
Learning to Rank with Multi-Aspect Relevance for Vertical
Search

Changsung Kang, Xuanhui Wang, Yi Chang, Belle Tseng
Yahoo! Labs

Sunnyvale, CA
{ckang,xhwang,yichang,belle}@yahoo-inc.com

ABSTRACT
Many vertical search tasks such as local search focus on spe-
cific domains. The meaning of relevance in these verticals is
domain-specific and usually consists of multiple well-defined
aspects (e.g., text matching and distance in local search).
Thus the overall relevance between a query and a document
is a tradeoff between multiple relevance aspects. Such a
tradeoff can vary for different types of queries or in different
contexts. In this paper, we explore these vertical-specific as-
pects in the learning to rank setting. We propose a novel for-
mulation in which the relevance between a query and a doc-
ument is assessed with respect to each aspect, forming the
multi-aspect relevance. In order to compute a ranking func-
tion, we study two types of learning-based approaches to es-
timate the tradeoff between these relevance aspects: a label
aggregation method and a model aggregation method. Since
there are only a few aspects, a minimal amount of training
data is needed to learn the tradeoff. We conduct both offline
and online test experiments on a local search engine and the
experimental results show that our proposed multi-aspect
relevance formulation is very promising. The two types of
aggregation methods perform more effectively than a set of
baseline methods including a conventional learning to rank
method.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Retrieval models

General Terms
Algorithms

Keywords
Web search, multi-aspect relevance, aggregation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WSDM’12, February 8–12, 2012, Seattle, Washington, USA.
Copyright 2012 ACM 978-1-4503-0747-5/12/02 ...$10.00.

1. INTRODUCTION
As the popularity of search engines has grown, the infor-

mation needs of end users continue being refined. One of the
emerging trends is using vertical search intent. For exam-
ple, a user may want to find a restaurant near her current
location; another user may want to follow the recent devel-
opment of a breaking event such as the earthquake in Japan.
Some recent studies show that at least 20% of Web queries
have some local intent [26]. As a result, vertical search en-
gines start attracting more and more attention. For exam-
ple, many search engines provide specialized vertical search
results for local search [1, 3] and for real-time search [8].
Furthermore, vertical search results are often slotted into
general Web search results [4, 5]. Thus, designing effective
ranking functions for vertical search has become practically
important to improve users’ search experience.

A natural way to build a vertical search engine is to apply
the existing ranking techniques on a vertical. In the TREC
conference [2], several specialized tracks such as blog and
chemical tracks have been introduced to provide a testbed
to study retrieval tasks on these special text collections. The
main focus of these tracks is on content-based relevance and
most participants extend traditional IR techniques to con-
sider a few task-specific ranking signals. Recently, learning
to rank approaches [15, 7, 31] have been studied extensively
and shown to be effective to combine many useful signals into
a ranking function. To adapt such a technique on a vertical,
an intuitive approach is to construct a training data set by
collecting a set of queries and documents which belong to
the vertical and asking human editors to give a single rel-
evance label between a query and a document. A ranking
function thus can be learned for the vertical.

However, we observed that in many verticals, the meaning
of relevance is domain-specific and usually consists of mul-
tiple well-defined aspects. For example, in real-time search,
content matching and temporal recency are both important:
A stale result which matches a query perfectly is no longer
interesting to end users. In local search, as shown in Fig-
ure 1, to find a “restaurant” in “Sunnyvale CA”, a satisfac-
tory search result is not only about a dining place (text
matching aspect), but also requires the place to be close to
the search location (distance aspect) and with good user re-
views (reputation aspect). Usually, there is no result which
is the best in all these aspects. Ranking the results based
on a single aspect such as text matching is not optimal. The
optimal ranked list of results needs to tradeoff these differ-
ent aspects appropriately. In such a vertical, blindly apply-
ing the conventional learning to rank approaches by ignoring

Distance Reputation Matching

Figure 1: An example of local search results

vertical-specific domain knowledge may not be cost-effective
for collecting training data: (1) Since there are several per-
tinent aspects in a vertical, human editors naturally need
to consider and tradeoff the relevance from different aspects
before making the overall relevance judgement. Thus as-
sessing aspect relevance is a necessary step. (2) Trading off
multiple aspects is not trivial since such a tradeoff can vary
for different queries or in different contexts. For example,
in local search, the reputation aspect can be more impor-
tant for “restaurants” but the distance aspect can be more
important for “banking centers”. (3) For different verticals,
different aspects are involved and the tradeoff among as-
pects is vertical-dependent. Collecting training data with
overall relevance for a new vertical requires human editors
learn how to appropriately tradeoff different aspects.

In this paper, we propose a novel multi-aspect relevance
formulation to leverage vertical-specific knowledge in a cost-
effective way. Instead of asking editors to provide the overall
relevance directly, our key idea is to collect aspect relevance
labels and learn the tradeoff among them in a quantitative
way. Specifically, in our formulation, the relevance between
a query and a document is only judged with respect to in-
dividual aspects. Intuitively, the aspect relevance is more
finely specified. Thus it is less dependent on other contexts
and can be presumably judged by editors with less effort. To
learn a ranking function using our multi-aspect relevance for-
mulation, we study two types of learning-based approaches
to tradeoff these aspect relevancies: a label aggregation ap-
proach and a model aggregation approach.

• In the label aggregation approach, we first learn an ag-
gregation function which predicts the overall relevance
given the aspect relevance labels. After we get the
overall relevance labels, conventional learning to rank
algorithms can be applied to obtain a ranking function.

• In the model aggregation approach, we first train sev-
eral aspect-specific ranking models based on the as-
pect relevance labels. The model aggregation function
is then learned to combine the output of these aspect
ranking models to generate the final overall relevance
score.

Compared with the first approach, an advantage of the sec-
ond one is that we can use different ranking models for
different aspects. Since there are only a few aspects in a
vertical, a minimal amount of data is needed to learn ei-
ther the label aggregation function or the model aggrega-
tion function. Furthermore, in our aggregation approaches,
a mapping function which assigns numerical values to edi-
torial labels (for example, “exact match”, “plausible match”
and “no match” for the text match aspect) for each aspect
is necessary. Such a function can be defined heuristically
but we show that we can automatically learn such a func-
tion based on training data. Thus our proposed methods
are completely free from heuristics.

The main advantage of our learning-based approaches is
that they are vertical-independent and can be easily applied
to different vertical search tasks. Specifically in this pa-
per, we focus on learning a generic ranking function for each
of the two types of queries in local search: business name
queries (e.g., walmart) and category queries (e.g., restau-
rant). We use a training data set with relative preferences
to learn the aggregation functions and study several variants
on a large data set from local search. The experimental re-
sults show that our proposed methods for the multi-aspect
relevance formulation is quite promising. The two types of
aggregation methods perform more effectively than a set of
baseline methods including a conventional learning to rank
method.

The rest of the paper is organized as follows. In Section 2,
we introduce related work. We define our problem in Section
3 and describe our methods to aggregate aspect relevance in
Section 4. We present our experimental results in Section 5
and conclude our paper in Section 6.

2. RELATED WORK
Modeling relevance is the central topic in the information

retrieval community and most of the previous work focuses
on the overall relevance. In particular, almost all the eval-
uation methodologies are based on overall relevance. For
example, in the TREC conference [2], benchmark data sets
are labelled by human editors with overall relevance. The

relevance labels can be either binary or graded [14]. In the
past, many models have been proposed to capture the over-
all relevance [23, 22, 21, 29, 7]. Most of the existing work
treats the overall relevance as a unit and does not study at
a finer granularity.

Vertical search engines have become popular recently. For
example, in the TREC conference, there are multiple tracks
and some tracks such as the blog track and the legal track fo-
cus on articles from specific domains. Specific characteristics
have been explored for vertical search ranking mechanisms.
For example, most participants in the TREC conference de-
signed task-specific ranking features. [11] went beyond sin-
gle blog articles and studied how to rank blog feeds. [9] ad-
vocated a comparison-based ranking scheme to rank items
in Twitter-like forums. [28] tried to discover implicit geo-
graphic local search intents of queries automatically. [19]
proposed to use the geographic information to personalize
Web search results. On the top of different verticals, [4, 5]
studied how to select appropriate verticals by predicting the
vertical intents of different queries based on multiple sources
of evidence. Our work focuses on the learning to rank ap-
proaches for individual verticals and our multi-aspect rele-
vance formulation is novel for vertical search.

Our work is related to multi-faceted search [27, 30]. The
goal of multi-faceted search is to use facet metadata of a do-
main to help users narrow their search results along different
dimensions. In the most recent TREC Blog track 2009 [20],
a special track of “faceted blog distillation”was initiated and
the task of this track is to find results relevant to a single
facet of a query in the blog collection. This task is tied with
multi-faceted search in that it is aimed at studying how to
rank blog articles after a user selects a facet (e.g., “opinion-
ated” or “factual”) to refine the original query. While facets
are usually categorical and intended to help explore search
results, our definition of aspects is closely related to the no-
tion of relevance and intended to capture partial relevance.

We note that our model aggregation technique is closely
related to rank aggregation which includes score-based and
rank-based methods [18, 10] and model interpolation [12].
We are not contributing any new techniques to this body
of work. Rather, we show that supervised score-based ag-
gregation techniques can be used in our multi-aspect rele-
vance formulation. Our work is also different from multi-
label learning [13] where the primary focus is to use label
correlation to improve learning accuracy.

A recent related work tries to optimize multiple objectives
in the learning to rank framework [25]. It considers multi-
ple label sources and design optimization procedures based
on the lambdaMART method. In their work, the priority
of different label sources and the combination weights are
predefined and thus it is not easy to handle a large num-
ber of label sources. In our work, the combination weights
between different aspects are learned automatically and our
formulation is more scalable with respect to the number of
aspects. Furthermore, in our paper, we will compare with a
rule-based baseline method which is similar to their graded
measure in the sense that we predefine the aspect priority
and use the labels with lower priority to break the ties of
labels with a higher priority.

3. PROBLEM FORMULATION
In this section, we formally define our problem. We first

describe a conventional learning to rank approach for ver-

Given a query and a list of documents, answer the the
following questions for each document.

Question 1: How does this document match the query?
[] Exact match
[] Plausible match
[] No match

Question 2: What is the relative distance between the
document location and the query location?
[] Same location
[] Reasonable location
[] Too far

Question 3: How is the rating from different raters?
[] Excellent rating
[] Good rating
[] Bad rating

Question 4: Overall Relevance

Matching Distance Reputation Overall
Exact Same Excellent Perfect
Exact Same Good Excellent
Exact Same Bad Good

Exact or
Plausible

Same or
Reasonable -

Fair

No - - Bad

Figure 2: An example of an editorial guideline for lo-
cal search. Note that the overall relevance question
is NOT needed in our aggregation methods. The
overall relevance is used only for the conventional
method.

tical searches and then propose our multi-aspect relevance
formulation.

3.1 Learning to Rank for Vertical Search
Although vertical search involves multiple aspects such

as matching, reputation and distance, we can still apply
conventional learning to rank methods. Given a query q,
let Dq = {(x1, z1), ..., (xn, zn)} be the training data of n
documents where xi ∈ Rd is the feature vector and zi is
the overall relevance label of the i-th document. In a rank-
ing problem, Dq is given as input and a permutation τ of
{1, . . . , n} is returned as output. xi is ranked higher than
xj if τ(xi) < τ(xj) and this means xi is more relevant to q
than xj . Typically, a ranking function f : Rd → R is trained
and applied to Dq. A permutation or ranking τ is generated
by ordering the f(xi) in the descending order.

The overall relevance label zi is a discrete label given by
human editors. In this work, we follow a common five-grade
labeling scheme: {Perfect, Excellent, Good, Fair, Bad}. To
reduce disagreement among editors, it is a common practice
that an editorial guideline is drawn up. An editorial guide-
line is essentially a set of rules or heuristics that specify a
condition for each grade of the overall relevance label.

In this section, we use local search as an example to de-
scribe an editorial guideline. A unique characteristic of local
search is that the query intents are to find some locations
such as restaurants, hotels, or business centers. This also
implies that the users intend to use some services provided
by the local businesses. Therefore, a user would prefer a
location which is close and at the same time whose reputa-

tion of services is good. For example, to find a restaurant in
local search, a satisfactory search result is not only about a
dining place (matching aspect), but also requires the place
to be close to the user (distance aspect) and to have good
user reviews (reputation aspect). Overall, we have found
that three aspects, i.e., matching, distance and reputation,
are the most important aspects for local information needs.

In Figure 2, we show an example of an editorial guide-
line for local search. We have several questions which are
intended to capture the desired properties of local search.
Question 1, 2, and 3 are to capture the matching, distance,
and reputation aspects respectively. Each question has a
graded judgement which is going to be labelled by editors.
Finally, there is an aggregation guideline that specifies a rule
for each grade of the overall relevance label. An aggregation
guideline is important since it defines the learning targets.
It is necessary for most conventional learning to rank tasks,
especially which involve multiple aspects of relevance. With-
out a good aggregation guideline, the training data will have
too much noise to train a good ranking function due to dis-
agreement among editors regarding the overall relevance.

For example, given the query “Bank of America, Los An-
geles, CA 90018”, the result “Bank of America, 2907 Cren-
shaw Blvd, Los Angeles, CA” has a distance of 1 mile and
the average rating from 2 people is 3 out of 5. In this case,
the labels for these questions are Exact match, Same loca-
tion, and Good rating. The overall relevance is Excellent
according to the aggregation guideline.

Such a rule-based approach is similar to [25] in the sense
that we predefine priorities between aspects and use the la-
bels with a lower priority to break the ties for labels with
a higher priority. The drawbacks of the conventional rule-
based approach are: (1) Defining the right rules needs deep
domain knowledge and thus is non-trivial; (2) The rules are
very coarse and cannot capture the true preferences at a
finer granularity; (3) This method will not scale well since
the complexity of defining rules grows exponentially as the
number of aspects increases, though it is feasible for the 3
aspects in our work.

3.2 Multi-Aspect Relevance Formulation
In the conventional learning setting, the intermediate ques-

tions regarding aspects are only used to help editors reach
the final overall relevance and are usually discarded when
training a ranking function. How to leverage these aspect
relevance labels effectively is not well explored. In this sec-
tion, we propose a new learning to rank framework for multi-
aspect relevance to tackle the drawbacks of the conventional
rule-based overall relevance scheme.

First,we define the following concepts:

Definition 1 (Aspect relevance). Given a query q,
a document d, and the k-th aspect, the corresponding aspect
relevance is the relevance between q and d with respect to
this aspect. An aspect relevance label l̂ ∈ Lk = {lk,1 ≺, ...,≺
lk,nk} is used to represent the degree of the relevance where
≺ (�) means the left label is less (more) relevant than the
right label.

For example, in the editorial guideline shown in Figure 2,
each intermediate question is to assess a single aspect rel-
evance label. An aspect relevance label is independent of
other aspect relevance labels.

Definition 2 (Multi-aspect relevance). Given a ver-

tical which has m pertinent aspects, the multi-aspect rele-
vance between a query and a document is an m-dimensional
vector with each entry corresponding to an aspect relevance
label between the query and the document.

Each entry in a multi-aspect relevance vector corresponds
to an aspect relevance label. This label can be mapped to a
numerical value by a mapping function as defined below.

Definition 3 (Mapping function). A mapping func-
tion for the k-th aspect φk : Lk → R maps an aspect rele-
vance label to a numerical value. For example, φ1(matching
= Plausible match) = 0.5. A mapping function is consistent
if φk(lk,i) > φk(lk,j) for lk,i � lk,j. We use Φ as the general
notation of the m aspect mapping functions.

A mapping function can be manually defined or learned.
In the following, for ease of exposition, we use notation y to
represent a multi-aspect relevance vector of either labels or
values unless otherwise specified.

3.3 Label Aggregation
Given the above definitions, the basic idea of label aggre-

gation is to train a function which can quantitatively aggre-
gate the multi-aspect relevance values into an overall rele-
vance value.

Definition 4 (Label aggregation function). A la-
bel aggregation function h : Rm → R is a function that maps
a multi-aspect relevance vector y to an absolute overall rel-
evance value z, i.e., h(y) = z.

To learn an aggregation function h, we need training data
with overall relevance signals, either absolute relevance la-
bels or relative preferences. In this paper, we focus on the
relative preferences and use P = {(xi,xj) | xi � xj} to rep-
resent the data where xi � xj denotes that xi is preferred to
xj . Since there are only a few aspects in a vertical, training
the aggregation function needs a minimal amount of data.
After learning an aggregation function, we can then apply
it to the large amount of multi-aspect relevance labels and
thus generate a large amount of training data with overall
relevance.

In summary, we have a large data set with ranking features
x and the corresponding multi-aspect relevance vectors y:
F = {(x,y)} and a small set of relative preference data P.
Since there is a one-to-one correspondence between x and y
in our data, we use either (xi,xj) ∈ P or (yi,yj) ∈ P. We
have the following steps:

• Learn an aggregation function h(y) (and a mapping
function Φ if not manually defined) using P.

• Apply h(y) on F and generate data set F̂ = {(x, h(y)}.
• Train a ranking function fh using F̂ based on a con-

ventional learning to rank method.

3.4 Model Aggregation
The label aggregation method converts the problem of

learning from multi-aspect relevance into a conventional learn-
ing to ranking problem. All the ranking features related to
different aspects are treated uniformly in this method. The
idea of model aggregation is to train an individual ranking
model for each aspect. In this section, we propose a model
aggregation method, which aggregates the output of aspect
ranking functions to generate the overall relevance score.

Aspect Label Score

Matching Exact Match y1 = 1.0
Plausible Match y1 = 0.5

No Match y1 = 0

Distance Same Location y2 = 1.0
Reasonable Location y2 = 0.5

Too Far y2 = 0

Reputation Excellent Rating y3 = 1.0
Good Rating y3 = 0.5
Bad Rating y3 = 0

Table 1: The aspect relevance mapping function for
local search.

Definition 5 (Aspect ranking function). An aspect
ranking function fa : Rk → R for an aspect a is a function
that maps a feature vector x to an aspect relevance score.

Definition 6 (Model aggregation function). A model
aggregation function h : Rm → R is a function that ag-
gregates the estimated aspect relevance scores into the final
overall relevance score.

In summary, we have the following steps for model aggre-
gation:

• For each aspect ai, learn an aspect ranking function
fai based on aspect relevance labels and a mapping
function.

• For each x in P, generate an m-dimensional vector
f(x) = [fa1(x), ..., fam(x)].

• Train an aggregation function h based on the feature
vector f(x) and the pairs in P.

The final ranking score is computed as h(f(x)).
Then the central question is how to learn these aggre-

gation functions (and a mapping function Φ). We explore
different formulations in the next section.

4. LEARNING AGGREGATION FUNCTIONS
In this section, we propose different methods to learn ag-

gregation functions based on pairwise preferences.

4.1 Learning Label Aggregation
We propose 2 different approaches: a linear aggregation

approach and a joint learning approach.

4.1.1 A Linear Aggregation Method
In this section, we explore a linear model for aggregation

by assuming that we have a predefined mapping function.
A simple mapping function for an aspect label set Lk can
be constructed as

φk(lk,s) =
s− 1

nk − 1
for s = 1, . . . , nk,

For example, a fixed mapping function is given in Table 1.
We have an unknown parameter vector w and the linear
function takes the form h(y) = wTy. We use the following
loss function on the pairwise training data.

L =
1

2

∑
(yi,yj)∈P

(
max(0, 1−wTyi + wTyj)

)2

Furthermore, to ensure the monotonicity, we have to con-
strain w to be non-negative element-wise:

w � 0.

We solve the above optimization problem by a simple gra-
dient descent approach in a similar way to the joint learning
model in the next section.

4.1.2 A Joint Learning Method
The above method assumes that we have a predefined

mapping function and learn the aggregation function di-
rectly on the numeric values of aspect relevance. But such a
mapping is in an ad-hoc fashion. In this section, we propose
a joint learning model which learns a mapping function and
aggregation weights simultaneously. Without loss of gener-
ality, for each aspect, we assign 0 to its lowest relevance label
and 1 to its highest one, i.e., φk(lk,1) = 0 and φk(lk,nk) = 1
for k = 1, . . . ,m. Our joint learning method will automati-
cally determine the numeric values for the middle labels.

Formally, our goal is to learn the values of all the labels
in L1, . . . , Lm and weights w to minimize the following loss
function

L =
1

2

∑
(yi,yj)∈P

(
max(0, 1−wTΦ(yi) + wTΦ(yj))

)2
Here we use y to specifically denote an aspect label vec-
tor. Note the following differences compared to the linear
method: (1) Φ(yi) = [φ1(yi,1), ..., φm(yi,m)]T is the vector
after applying the mapping function. It is also unknown and
needs to be optimized; (2) We have the following additional
consistency constraint which ensures that a better label gets
a higher score:

0 = φk(lk,1) ≤ φk(lk,2)... ≤ φk(lk,nk) = 1 for k = 1, . . . ,m

It easy to verify that the space with the constraints is
convex. However, such a problem is not easy to optimize
due to the quadratic terms in the objective function. Since
the dimensionality of the problem is not high, we thus pro-
pose a gradient descent approach with projection to optimize
the objective function. Let Ak,s = {(yi,yj) ∈ P | yi,k =
lk,s, yj,k 6= lk,s} and Bk,s = {(yi,yj) ∈ P | yi,k 6= lk,s, yj,k =
lk,s}. The gradient for each variable with respect to the
objective function is:

∂L
∂wk

=
∑

(yi,yj)∈P

max(0, 1−wTΦ(yi) + wTΦ(yj))

· (−φk(yi,k) + φk(yj,k))

∂L
∂φk(lk,s)

=
∑

(yi,yj)∈Ak,s

max(0, 1−wTΦ(yi) + wTΦ(yj))(−wk)

+
∑

(yi,yj)∈Bk,s

max(0, 1−wTΦ(yi) + wTΦ(yj)) · wk

We use t to denote the iteration in the gradient descent.
After iteration t, we project the estimated parameters to the
convex space defined by the constraints. We use the norm-2
distance for the projection

min
w,φk(lk,s)

||w −w(t)||2 +
∑
k,s

|φk(lk,s)− φk(lk,s)
(t)|2

s.t. 0 = φk(lk,1) ≤ φk(lk,2)... ≤ φk(lk,nk) = 1

w � 0

The projection can be efficiently solved since it is a standard
quadratic programming problem [24].

4.2 Learning Model Aggregation
In this section, we propose another method for our multi-

aspect relevance formulation, the model aggregation method,
which is formulated in Section 3.4. In this method, we first
learn an aspect ranking function fai for each aspect ai and
use a supervised linear model as our aggregation function

h(f(x)) = wT f(x).

To learn an aspect ranking function fai using a method
such as GBRank [31], we need to assign numerical values
to aspect labels, e.g., by a mapping function. We have pro-
posed to automatically learn a mapping function in the joint
learning method in the previous section and thus we use the
obtained mapping function Φ to convert the aspect labels.

To learn the parameter w, we use the following loss func-
tion:

L =
1

2

∑
(xi,xj)∈P

(
max(0, 1−wT f(xi) + wT f(xj))

)2
where f(x) = [fa1(x), ..., fam(x)]. This model is very similar
to the linear model in the label aggregation methods. The
difference is that we replace the labels with the output of
aspect ranking functions.

Compared to the label aggregation methods, there are two
benefits of the model aggregation method. First, we can use
a different type of model for each aspect ranking function.
This is desirable since aspects are not necessarily homoge-
neous. For example, the matching aspect can be complex
and thus needs a ranking function with high model com-
plexity, but a simple regression model may be good enough
for the distance aspect. In particular, we use a gradient-
boosted decision tree model GBRank [31] for the matching
aspect which shows excellent performance in learning such a
function. On the other hand, we use linear regression models
for distance and reputation aspects. Hence, the combination
of various types of models for different aspects gives great
flexibility to the final ranking function.

Also, in the model aggregation method, we can exploit
preference data inferred from other sources such as user
clicks to learn the aggregation function. Unlike the label
aggregation methods, each document in P does not need
aspect relevance labels y and we only need f(x), the out-
put of aspect ranking functions, to learn the aggregation
function. This provides flexibility to quickly adapt the ag-
gregation function to different contexts. For example, this
makes it possible to provide personalized search rankings:
We may collect preference data P for a user u and use it to
learn a user-specific aggregated function wT

u f(x). Note that
we do not need to learn aspect ranking functions for each
user since each aspect ranking function should be common
among users but the tradeoff between aspects depends on
personal preference. Similarly, we can provide customized
search rankings for different search applications. For exam-
ple, in mobile local search, the distance aspect may be more
important than in desktop local search. We can easily build
a separate ranking function for mobile local search using
the preference data obtained from user clicks in mobile local
search.

#query #listing
Category Queries Training 4211 70701

Test 1055 17675
Total 5266 88376

Business Name Queries Training 6966 76343
Test 1739 18550
Total 8705 94893

Table 2: Statistics of multi-aspect relevance data.

5. EXPERIMENTS
In this section, we present experimental results to validate

our approaches. The main objective of our experiments is
to study the effectiveness of our multi-aspect relevance for-
mulation and the proposed aggregation methods for local
search. We report both offline and online test results in this
section.

5.1 Data Sets
The data sets we use are from a commercial local search

engine where a document is called “business listing” or “list-
ing” for short. We follow the editorial guideline similar to
the guideline in Figure 2 to obtain the training data. Specif-
ically, each query in our data has a location associated (e.g.,
“Target Sunnyvale CA”). For each (query, listing) pair, we
consider 3 aspects: matching, distance and reputation as
discussed in Section 3.1 and ask editors to provide 3 as-
pect relevance labels and an overall relevance label accord-
ing to the editorial guideline. Note that in our aggregation
methods, we do not use the overall relevance labels given
by human editors. Table 2 shows the statistics of this data
set. In particular, we have two types of queries: category
queries and business name queries. A category query such
as “Chinese restaurant Los Angeles, CA 90018” is similar
to an informational query and can be broadly matched by
any Chinese restaurant, while a business name query such
as “Bank of America, Los Angeles, CA 90018” is more like
a navigational query and can only be matched by Bank of
America branches. Intuitively, the relative importance of
each aspect for these two types of queries can be potentially
different.

In Figure 3, we show the distribution of the labels for dif-
ferent types of queries and different aspects. We can see clear
differences between them. The differences of the statistics
regarding matching and distance aspects are due to the dif-
ferent densities of businesses for the two query categories:
There are more matching businesses for category queries
than business name queries (e.g., typically, there are more
restaurants than Target stores in a city.). The high percent-
age of the “Bad rating” label for the reputation aspect for
business name queries is due to two reasons: (1) When there
is no user review, it is considered as a “Bad rating” in our
guideline. (2) About 50% of the business name queries are
chain queries such as “Walmart” and users typically do not
bother review the chain stores. Indeed we will show that the
reputation aspect is not particularly important for business
name queries.

We obtain the overall relative preference using a side by
side comparison as follows: given any query, we randomly
sample a pair of documents and put them side by side. The
position of the two documents are randomly shuffled to avoid

0

10

20

30

40

50

60

70

80

90

Matching Distance Reputation

P
e
rc

e
n

ta
g

e

1

0.5

0

(a) Category Queries

0

10

20

30

40

50

60

70

Matching Distance Reputation

P
e
rc

e
n

ta
g

e

1

0.5

0

(b) Business Name Queries

Figure 3: Distribution of aspect relevance labels. 1, 0.5 and 0 correspond to the aspect labels in Table 1.

#Training Ptrain #Test Ptest
Category Queries 549 493

Name Queries 445 457

Table 3: Statistics of overall relative preference data
sets obtained by side by side comparison.

any kind of bias. We then ask editors to judge which one is
better than the other. The obtained overall training sig-
nals are thus relative preferences. Previous studies have
shown that relative preferences are more reliable than ab-
solute judgements in many scenarios [6, 16]. This is very
critical when the training data is small. However, it is ex-
pensive to obtain a large amount of such data. Fortunately,
our experiment results show that only a small amount of
such data is needed to obtain highly accurate aggregation
functions. Table 3 summarizes the statistics of this data set.
We split this data into training (Ptrain) and test (Ptest) to
evaluate our aggregation functions.

5.2 Ranking Algorithms
We compare the following ranking algorithms.

• Rule: A traditional one overall relevance label scheme
described in Section 3.1.

• Ed-overall: A ranking function trained directly using
editorial pairwise preference data Ptrain.

• Click: A ranking function trained using pairwise pref-
erence data induced from a click model [17].

• Linear: The linear aggregation function described in
Section 4.1.1.

• Joint: The joint learning model described in Section
4.1.2.

• ModAgg: The model aggregation method described
in Section 4.2.

Rule, Ed-overall and Click serve as baselines. Rule, a
traditional one overall relevance label scheme described in
Section 3.1 is similar to the graded measure used in [25] in
the sense that the secondary labels are used to break the
ties of the primary labels. Ed-overall and Click are other

baselines to show the benefit of our multi-aspect relevance.
They do not use aspect relevance labels but only use pair-
wise preference data as the training data. Both are learned
using the GBRank model [31]. For the Click method, we ob-
tain SkipAbove and SkipNext [17] pairs from click logs. The
click-based training data is easy to obtain but it is noisy.
We have 1,441,975 and 58,782 click-based training pairs for
category and business name queries respectively. In all our
label aggregation methods, the final ranking functions are
learned using the GBRank model [31].

5.3 Offline Experimental Results
We report our offline experiment results based on the data

sets with editorial labels.

5.3.1 Evaluation Metrics
To evaluate aggregation functions, we consider two types

of pair accuracy with respect to the test data set Ptest. (1)
Label aggregation accuracy: how accurate is an aggregation
function to aggregate the multi-aspect relevance to generate
the overall relevance? This accuracy is only applied to label
aggregation methods. (2) Ranking accuracy: how effective
is a ranking function trained using either label or model
aggregation methods?

Let h be a label aggregation function and f be a final
ranking function trained using either label aggregation or
model aggregation methods. The label aggregation accuracy
of h is:

|{(yi,yj) | h(yi) > h(yj), (yi,yj) ∈ Ptest}|
|Ptest|

(1)

and the ranking accuracy of f is:

|{(yi,yj) | f(xi) > f(xj), (yi,yj) ∈ Ptest}|
|Ptest|

. (2)

Note that an NDCG-like metric seems to be possible to
compare the ranking accuracy of different aggregation meth-
ods since a label aggregation function can generate absolute
overall relevance values. However, different label aggrega-
tion methods can generate different overall values for the
same (query, listing) pair and thus we do not have a common

Category Queries Business Name Queries
Rule 0.640 0.650

Linear 0.825 0.926
Joint 0.825 0.932

Table 4: Evaluation of aggregation functions on label
aggregation accuracy. Linear, and Joint are signifi-
cantly better than Rule (p-value < 0.01).

Category Queries Business Name Queries
Rule 0.614 0.788

Ed-overall 0.575 0.841
Click 0.638 0.841

Linear 0.750 0.879
Joint 0.760 0.871

ModAgg 0.769 0.917

Table 5: Evaluation of aggregation functions on
ranking accuracy. Statistically significant differ-
ences (p-value < 0.01) compared to Rule are high-
lighted in bold.

ground to compare them. Hence, we use the pair accuracy
as a more isolated and unbiased metric for evaluation.

5.3.2 Results on Label Aggregation Accuracy
Table 4 shows the comparison of different aggregation

functions based on the label aggregation accuracy which is
defined in Eq. (1). In this experiment, we only use the data
in Table 3. We learn the aggregation functions for each type
of queries separately. Table 4 shows the results on cate-
gory queries and business name queries respectively. From
this table, we have the following observation. (1) The Rule
method performs much worse than all the learning based
methods for both types of queries. For example, for cate-
gory queries, the rule-based method has about 64% accuracy
and all other methods have 82.5% accuracy. This shows that
the rules are too coarse to capture the desired tradeoff. (2)
The Linear and Joint methods perform equally well on both
category and business name queries. The pair accuracy is
83% on category queries and 93% on business name queries.
This demonstrates high consistency between the aggregated
overall relevance and the true one. (3) Comparing the two
types of queries, we can see higher accuracy for business
name queries than category queries. This is expected since
the relevance for category queries is naturally more complex
than business name queries.

5.3.3 Results on Ranking Accuracy
Table 5 shows the comparison of the ranking accuracy

for both label and model aggregation methods. For a label
aggregation method, we first use the training data in Table 3
to learn the label aggregation function and then apply it to
obtain the overall relevance for the set of training queries
in Table 2. We then test the ranking function using Ptest.
The pair ranking accuracy is defined in Eq. (2). For the
model aggregation method, we use the training data with
aspect relevance label data in Table 2 to learn the aspect
ranking functions f and then use the training data in Table 3
to learn the model aggregation function h. We then apply
the overall ranking function h(f(x)) on the test data. We

have the following observations: (1) For category queries, all
the learning based methods are significantly better than the
Rule method. The ModAgg method is slightly better than
all other methods. (2) However, for business name queries,
only the ModAgg method is significantly better than the
Rule method, while the improvement of the Linear and Joint
methods over the Rule method is not significant with respect
to p-value < 0.01. One possible reason is that business name
queries are relative easy and all the methods have achieved
high accuracy.

Overall, we can see that our learning methods are quite ef-
fective and the model aggregation method is the most stable
one for both classes of queries.

Our learning methods improve not only ranking accuracy
but also the efficiency of the training procedure compared
to the Rule method. In our learning methods, training data
collection can be done more efficiently since we do not need
overall relevance labels but only need aspect relevance labels
and a small amount of data Ptrain.

5.3.4 Benefit of Multi-Aspect Relevance
Table 5 also shows the benefit of our multi-aspect rele-

vance formulation compared to approaches that do not lever-
age aspect relevance in the learning process. Both Ed-overall
and Click only use pairwise preference data as the training
data ignoring aspect relevance. We can see that Ed-overall
performs much worse compared to the ModAgg method.
The reason why Ed-overall performs worse is mainly due to
the limited amount of the training data. The Click method
performs worse mainly because it is noisy. Our method
leverages the aspect relevance and thus can utilize the small
amount of Ed-overall data (Ptrain) more effectively.

5.3.5 Comparison of Aspect Importance
The Linear, Joint and ModAgg methods generate a weight

vector (wMatching, wDistance, wReputation) for aspects as out-
put. These weights indicate the relative importance of as-
pects in the overall relevance. For category queries, we have

wMatching � wReputation � wDistance.

For business name queries, we have

wMatching � wDistance > wReputation.

This result confirms our intuition that the reputation as-
pect is more important than the distance aspect for cate-
gory queries and vice versa for business name queries. This
shows that different types of queries work best with different
aggregation functions.

In our current work, we mainly focus on two broad types
of queries. This results show that there is probably a large
room for improvement if we can make our aggregation func-
tions query-dependent or personalized. We leave this as fu-
ture work.

5.4 Online Experimental Results
Ranking functions can be compared in terms of pair ac-

curacy in the offline setting, but they can also be compared
on how users interact with the search results in the online
setting. In this section, we report our online results.

5.4.1 Experiment Design
In our online experiments, we conduct “bucket tests” dur-

ing a certain period to compare different ranking algorithms

in a commercial local search engine. The bucket is created
based on user cookies. A cookie is assigned to a fixed bucket
in our test period. Each bucket corresponds to a small per-
centage of user population who use the local search engine.
In different buckets, we show search results of different rank-
ing algorithms. If a ranking algorithm is better than an-
other, we would expect that the user experience metric is
better.

It can be seen that online experiments are expensive and
we cannot test many different algorithms. In our experi-
ments, we were able to test only two functions during the
same time period in the commercial local search engine.
During two weeks, we compared Rule and Linear. During
another two weeks, we compared Linear and ModAgg. To
compare two functions, we use the click-through rate (CTR)
as our user experience metric. Specifically, we use CTR for
top i positions and denote it as CTRi:

CTRi =

∑k=i
k=1 clicks at position k∑k=i
k=1 views at position k

Due to confidential reasons, we do not report the exact
CTR but report a normalized CTR over a fixed number.

5.4.2 Results
In Figure 4, we report the daily trends of the click-through

rate (CTR) of ranking functions. The CTRs naturally fluc-
tuate on different days. We can see that Linear is con-
sistently better than Rule and ModAgg outperforms Lin-
ear during the whole period. The average CTR5s of Rule
and Linear during the first test period are 0.315 and 0.325
respectively. The average CTR5s of Linear and ModAgg
during the second test period are 0.308 and 0.314 respec-
tively. These differences are statistically significant (p-value
< 0.01).

This result is consistent with our offline experimental re-
sults and shows that our multi-aspect relevance framework
outperforms the traditional one overall relevance scheme.
Also, it demonstrates that the model aggregation method is
more effective than the label aggregation methods. Thus,
using different ranking models for different aspects is more
suitable for multi-aspect relevance aggregation.

6. CONCLUSIONS AND FUTURE WORK
The meaning of relevance in vertical search is domain-

specific and usually consists of multiple aspects. In this
paper, we proposed a multi-aspect relevance formulation for
vertical search in the learning to rank setting. In our for-
mulation, the relevance between a query and a document is
assessed with respect to each aspect, forming multi-aspect
relevance. In order to learn a ranking function, we stud-
ied two types of learning-based approaches to estimate the
tradeoff between the multiple aspects, a label aggregation
method and a model aggregation method. Then a ranking
function is learned based on the multi-aspect relevance for-
mulation. Since there are only a few aspects, a minimal
amount of training data is needed to learn the tradeoff. We
studied several methods to learn aggregation functions and
conducted experiments on local search engine data. Our ex-
perimental results show our multi-aspect relevance formula-
tion is promising. The proposed aggregation approaches are
very effective to learn the tradeoff between different aspects.

Our work can be extended as follows. First, we proposed
to learn the ranking functions and aggregation functions
separately in this paper. How to learn them jointly is a
promising direction. Second, our methods rely on manually
identified aspects and thus how to automatically discover all
important aspects given a vertical is worth studying. Third,
our multi-aspect relevance formulation provides a new base
for studying how to learn context sensitive or personalized
ranking functions. For example, it is possible to dynamically
update our aggregation function based on the short-term
user interaction history.

7. REFERENCES
[1] Google Local. http://local.google.com/.

[2] TREC. http://trec.nist.gov/.

[3] Yahoo Local. http://local.yahoo.com/.

[4] J. Arguello, F. Diaz, J. Callan, and J.-F. Crespo.
Sources of evidence for vertical selection. In SIGIR,
pages 315–322, 2009.

[5] J. Arguello, F. Diaz, and J.-F. Paiement. Vertical
selection in the presence of unlabeled verticals. In
SIGIR, pages 691–698, 2010.

[6] R. K. Belew. Finding Out About. Cambridge Univ.
Press, 2000.

[7] C. Burges, T. Shaked, E. Renshaw, A. Lazier,
M. Deeds, N. Hamilton, and G. Hullender. Learning to
rank using gradient descent. In Proceedings of the
22nd international conference on Machine learning,
pages 89–96, 2005.

[8] N. Carr. Real-time search. Communication of ACM,
2010.
http://www.technologyreview.com/computing/25079/.

[9] A. Das Sarma, A. Das Sarma, S. Gollapudi, and
R. Panigrahy. Ranking mechanisms in twitter-like
forums. In Proceedings of the third ACM international
conference on Web search and data mining, WSDM,
pages 21–30, 2010.

[10] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar.
Rank aggregation methods for the web. In Proceedings
of the 10th international conference on World Wide
Web, WWW ’01, pages 613–622, 2001.

[11] J. L. Elsas, J. Arguello, J. Callan, and J. G.
Carbonell. Retrieval and feedback models for blog feed
search. In Proceedings of the 31st annual international
ACM SIGIR conference on Research and development
in information retrieval, pages 347–354, 2008.

[12] J. Gao, Q. Wu, C. Burges, K. Svore, Y. Su, N. Khan,
S. Shah, and H. Zhou. Model adaptation via model
interpolation and boosting for Web search ranking. In
Proceedings of the 2009 Conference on Empirical
Methods in Natural Language Processing, pages
505–513, August 2009.

[13] N. Ghamrawi and A. McCallum. Collective multi-label
classification. In CIKM, pages 195–200, 2005.

[14] K. Järvelin and J. Kekäläinen. Cumulated gain-based
evaluation of ir techniques. ACM Trans. Inf. Syst.,
20:422–446, October 2002.

[15] T. Joachims. Optimizing search engines using
clickthrough data. In KDD ’02: Proceedings of the
eighth ACM SIGKDD, pages 133–142, New York, NY,
USA, 2002. ACM Press.

 0.2

 0.25

 0.3

 0.35

 0.4

 2 4 6 8 10 12

date index

Linear
Rule

(a) CTR5 comparison of Rule and Linear

 0.2

 0.25

 0.3

 0.35

 0.4

 2 4 6 8 10 12

date index

Linear
ModAgg

(b) CTR5 comparison of Linear and ModAgg

Figure 4: The click-through rate (CTR) comparisons based on online experiments for a commercial local
search engine. CTRs are normalized not to show absolute values. Each comparison is done for a different
test period due to online experiment constraints.

[16] T. Joachims, L. Granka, B. Pan, H. Hembrooke, and
G. Gay. Accurately interpreting clickthrough data as
implicit feedback. In Proceedings of ACM SIGIR 2005,
pages 154–161, New York, NY, USA, 2005. ACM
Press.

[17] T. Joachims, L. Granka, B. Pan, H. Hembrooke,
F. Radlinski, and G. Gay. Evaluating the accuracy of
implicit feedback from clicks and query reformulations
in web search. ACM Transactions on Information
Systems (TOIS), 25(2), 2007.

[18] Y.-T. Liu, T.-Y. Liu, T. Qin, Z.-M. Ma, and H. Li.
Supervised rank aggregation. In Proceedings of the
16th international conference on World Wide Web,
WWW, pages 481–490, 2007.

[19] Y. Lu, F. Peng, X. Wei, and B. Dumoulin. Personalize
web search results with user’s location. In SIGIR,
pages 763–764, 2010.

[20] C. Macdonald, I. Ounis, and I. Soboroff. Overview of
the trec 2009 blog track. 2009.

[21] J. M. Ponte and W. B. Croft. A language modeling
approach to information retrieval. In Proceedings of
the 21st annual international ACM SIGIR conference
on Research and development in information retrieval,
pages 275–281, 1998.

[22] S. E. Robertson and S. Walker. Some simple effective
approximations to the 2-poisson model for
probabilistic weighted retrieval. In SIGIR, pages
232–241, 1994.

[23] G. Salton, A. Wong, and C. S. Yang. A vector space
model for automatic indexing. Commun. ACM,
18(11):613–620, 1975.

[24] S.Boyd and L.Vandenberghe. Convex Optimization.
Cambridge University Press, 2004.

[25] K. M. Svore, M. Volkovs, and C. J. C. Burges.

Learning to rank with multiple objective functions. In
WWW, pages 367–376, 2011.

[26] P. Venetis, H. Gonzalez, C. S. Jensen, and A. Y.
Halevy. Hyper-local, directions-based ranking of
places. PVLDB, 4(5):290–301, 2011.

[27] K.-P. Yee, K. Swearingen, K. Li, and M. Hearst.
Faceted metadata for image search and browsing. In
CHI, pages 401–408, 2003.

[28] X. Yi, H. Raghavan, and C. Leggetter. Discovering
users’ specific geo intention in web search. In WWW,
pages 481–490, 2009.

[29] C. Zhai and J. Lafferty. A study of smoothing
methods for language models applied to ad hoc
information retrieval. In Proceedings of ACM SIGIR
2001, pages 334–342, 2001.

[30] L. Zhang and Y. Zhang. Interactive retrieval based on
faceted feedback. In Proceeding of the 33rd
international ACM SIGIR, pages 363–370, 2010.

[31] Z. Zheng, H. Zha, T. Zhang, O. Chapelle, K. Chen,
and G. Sun. A general boosting method and its
application to learning ranking functions for web
search. In Advances in Neural Information Processing
Systems 20, pages 1697–1704. MIT Press, 2008.

