature spaces (However, we thank an anony-
mous reviewer for pointing out very recent works, like [37]
and [24], which may be modified to this learning situation).
In this study, we use two state-of-the-art homogeneous trans-
fer learning algorithm, Sparse Coding ( called SC-ho)[33, 29]
and multi-task feature learning (called MTFL-ho)[2] as com-
parisons. Furthermore, an intuitive way for heterogeneous
transfer learning is to treat one domain’s dedicated features
in another domain as missing values and apply existing ho-
mogeneous transfer learning to the data with missing values;
hence we modify the sparse coding algorithm (it is difficult
to modify MFLF for this) to handle missing values (called
SC-he) to evaluate this idea. Finally, the baseline is using
the original target domain training data only (called TD)
for ranking learning.

We also evaluate algorithms for two PCDF variations in
Figure 2 and Figure 3 to gain deep understanding of PCDF
itself. Similarly we use L2 loss for all the loss functions;
L2 and L1 loss for the regularizer functions. For PCDF for
homogeneous data in Figure 2, they are denoted as PCDF-n-
ho and PCDF-l-ho, respectively; for regression based cross-
domain factor model in Figure 3, they are denoted as RCDF-
n-he and RCDF-l-he.

In summary, we compare ten algorithms: TD, SC-ho, SC-
he, MTFL-ho, PCDF-n-ho, PCDF-l-ho, RCDF-n-he, RCDF-
n-he, PCDF-n-he, and PCDF-l-he.

5.1 Data
We use Web search data from a commercial search engine

system, which conducts ranking learning tasks in various
domains with different languages or different verticals. The
source domain (denoted as S0 ) is general Web search for an
English speaking country, which has relatively large amount
of labeled data. The first target domain (denoted as T1) is
general Web search for a Spanish speaking country; the sec-
ond target domain (denoted as T2) is news article search for
the same country as S0; the third target domain (denoted as
T3) is answer search (providing text search for knowledge-
sharing community) for another non-English speaking coun-
try.

In the data, each query-document example is represented
by a feature vector. Those query-document examples in do-
main S and T1 are originally labeled using a five-grade la-
beling scheme and those in domain T1 and T2 are originally
labeled using a four-grade labeling scheme. We then trans-
form them into pairwise preference data.

The features generally fall into the following three cate-
gories. Query features comprise features dependent on the

query only and have constant values across all the doc-
uments, for example, the number of terms in the query,
whether or not the query is a person name, etc. Document
features comprise features dependent on the document only
and have constant values across all the queries, for example,
the number of inbound links pointing to the document, the
amount of anchor-texts in bytes for the document, and the
language identity of the document, etc. Query-document
features comprise features dependent on the relation of the
query with respect to the document d, for example, the num-
ber of times each term in the query appears in the document
d, the number of times each term in the query appears in
the anchor-texts of the document, etc.

The four domains have an overlapped feature space con-
sisting of text match features, which describes various as-
pects of text match between a query and a document, such
as title match and body match. Each domain has its own
dedicated feature space. For example, all domains have their
own dedicated features related to term segmentation in a
query which is language dependent; T2 has its dedicated
features related to news articles’s freshness. Table 1 sum-
marizes the data information for four domains. In our ex-
periments, 20% of data for each target domain are used as
training data (i.e., labeled data are very scarce in target
domains); 80% of them are used as test data to make evalu-
ation robust; all the source domain data are used as training
data to help the target domains.

5.2 Experimental Setting
To evaluate those transfer learning algorithms, first, the

new latent features and parameters are learnt by the algo-
rithms; then source domain and target domain training data
with the new latent features then are used by a base ranking
learner to train a ranking model; third, the ranking model
are tested on the test data of the target domain, which are
also projected into the new feature space.

For the base ranking learner, we use Gradient Boosting
Decision Tree (GBDT)[20]. For performance measure of the
ranking models, we adopt widely used Discounted Cumula-
tive Gain (DCG). Specifically, we sue DCG-k, since users of
a search engine are only interested in the top k results of
a query rather than a sorted order of the entire document
collection. In this study, we select k as 5 and 1. For every
experimental setting, 10 runs are repeated and the average
DCG of 10 runs is reported for each experiment setting.

The gradient of L1 regularization function is the discon-
tinuous sign function. We approximate it by a steep soft

sign function l(x) = 1−exp(−θx)
1+exp(−θx)

, where θ is a positive num-

ber controlling the ramp of l(x) (we use θ = 100).
For the dimension of the latent factor, in our preliminary

experiments we observe that the performance is not sensitive
to it as long as it is not too small. In this study, we simply
set kc = 20 and kd = 20. Other parameters, such as the
learning rate, are selected by cross-validation.

5.3 Results and Discussions
The relative weight of source domain data w.r.t the target

domain data controls how much the source domain affect the
target domain. It is very important, since it is directly affect
the efficiency of the knowledge transfer. For example, the
low weight will impede the knowledge transfer no matter
how close the two domains are.

We evaluate the effects of relative weights of the source
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Data set Number of examples Number of Preference Pairs Overlapped Features Dedicated Features
S0 50,121 325,684 67 121
T1 5,112 26,534 67 81
T2 5,087 25,332 67 93
T3 5,124 26,898 67 76

Table 1: Data summary for one source domain and three target domains.

Figure 4: The effects of relative weights of source domain data on DCG5 performance.

domain data for PCDF-n-he and PCDF-l-he algorithms to
illustrate this important aspect. Figure 4 shows The effects
of relative weights of source domain data on DCG5 per-
formance for all three target domains. From Figure 4, we
observe that approximately the algorithms perform best at
weight 0.6 for target domain T1, weight 0.5 for target do-
main T2, and weight 0.4 for target domain T3. The results
implies that the T1 is the closest to the source domain, T2 is
the second closest one, and T3 is the third closest one. This
is consistent with our domain knowledge about the four do-
mains. Note that it is flexible for PCDF algorithms to adopt
the optimal relative weights that can be decided by cross-
validation.

The DCG5 and DCG1 comparisons of the ten algorithms
are shown in Figure 5 and Figure 6. From Figure 5 and
Figure 6, we observe the following interesting facts:

• TD performs worst in all settings. This is due to in-
sufficient training data for the target domains. This
confirms the basic motivation of transfer ranking - to
improve poor ranking performance in domains with in-
sufficient training data.

• Overall PCDF-l-he performs best and PCDF-n-he per-
forms second. This shows that PCDF can effectively
catch domain correlations in both overlapped and het-
erogeneous feature spaces to improve learning in the
target domain.

• PCDF-n-he and PCDF-l-he performs better than RCDF-
n-he and RCDF-l-he. The possible reason is that PCDF
catch correlations from preference orders, which mat-
ters more for ranking applications than absolute scores.

• PCDF-n-he and PCDF-l-he performs better than PCDF-
n-ho and PCDF-l-ho, since PCDF-n-ho and PCDF-l-
ho can use only features in the overlapped space and
misses the knowledge transfer in the heterogenous fea-
ture spaces.

• PCDF-n-ho and PCDF-l-ho performs better than SC-
ho and MTFL-ho. This shows that PCDF helps not
only common knowledge learning cross heterogeneous
feature spaces, but also in the same feature space, i.e.,
PCDF also provide an effective homogeneous transfer
ranking model.

• MTFL algorithm performs better than SC algorithms.
The possible reason for this is that as a supervised
learning algorithm, MTFL learns the more informative
latent features by making use of label information.

• SC-he does not perform better than SC-ho, even SC-he
uses both overlapped features and heterogeneous fea-
tures. This implies that simply treating one domain’s
dedicated features in another domain as missing values
cannot effectively catch the the heterogeneous feature
correlation.

• Overall, the L1 regularization algorithms performs bet-
ter than L2 regularization algorithms. This shows that
the choice of the regularization functions could have
significant effects on the performance and hence, it is
desirable for an algorithm to be flexible to adopt dif-
ferent regularization functions.

6. CONCLUSIONS
In this paper, we propose a novel probabilistic model,

PCDF, for heterogeneous transfer ranking. The proposed
model learns latent factors for multi-domain data in partially-
overlapped heterogeneous feature spaces. It is capable of
learning homogeneous feature correlation, heterogeneous fea-
ture correlation, and pairwise preference correlation for cross-
domain knowledge transfer. We also derive two PCDF vari-
ations to address two important special cases. Under the
PCDF model, we derive a stochastic gradient based algo-
rithm, which facilitates distributed optimization and is flex-
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Figure 5: DCG5 comparisons of ten algorithms on the three target domains.

Figure 6: DCG1 comparisons of ten algorithms on the three target domains.

ible to adopt different loss functions and regularization func-
tions to accommodate different data distributions . The
extensive experiments on real Web search data sets demon-
strate the effectiveness PCDF model and algorithms.

7. REFERENCES
[1] R. Ando and T. Zhang. A high-performance

semi-supervised learning method for text chunking. In
Proceedings of the 43rd Annual Meeting on
Association for Computational Linguistics, pages 1–9.
Association for Computational Linguistics
Morristown, NJ, USA, 2005.

[2] A. Argyriou, T. Evgeniou, and M. Pontil. Multi-task
feature learning. In Advances in Neural Information
Processing Systems: Proceedings of the 2006
Conference, page 41. MIT Press, 2007.

[3] A. Argyriou, C. Micchelli, M. Pontil, and Y. Ying. A
spectral regularization framework for multi-task
structure learning. Advances in Neural Information
Processing Systems, 20, 2008.

[4] S. Bickel, M. Brückner, and T. Scheffer.
Discriminative learning for differing training and test
distributions. In Proceedings of the 24th international
conference on Machine learning, pages 81–88. ACM
New York, NY, USA, 2007.

[5] J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and
J. Wortman. Learning bounds for domain adaptation.
Advances in Neural Information Processing Systems,
20, 2008.

[6] J. Blitzer, R. McDonald, and F. Pereira. Domain
adaptation with structural correspondence learning. In
Proceedings of the Empirical Methods in Natural
Language Processing (EMNLP), 2006.

[7] A. Blum and T. Mitchell. Combining labeled and
unlabeled data with co-training. In Proceedings of the
eleventh annual conference on Computational learning
theory, COLT’ 98, pages 92–100, 1998.

[8] E. Bonilla, K. Chai, and C. Williams. Multi-task
gaussian process prediction. Advances in Neural
Information Processing Systems, 20:153–160.

[9] C. Burges, T. Shaked, E. Renshaw, A. Lazier,
M. Deeds, N. Hamilton, and G. Hullender. Learning to
rank using gradient descent. In Proceedings of the 22nd
International Conference on Machine learning, 2005.

[10] Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li.
Learning to rank: from pairwise approach to listwise
approach. In ICML ’07, pages 129–136, New York,
NY, USA, 2007. ACM.

[11] D. Chen, J. Yan, G. Wang, Y. Xiong, W. Fan, and
Z. Chen. TransRank: A Novel Algorithm for Transfer
of Rank Learning. In IEEE ICDM Workshops, 2008.

[12] M. Collins, S. Dasgupta, and R. Reina. A
generalizaionof principal component analysis to the
exponential family. In NIPS’01, 2001.

[13] C. Cortes, M. Mohri, and A. Rastogi.
Magnitude-preserving ranking algorithms. In
Proceedings of the 24th ICML, 2007.

121



[14] W. Dai, G. Xue, Q. Yang, and Y. Yu. Co-clustering
based classification for out-of-domain documents. In
Proceedings of the 13th ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 210–219. ACM New York, NY, USA, 2007.

[15] W. Dai, Q. Yang, G. Xue, and Y. Yu. Boosting for
transfer learning. In Proceedings of the 24th
international conference on Machine learning, pages
193–200. ACM New York, NY, USA, 2007.

[16] H. Daume. Frustratingly easy domain adaptation. In
Annual meeting-association for computational
linguistics, volume 45, page 256, 2007.

[17] H. Daume III and D. Marcu. Domain adaptation for
statistical classifiers. Journal of Artificial Intelligence
Research, 26:101–126, 2006.

[18] T. Evgeniou and M. Pontil. Regularized multi-task
learning. In Proceedings of the tenth ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 109–117. ACM New York, NY,
USA, 2004.

[19] Y. Freund, R. Iyer, R. Schapire, and Y. Singer. An
efficient boosting algorithm for combining preferences.
In Proceedings of the Fifteenth International
Conference on Machine Learning, 1998.

[20] J. Friedman. Greedy function approximation: a
gradient boosting machine. Annals of Statistics, pages
1189–1232, 2001.

[21] J. Gao, Q. Wu, C. Burges, K. Svore, Y. Su, N. Khan,
S. Shah, and H. Zhou. Model adaptation via model
interpolation and boosting for web search ranking. In
Proceedings of conference on Empirical Methods in
Natural Language Processing, 2009.

[22] J. Guiver and E. Snelson. Learning to rank with
SoftRank and Gaussian processes. In Proceedings of
the 31st annual international ACM SIGIR conference
on Research and development in information retrieval,
2008.

[23] M. Harel and S. Mannor. Learning from multiple
outlooks. In L. Getoor and T. Scheffer, editors,
Proceedings of the 28th International Conference on
Machine Learning (ICML-11), ICML ’11, pages
401–408, New York, NY, USA, June 2011. ACM.

[24] J. He and R. Lawrence. A graph-based framework for
multi-task multi-view learning. In L. Getoor and
T. Scheffer, editors, Proceedings of the 28th
International Conference on Machine Learning
(ICML-11), ICML ’11, pages 25–32, New York, NY,
USA, June 2011. ACM.

[25] J. Huang, A. Smola, A. Gretton, K. Borgwardt, and
B. Scholkopf. Correcting sample selection bias by
unlabeled data. Advances in neural information
processing systems, 19:601, 2007.

[26] J. Jiang and C. Zhai. Instance weighting for domain
adaptation in NLP. In Annual meeting-assosciation for
computational linguistics, volume 45, page 264, 2007.

[27] T. Joachims. Optimizing search engines using
clickthrough data. In Proceedings of ACM SIGKDD,
2002.

[28] N. Lawrence and J. Platt. Learning to learn with the
informative vector machine. In Proceedings of the
twenty-first international conference on Machine
learning. ACM New York, NY, USA, 2004.

[29] H. Lee, A. Battle, R. Raina, and A. Y. Ng. Efficient
sparse coding algorithms. In In NIPS, pages 801–808.
NIPS, 2007.

[30] S. Lee, V. Chatalbashev, D. Vickrey, and D. Koller.
Learning a meta-level prior for feature relevance from
multiple related tasks. In Proceedings of the 24th
international conference on Machine learning, pages
489–496. ACM New York, NY, USA, 2007.

[31] X. Liao, Y. Xue, and L. Carin. Logistic regression
with an auxiliary data source. In MACHINE
LEARNING-INTERNATIONAL WORKSHOP
THEN CONFERENCE-, volume 22, page 505, 2005.

[32] P. Luo, F. Zhuang, H. Xiong, Y. Xiong, and Q. He.
Transfer learning from multiple source domains via
consensus regularization. In CIKM ’08: Proceeding of
the 17th ACM conference on Information and
knowledge management, pages 103–112, New York,
NY, USA, 2008. ACM.

[33] R. Raina, A. Battle, H. Lee, B. Packer, and A. Ng.
Self-taught learning: Transfer learning from unlabeled
data. In Proceedings of the 24th international
conference on Machine learning, pages 759–766. ACM
New York, NY, USA, 2007.

[34] A. Schwaighofer, V. Tresp, and K. Yu. Learning
Gaussian process kernels via hierarchical Bayes.
Advances in Neural Information Processing Systems,
17:1209–1216, 2005.

[35] M. Sugiyama, S. Nakajima, H. Kashima, P. von
Bunau, and M. Kawanabe. Direct importance
estimation with model selection and its application to
covariate shift adaptation. Advances in Neural
Information Processing Systems, 20, 2008.

[36] B. Wang, J. Tang, W. Fan, S. Chen, Z. Yang, and
Y. Liu. Heterogeneous cross domain ranking in latent
space. In Proceeding of the 18th ACM conference on
Information and knowledge management, CIKM ’09,
pages 987–996, 2009.

[37] C. Wang and S. Mahadevan. Heterogeneous domain
adaptation using manifold alignment. In IJCAI, pages
1541–1546, 2011.

[38] J. Xu and H. Li. Adarank: a boosting algorithm for
information retrieval. In Proceedings of the 30th ACM
SIGIR, 2007.

[39] Q. Yang, Y. Chen, G.-R. Xue, W. Dai, and Y. Yu.
Heterogeneous transfer learning for image clustering
via the social web. ACL ’09, pages 1–9, 2009.

[40] H. Zha, Z. Zheng, H. Fu, and G. Sun. Incorporating
query difference for learning retrieval functions in
world wide web search. In Proceedings of the 15th
ACM CIKM conference, 2006.

[41] Z. Zheng, K. Chen, G. Sun, and H. Zha. A regression
framework for learning ranking functions using relative
relevance judgments. In SIGIR ’07: Proceedings of the
30th annual international ACM SIGIR conference on
Research and development in information retrieval,
pages 287–294, New York, NY, USA, 2007. ACM.

[42] M. Zinkevich, M. Weimer, A. Smola, and L. Li.
Parallelized stochastic gradient descent. In J. Lafferty,
C. K. I. Williams, J. Shawe-Taylor, R. Zemel, and
A. Culotta, editors, Advances in Neural Information
Processing Systems 23, pages 2595–2603, 2010.

122




