
Towards Recency Ranking in Web Search

Anlei Dong Yi Chang Zhaohui Zheng Gilad Mishne
Jing Bai Ruiqiang Zhang Karolina Buchner Ciya Liao Fernando Diaz

Yahoo! Inc.
701 First Avenue, Sunnyvale, CA 94089

{anlei, yichang, zhaohui, gilad, jingbai, ruiqiang, karolina, ciyaliao, diazf}@yahoo-inc.com

ABSTRACT
In web search, recency ranking refers to ranking documents by rel-
evance which takes freshness into account. In this paper, we pro-
pose a retrieval system which automatically detects and responds
to recency sensitive queries. The system detects recency sensitive
queries using a high precision classifier. The system responds to re-
cency sensitive queries by using a machine learned ranking model
trained for such queries. We use multiple recency features to pro-
vide temporal evidence which effectively represents document re-
cency. Furthermore, we propose several training methodologies
important for training recency sensitive rankers. Finally, we de-
velop new evaluation metrics for recency sensitive queries. Our
experiments demonstrate the efficacy of the proposed approaches.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: Online Information
Services Web-based services

General Terms
Algorithms

Keywords
Recency ranking, recency sensitive query classification, temporal
features, recency modeling

1. INTRODUCTION
When a user submits a query to a search engine, he/she expects

to obtain relevant search results. Classic notions of relevance focus
on topical relevance. Web search introduces non-topical facets to
relevance. For example, incorporating the authoritativeness of the
information source in ranking can significantly improve user satis-
faction. In this paper, we will argue that the freshness of documents
can and should influence ranking and evaluation.

A large number of new web pages are created every day, and ex-
isting web pages are outdated with high rates. If stale documents
are presented to users, they may seriously degrade search experi-
ences. In recent years, the temporal dimension of web search has
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been studied from different perspectives, such as web dynamics,
crawling, temporal features, and modeling. Web page recency has
been effectively taken into account for some specific applications
(e.g. research publication databases and news article page ranking).
However, there has not been a large scale, comprehensive study fo-
cused recency sensitive evaluation and ranking.

In web search, recency ranking refers to ranking documents by
relevance which takes freshness into account. Recency ranking on
the large-scaled web search offers several unique and challenging
research problems. First, ranking algorithms for recency sensitive
queries need to satisfy both topical relevance and freshness. In or-
der to ensure robustness, the system needs to promote recent con-
tent only when appropriate, so as to avoid degrading performance
for other queries classes. Second, recency sensitive queries oper-
ate at different time scales. The freshness of a document depends
on the time sensitivity of the query. For example, for the query
“WSDM”, related pages are time-sensitive to the year. However,
for a breaking-news query, the relevance of the results displayed
may be sensitive to days or even hours. Third, measuring the true
age of a document is hard. In general, temporal features cannot be
accurately extracted from web pages; usually, only weak temporal
evidence can be obtained. Finally, gathering data for training and
evaluation requires temporally sensitive judgments synchronized
with retrieval runs.

We propose a system which addresses recency sensitive queries
using a query classification framework. That is, our system can be
broken into two models: a high-precision recency sensitive query
detector and a specialized recency sensitive ranker. Training a spe-
cialized ranker allows the system to model the unique data distri-
bution and features useful for recency ranking. The main contribu-
tions of this paper include:

1. the analysis and formulation of recency ranking problem,

2. the development of a breaking-news query classifier with
high accuracy and reasonable coverage,

3. the extraction of document temporal evidence, and

4. the development of new algorithms and strategies for recency
ranking models.

2. RELATED WORK
The works that are most related to our approach include [8] and

[22], which also directly improve ranking recency in web search.
However, our approach provides a more generic solution than pre-
vious works, in terms of the content and query perspective. Diaz [8]
proposed a solution to integrate search results from a news vertical
search into web search results, where the news intent is detected
by either inspecting query dynamics or using click feedback; our



approach is to optimize ranking recency on all web pages directly,
covering a more generic content perspective. Zhang et al. [22] pro-
posed a ranking score adjustment method on year-qualified-queries,
for which a few simple but effective adjustment rules are applied to
the ranking results based on the timestamps extracted from the doc-
uments. Our approach can be applied on all time-sensitive queries,
which covers a more generic query perspective.

The following prior works exploit the temporal dimension in
general web search. Baeza-Yates et al. [2] studied the relation
between the web dynamics, structure and page quality, and demon-
strated that PageRank is biased against new pages. In T-Rank Light
and T-Rank algorithms [3], both activity (i.e., update rates) and
freshness (i.e., timestamps of most recent updates) of pages and
links are taken into account for link analysis. Cho et al. [6] pro-
posed a page quality ranking function in order to alleviate the prob-
lem of popularity-based ranking, and they used the derivatives of
PageRank to forecast future PageRank values for new pages. Nunes
et al. [17] proposed to improve web information retrieval in the
temporal dimension by combining the temporal features extracted
from both individual document and the whole web. Pandey et al.
[18] studied the tradeoff between new page exploration and high-
quality page exploitation, which is based on a ranking method to
randomly promote some new pages so that they can accumulate
links quickly.

Temporal dimension is also considered in other information re-
trieval applications. Del Corso et al. [7] proposed the ranking
framework to model news article generation, topic clustering and
story evolution over time, and this ranking algorithm takes publica-
tion time and linkage time into consideration as well as news source
authority. Li et al. [15] proposed a TS-Rank algorithm, which con-
siders page freshness in the stationary probability distribution of
Markov Chains, since the dynamics of web pages is also important
for ranking. This method is proved to be effective in the applica-
tion of publication search. Pasca [19] used temporal expressions to
improve question answering results for time-related questions. An-
swers are obtained by aggregating matching pieces of information
and the temporal expressions they contain. Furthermore, Arikan et
al. [1] incorporated temporal expressions into language model, and
demonstrated experimental improvement in retrieval effectiveness.

Recency Query Classification plays an important role in Recency
ranking. Diaz [8] determined the newsworthiness of a query by
predicting the probability of a user clicks on the news display of a
query. König et al. [14] estimated the click-through rate for dedi-
cated news search result with a supervised model, which is to sat-
isfy the requirement of adapting quickly to emerging news event.

3. RECENCY DATA ANALYSIS
In this paper, we target breaking-news queries, because breaking-

news queries exhibit most typical issues with regards to recency in
search ranking results and where it is clear that user experience can
be improved by improving the ranking. Breaking-news queries in-
clude queries about topics which are in the news at the time when
the query was entered. In other words, there was a “buzz” or ma-
jor influx of content in the media on that topic at the time when
the query was entered by the user. The event which the query
refers to may have happened several days before the date of the
query, but if there is still significant news coverage for that event the
query should be classified as breaking-news. There are other non-
breaking-news-queries which may also have recency problems. We
first study breaking-news queries in attempt to solve the recency
problem within this query category. With increased maturity of the
technology, we will extend similar approaches to other queries.

Recency ranking data collection is different from regular rank-

ing data collection. In regular ranking data collection, the rele-
vance judgement for a query-url pair is usually static over time be-
cause document freshness does not affect the user satisfaction. The
judgement for a recency-sensitive query-url pair, however, should
incorporate the freshness of the document. For example, the epi-
demic swine flu was identified in April 2009. Therefore, for the
query “swine flu” in April 2009, the web page of a news article
reporting the identification of this epidemic can be appropriately
labeled with the grade “excellent”. A few days later, this web page
becomes outdated as there have been many more web pages report-
ing the latest status of this epidemic, beyond its identification; thus,
the grade should be demoted from “excellent”.

We conducted an editorial test in order to confirm that there was
indeed a relationship between objective recency and subjective re-
cency. We sampled a set of queries automatically classified as
recency-sensitive (details of this method are described in Section
4). From this set, editors selected only queries which were truly
recency-sensitive for evaluation. For each query, we select the 20-
30 top-ranked urls returned by a commercial search engine. We
then employ different techniques to promote fresh urls. For exam-
ple, based on the link discovery times, the fresher a page, the higher
promotion score it should be given.

It is obvious that, to label recency data, a tuple ⟨query, url, tquery⟩
needs to be provided for judgement instead of only ⟨query, url⟩,
where tquery is query issue time. If the judging time tj of ⟨query, url⟩
is far behind query issue time tquery, it is impractical for the editors
to do reliable judgement. Therefore, we collected sets of recency
data periodically instead of collecting all the recency data for only
one time. Each time we collected a set of recency data, we ask edi-
tors to judge the query-url pairs immediately, so that the query issue
time and judging time are as close as possible. Collecting recency
data periodically can also prevent the data distribution from being
too biased towards a short period of time. For example, within one
day, there are many similar queries related to the same breaking
news, which are very different from the query distribution over a
longer time span.

We then asked human editors for the following labels,

1. relevance judgments of query-url pairs

2. recency-sensitivities and true timestamps of a sample of urls

We apply five judgement grades on query-url pairs: perfect, excel-
lent, good, fair and bad. For human editors to judge a query-url
pair, we ask them to first grade it by non-temporal relevance, such
as intent, usefulness, content, user interface design, domain author-
ity, etc; then, the grade can be adjusted solely based on the recency
of the result. More specifically, a result should receive a demo-
tion if the date of the page, or age of the content, makes the result
less relevant in comparison to more recent material or changes in
time which alter the context of the query. This demotion should be
reflected in the following judgment options:

• shallow demotion (1-grade demotion): if the result is some-
what outdated, it should be demoted by one grade (e.g., from
excellent to good);

• deep demotion (2-grade demotion): if the result is totally out-
dated or totally useless, it should be demoted by two grades
(e.g., from excellent to bad).

The advantages of this recency-demotion grading method in-
clude: 1) recency is incorporated into overall relevance so that the
ranking model learning problem to be formulated as the optimiza-
tion of a single objective function; 2) recency can also be decoupled
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Figure 1: Page distribution with different ages at different recency demotion levels.
from overall relevance so that recency and non-recency relevance
can be analyzed separately during learning.

A potential problem of the recency-demotion grading method is
that shallow demotion and deep demotion may not demote time-
sensitive documents to the most appropriate extent. It is possible
that the recency demotion may be biased in the overall relevance
judgement, i.e., the recency demotion can be either too aggressive
for some cases or too conservative for some other cases. We carried
out some heuristic studies and found that this judgement guide-
line is appropriate for most cases. Furthermore, such a recency
guideline by one-grade or two-grade demotion is the most straight-
forward for human editors, whose judging needs to be efficient and
can be somewhat error-prone.

The recency-sensitivity of a url means the page has a specific
time aspect to it, which is related to news, recurrent events, blogs,
buzz queries, etc; otherwise, it is a non-recency-sensitive page.
Based on editorial judgements, 5,649 out of 16,327 pages, approx-
imately 34.6%, are labeled as recency-sensitive pages. We further
ask editors to label each recency-sensitive page with its ground-
truth timestamp, which should be the date that the main content
is created or published for each page. There are 1,888 recency-
sensitive pages for which the editors can provide reliable dates.

Page age is an objective measurement of recency (which can
computed using labeled date), while recency demotion is a sub-
jective judgement by a human about recency. After conducting
this editorial study, we found the following results. In the 1,888
recency-sensitive pages with labeled dates, 95 pages are demoted
with two grades, 534 pages are demoted with one grade and 1,259
pages are not demoted. Figure 1 shows the page distributions with
different ages at different recency demotion levels. We observe
most of the non-demoted pages have ages within 10 days, most of
the 1-grade-demoted pages have ages within 60 days, and the 2-
grade-demoted pages have older ages. This is consistent with our
expectation that non-demoted pages have younger ages than de-
moted pages overall. Note that in Figure 1 (a), the pages which are
several days old have the highest frequencies, while there are fewer
fresher pages such as those created within two days. This indicates
that there are more recency queries that are related to the news that
happen several days ago than those that happen within two days.
At the same time, the search engine’s crawler do not fully discover
fresh contents, which is also a factor for this observation.

4. RECENCY SENSITIVE QUERY
CLASSIFICATION

When a query is issued to the search engine, we use an automatic
query classifier to determine if this query is a time-sensitive one or
not. Not all queries require specialized handling to promote recent
content; in fact, we show later that in some cases retrieval perfor-
mance can actually degrade when our methods are applied to non-

time-sensitive queries. Ideally, we would like to apply our approach
only to the subset of breaking-news queries – those queries that are
related to ongoing and upcoming events that are in the news. To
achieve this we developed an automated classifier that first detects
whether an incoming query is a breaking-news one; in this section,
we describe this classifier.

The underlying assumption behind our breaking-news query iden-
tification is that when a topic is in the news, it tends to diverge from
its regular temporal behavior: it becomes more prominent in the
query stream, is mentioned more often in news articles, and so on.
Existing methods for detecting such topics typically involve track-
ing the frequency of the topic over discrete time slots, and detecting
irregularities such as a large divergence from the mean number of
occurrences or a sudden burst of activity [13, 20].

In contrast, our classifier works not by modeling each individual
topic and tracking it over time, but by modeling each discrete time
slot, and comparing the models representing different time slots.
The data we model in each time slot includes the queries users sub-
mitted during that period, as well as the news content published
during it; the tool we use to model these is n-ngram language mod-
els. For each time slot, we collect all queries received by the search
engine during that slot; we also collect a set of news articles pub-
lished during that time slot. We then proceed by estimating two
n-gram language models, MC,t and MQ,t, representing the Con-
tent and the Query data at time t, respectively. To construct the
langauge models, we consider each query as a sentence.

To identify whether a query q is a breaking-news one at time t,
we would like to compare its affinity with the models representing t
with its affinity to models representing time periods in the past. To
this end, we first select several fixed time intervals, ri: these will
be the points in time to which we compare the current model. We
choose these so that their relation to the current model would reveal
an irregularity in the current model, if one exists. For example,
typical historical time slots are the one starting 24 hours before t,
the one starting one week earlier, or the one starting one month
earlier. These intervals define several “reference” models – models
representing the content and query data at times t− ri. We refer to
these models as MC,t−ri and MQ,t−ri .

Next, we compute the generation likelihood of q according to the
“current” query model, P (q|MQ,t); for this, the model is smoothed
using linear interpolation with a lower n-gram model. We repeat
this computation, this time for each one of the reference models,
obtaining several P (q|MQ,t−ri) values. Note that we use models
representing identical or similar time spans (but starting and ending
at different times) to minimize differences in the generation likeli-
hood results stemming from model estimation parameters.

Finally, we compute the “buzziness” of the query according to
the models built from the query stream as

buzz(q, t, Q) = maxi logP (q|MQ,t)− logP (q|MQ,t−ri)
We repeat this computation for the Content models, obtaining a



Table 1: Using different reference models for query classifica-
tion: incorporating past query data models, then content mod-
els, and an additional boost from the news shortcut signal.

Reference model Precision Coverage
(% query traffic)

MQ,t−ri 0.72 1.39
ri = rprev_day

MQ,t−ri 0.81 1.59
ri = rprev_day , rprev_week

MQ,t−ri 0.78 1.64
ri = rprev_day ,
rprev_week, rprev_month

MQ,t−ri and MC,t 0.81 1.81
ri = rprev_day ,
rprev_week, rprev_month

MQ,t−ri and MC,t−ri 0.87 2.65
ri = rprev_day ,
rprev_week, rprev_month

with news shortcut boost

similar estimation of the buzziness, according to the content mod-
els, buzz(q, t, C). We then combine the two scores to obtain a final
score,
buzz(q, t) = λ · buzz(q, t, Q) + (1− λ) · buzz(q, t, C)

Building on previous work aimed at determining when to display a
news shortcut next to the web search results [8], we also boost the
buzz score of queries that triggered a news shortcut during those
same reference time windows by a constant factor.

A query is considered as a breaking-news one if its final buzz
score exceeds some threshold k.

To obtain optimal λ and k values, we collect manual judgments
for a set of 2000 queries over several days. Within each day, judges
were presented with queries submitted by search engine users on
that day and asked to determine whether these queries refer to an
upcoming, ongoing, or very recent event, for which web search
users would prefer recent content. Queries were judged on the same
day they were sampled. Judges were instructed that not every query
that has an increase in volume is a breaking-news one: for example,
following a death of an actor, there is typically some renowned
interest in movies starring the actor; such queries (in contrast to
queries about the actor himself) are not judged as breaking-news
ones as the user is not likely to benefit from recent content. The
λ and k values are chosen to maximize the accuracy of buzz(q, t)
over this judged set.

In Table 1, we show the contributions of the various reference
models used in our model, which incorporates content and query
data for the reference models starting 24 hours earlier, one week
earlier, and one month earlier than the current time t. The data in
this table is aggregated over 600 queries sampled on several dif-
ferent days, and distinct from those queries using to optimize the
model parameters. The accuracy of our classifier varies: during
periods with a substantial amount of breaking-news events the pre-
cision increases to above 0.9, whereas quiet periods have lower pre-
cision. Depending on the amount of news in a given day, the cover-
age of our classifier—the number of queries classified as “breaking-
news”—is 1%-2% of the search engine’s traffic.

5. RANKING FOR RECENCY SENSITIVE
QUERIES

Machine-learned ranking refers to the automatic construction of
a ranking function which optimizes retrieval performance metrics

[4, 5, 9, 10, 12, 21, 23, 16]. Machine-learned rankers have demon-
strated significant and consistent gains over many manually tuned
rankers for a variety of data sets. Optimization usually is formu-
lated as learning a ranking function from preference data in order
to minimize a loss function (e.g., the number of incorrectly ordered
documents pairs in the training data). Different algorithm cast the
preference learning problem from different points of view. For ex-
ample, RankSVM [12] uses support vector machines; RankBoost
[9] applies the idea of boosting from weak learners; GBrank [23]
uses gradient boosting with decision tree; RankNet [4] uses gradi-
ent boosting with neural network.

In a typical learning-to-rank framework, some query-url pairs
are selected for human judgments. Each of these query-url pairs
is given a grade based on the degree of relevance (e.g. bad match,
excellent match, etc). The grades will be used as target values for
ranking model learning. Each query-url pair is then represented by
a feature vector, including link-structure-based features, content-
based features, click-based features, etc.

In this section, we describe features unique to and propose sev-
eral models for recency sensitive ranking.

5.1 Recency features
Intuitively, the recency of a web page can be represented by the

elapsed time, which is defined as

∆t = tquery − tpage, (1)

where tquery is the time at which the user issued the query and tpage

is the page time, which can be either page creation time or page
content time. This elapsed time is also called page age. For some
specific categories of web pages, the page creation time and/or con-
tent time can be easily determined. For example, for a research pa-
per web page or a news article web page, the publication date may
be extracted and used as the page time.

However, page time in general cannot be extracted reliably. For
a web page, there are two types of sources that may provide evi-
dence for page time [17]: content-based evidence and link-based
evidence. Content-based evidence means that a timestamp can be
extracted from page content; however, most web pages do not con-
tain a timestamp. Link-based evidence means that the page discov-
ery time based on the link relationship on the web can be utilized;
however, page discovery time is not equal to page creation time.

To best represent page recency with available information, we
propose four categories of recency-related features: timestamp fea-
tures, linktime features, webbuzz features and page classification
features. For timestamp features and linktime features, time values
are extracted from web page content and page discovery log re-
spectively; these two categories of features are used as an attempt
to represent page freshness. Webbuzz features represent the up-
date rates of pages and links, reflecting the recent popularity of the
pages. Page classification features we use are not recency features
but are closely related to page recency, and are useful in ranking
model learning to help us appropriately use recency features for
different classes of pages.

Each of these recency-related features may not directly and ac-
curately represent page freshness, but they do provide useful evi-
dence. At the ranking model learning stage, these weak, discrim-
inant recency-related features can be combined together to better
represent a page’s freshness. The main ideas behind these four fea-
ture categories are introduced below; some details are omitted due
to space limitations.

5.1.1 Timestamp features
Timestamp features are the time values extracted from page con-



tent. These features are especially useful for news article pages
containing timestamps in some common formats. There are three
steps for extracting these features:

Step 1. Detection: in a given document, we detect timestamps in
common formats using regular expressions, including 1) numeric
date formats including MM/DD/YYYY, DD/MM/YYYY, YYYY/
MM/DD and YYYY/DD/MM formats (e.g. "09/11/2001" or "2001-
9-1", but not "11/5/05" (2-digit year), "11-2005" (MM-YYYY), or
"2005"); 2) English date formats such as 1st Oct 07, 1 December
2007, Jan 2nd 2008, Feb 2 06.

Step 2. Aggregation: multiple timestamps may be detected from
a web page. We compute the statistics of these timestamps in an
attempt to reflect page freshness from different facets, including
the count of timestamps, the first timestamp (in word-view order in
the page), the minimal timestamp (corresponding to the oldest), the
maximal timestamp (corresponding to the newest), the mean and
standard deviation of the timestamps.

Step 3. Age computation: for the timestamp statistics (except
standard deviation) obtained in Step 2, we compute their corre-
sponding page age features as their differences from query issue
time.

5.1.2 Linktime features
Linktime features are extracted from a link-based page discov-

ery log to provide page freshness evidence. Whenever a link on
the web is discovered, the system records the time of this discovery
with the inbound URL. The link is coded as external or internal,
depending on whether or not the outbound url and inbound url are
from the same domain. Similar to timestamp features, we compute
the statistics of the link times for the page (url), including count,
minimum, maximum, mean and standard deviation. As external
links usually provide more reliable signals than internal links, we
also compute the same set of discovery time statistics based on ex-
ternal links only. The page age features can then be computed by
using query issue time.

It is possible that linktime features may not represent page fresh-
ness very accurately. For example, a link may be discovered a long
time after the inbound page is created depending on crawling ca-
pability and the crawling algorithm. On the other hand, linktime
features may provide strong evidence of page freshness. For ex-
ample, if the discovery time of a page is three years ago, we can
deduce that the page is at least three years old.

5.1.3 WebBuzz features
WebBuzz is a feature extraction algorithm that detects recently

popular (including new) urls almost instantly as the crawler fetches
new pages continuously. This idea is similar to page and link ac-
tivity used in the T-Rank algorithm [3]. It works by mining data
from the crawler, where each target url’s inlink structure, diversity,
and recency, etc. are extracted and urls are selected based on these
features, and we have simple yet efficient techniques for avoiding
spam and low-quality urls. The buzzing urls so identified are gen-
erally of good quality, and since the resulting features are indexed
with little latency, the output features contain valuable recency in-
formation. There are three main output features: one composite
buzz score which represents the intensity of web buzz, and two
date features which allow for web buzz expiration: one indicates
the time of buzz and the other indicates a trust-weighted inlink dis-
covery time.

5.1.4 Page classification features
Page classification features are not time-related features, but they

may be helpful for recency boosting. For example, if a page is

classified as a news article page, and other recency features imply
this page is very old, the ranking score of this page should be de-
moted. We provide these features to the learning algorithm, which
is expected to learn such rules automatically. We use three classi-
fication features for each page: news page confidence, blog page
confidence and page quality confidence. The confidence values are
computed based on document content.

Note that there may be missing feature values for some pages.
For example, a page may not contain a timestamp so that its times-
tamp features are invalid. In this case, we assign a default constant
value to the feature. For the invalid page age feature, we set a very
large positive constant value (e.g., 10,000,000 days) to it. A caveat
is that the constant value zero or a small value cannot be used as
default values for page age features because zero or small values
mean the page is very fresh, which may mislead the learning for
recency improvement.
5.2 Recency modeling

Insufficient recency ranking data is a critical problem for the
learning-to-rank approach. In this section, we discuss how to ap-
propriately utilize available data and features to solve this problem.

The most straightforward approach is the dedicated modeling
approach, in which we train the recency ranking model using only
recency ranking data, with the feature set being the combination of
regular ranking features and recency features. However, recency
ranking data is usually insufficient because its collection is costly
and time-consuming as we have discussed in Section 3.

Another data source is regular ranking data, which is the train-
ing data used for optimizing overall relevance of result ranking.
The training data sets used under the framework of learning-to-rank
[16] usually belong to this category. Recency ranking data and reg-
ular ranking data are different in three aspects: 1) data: queries
in recency ranking data are only recency queries while queries in
regular ranking data can be any query; 2) features: regular ranking
data may not have valid or accurate recency features values. For
example, at the time the recency ranking data was collected, the
query issue time was not accurately recorded. Therefore, the fea-
ture values of page ages cannot be calculated accurately by (1). 3)
judgement: the judgement of recency ranking data is done using
the recency demotion guidelines (Section 3), while regular ranking
data is judged using different guidelines, which usually treat re-
cency criteria differently. For example, some relevance judgments
may take recency into account but recency demotion is neither con-
sistently or explicitly applied as done for recency ranking data.

Despite the fact that regular ranking data is different from re-
cency ranking data, it is still a useful information source that can
help to learn a recency ranking model, because it represents overall
relevance, which is also the primary objective for recency ranking
model. Furthermore, the amount of regular ranking data is much
larger than recency ranking data, which implies the overall rele-
vance of the model derived from regular ranking data should be
much better than that derived from recency ranking data.

As discussed above, the information provided by regular rank-
ing data can be utilized to improve the overall relevance of a re-
cency ranking model. Next, we seek an appropriate way to incor-
porate relevance information into the learning framework, so that
the freshness of ranking results can be improved while preserv-
ing relevance performance. To achieve this goal, we propose three
types of models: compositional model, over-weighting model and
adaptation model, which are introduced below and will be explored
more deeply based on the experimental results in Section 7.

We use the GBrank algorithm [23] for ranking model learning,
as GBrank is one of the most effective learning-to-rank algorithms.
For the purpose of better readability, we briefly introduce the basic



idea of GBrank. For each preference pair < x, y > in the avail-
able preference set S = {< xi, yi > |xi ≻ yi, i = 1, 2, ..., N}, x
should be ranked higher than y. In GBrank algorithm, the problem
of learning ranking functions is to compute a ranking function h
, so that h matches the set of preference, i.e, h(xi) ≥ h(yi) , if
x ≻ y, i = 1, 2, ..., N as many as possible. The following loss
function is used to measure the risk of a given ranking function h.

R(h) =
1

2

N∑
i=1

(max{0, h(yi)− h(xi) + τ}2) (2)

where τ is the margin between the two documents in the pair. To
minimize the loss function, h(x) has to be larger than h(y) with
the margin τ , which can be chosen to be a constant value, or as a
value varying with the document pairs. When pair-wise judgments
are extracted from editors’ labels with different grades, pair-wise
judgments can include grade difference, which can further be used
as the margin τ .

5.2.1 Compositional model
The relevance of the ranking model derived from regular rank-

ing data is already good. One way to exploit this regular ranking
model is to use its output ranking score as a feature during learning.
More specifically, the training data used for recency model learning
is still recency ranking data, while the features include the recency
features plus the ranking score of the regular ranking model. As the
output model consists of another model’s output, we call it a com-
positional model. In this way, the recency ranking model is using
the output of the regular ranking model, which captures the rele-
vance information of query-url pairs. At the same time, the feature
dimensionality is significantly reduced, so we expect the overfit-
ting problem to be alleviated. In terms of efficiency, compositional
model training is fast because the training data size has relatively
small and the feature dimensionality is low.

5.2.2 Over-weighting model
The over-weighting approach combines regular ranking data and

recency ranking data together as training data, and empirically de-
termines the relative weights for these two data sources. The mo-
tivation for the over-weighting modeling approach is to leverage
all available ranking data. While the grading guideline for regular
ranking data is different from the recency demotion guideline for
recency ranking data, we attempt to over-weight recency ranking
data so that ranking freshness is emphasized while good relevance
is kept.

The feature set for the over-weighting model consists of both
regular ranking features and recency features. As there is sufficient
training data, the ranking model learning algorithm can pick up dis-
criminant features without much overfitting caused by high feature
dimensionality.

When combining recency preference pairs and regular prefer-
ence pairs, we can use different relative weights for these two data
sources. The loss function becomes

R(h) =
w

Nrecency

∑
⟨xi,yi⟩∈Drecency

(max{0, h(yi)− h(xi) + τ}2)

+
1− w

Nregular

∑
⟨xi,yi⟩∈Dregular

(max{0, h(yi)− h(xi) + τ}2)

(3)

where w is used to control the relative weights between recency
training data and regular training data, Nrecency is the number of
recency training pairs, and Nregular is the number of regular training
pairs.

5.2.3 Adaptation model
Tree adaptation modeling aims to utilize the training data from

one major web search domain (generic relevance ranking in our
case) to help train a ranking function for a specific search domain
which has insufficient training data (ranking for recency queries).
Regression trees, which form the base model, are first trained using
the generic relevance data. The base model is then modified ac-
cording to the small amount of training data from recency ranking.
Several modifications can be made on the base model: the splitting
value of the feature of a node in the base model can be changed; the
response value of a decision tree can be changed, and new decision
trees can be appended to the base model. The assumption behind
the adaptation approach is that the general ranking features can be
correctly captured using a set of general ranking data, and they do
not change much from a domain (general domain) to another (re-
cency ranking). However, some details need to be adapted to the
new set of data. This assumption is sound in our case, as recency
queries are a special type of queries, which also bear the character-
istics of general queries. Therefore, the base model can naturally
be used (after adaptation) for these queries.

Adaptation also allows us to avoid the problem of insufficient
training data. In practice, we have a large amount of general rank-
ing data, but much less recency ranking data. Using only the small
amount of recency data would result in a poor model. Adaptation
solves this insufficient data problem by exploiting a model trained
on a large set of data.

In our case, we use GBrank as the base model. We use pair-wise
preference data to adapt the base model. This adaptation process
tries to optimize the ranking order so as to approach the correct
order as much as possible. It uses a loss function, which is defined
on the wrongly ordered document pairs. The goal of the adaptation
process is to minimize the loss function. This process can use any
available pair-wise training data: document-query pairs judged by
human editors and click preference data from the users.

Table 2 summarizes the modeling approaches that we have dis-
cussed.

6. METHODS AND MATERIALS

6.1 Data
We totally collect 70,131 query-url pairs during a period of four

months (Feb.∼May, 2009) for recency data, all of which were judged
by our recency demotion guidelines. For each query-url pair, its
judgement and feature extraction were done within the same day.
We randomly split the recency data into training set and testing set:
41,678 pairs are for training, and 28,453 pairs are for testing.

As we discussed in Section 5.2, our modeling algorithms seek
help from regular ranking data, for which we collect 282,927 query-
url pairs, whose recency features may not be accurate because their
values were not saved timely. Also, the judging guideline does not
consistently take recency into consideration. We use 206,249 pairs
for training, and 76,678 for testing.

6.2 Evaluation
We use discounted cumulative gain (DCG) [11] to evaluate the

quality of a ranking model, which is defined as

DCGn =

n∑
i=1

Gi

log2(i+ 1)
(4)

where i is the position in the document list, Gi is the function of
relevance grade. Another metric is normalized discounted cumula-



Table 2: Summary of recency modeling approaches. Drecency: recency ranking data; Dregular: regular ranking data; Frecency: recency
ranking features; Fregular: regular ranking features (not including Frecency)

Data Feature Algorithm
dedicated model Drecency Frecency + Fregular GBrank
compositional model Drecency Frecency + regular model score GBrank
over-weighting model Drecency +Dregular Frecency + Fregular GBrank
adaptation model Drecency Frecency adaptation

Table 3: Different DCG evaluations.

DCGregular on regular ranking data, represents overall rele-
vance but recency is neither consistently taken into
consideration nor decoupled from non-recency rel-
evance.

DCGnodemote on recency ranking data, represents non-recency
relevance.

DCGdemote on recency ranking data, represents both recency
and non-recency relevance.

tive gain (NDCG), which is defined as

NDCGn = Zn

n∑
i=1

Gi

log2(i+ 1)
(5)

where Zn is a normalization factor, which is used to make the
NDCG of ideal list be 1. We use NDCG1 and NDCG5 to evaluate
the ranking results. Plus, we use relative DCG5 gain to compare
two ranking results.

For different data sets, DCG values are computed based on dif-
ferent judging guidelines, which are listed in Table 3. DCGregular

represents overall relevance on regular ranking data. We can com-
pute DCG values using either the original grades (by non-recency
relevance) or final grades, denoted as DCGnodemote and DCGdemote,
respectively. Our goal is to optimize DCGdemote for ranking results.
The pure recency metric can be represented by the difference be-
tween DCGnodemote and DCGdemote. For a given DCGnodemote, the
lower the value of DCGdemote, the worse the freshness of the rank-
ing result is.

We do both offline and online experiments to test the efficacy
of the modeling approaches. Offline experiment means training
and validating models using ranking data, and online experiments
means testing the models (derived from offline experiments) on
search engine.

7. RESULTS

7.1 Offline results
Table 4 shows offline results by different recency ranking mod-

els.
First, the compositional model is better than dedicated model in

sense of DCG5,regular. This is because the relevance score is used as
a feature, which significantly helps to improve relevance results on
recency testing data. Second, in the sense of DCG values on regu-
lar testing data, over-weighting model gives the best result. Third,
adaptation model dominates in the sense of DCG values on recency
testing data, and it also provides good improvement on regular test-
ing data. Below we analyze over-weighting model and adaptation
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Figure 2: DCG results of over-weighting models using different
recency weight values.

models with more details.

7.1.1 Over-weighting model results
Figure 2 shows the over-weighting models’ results on both reg-

ular testing data and recency testing data with different weights.
DCGregular on regular testing data mainly represent the overall rele-
vance of the model, while DCGdemote on recency testing data repre-
sent both recency and relevance. The gap between DCGdemote and
DCGnodemote represents recency performance.

It is observed that if only regular training data is used to train
the model (recency training data weight is 0), DCGregulars on regu-
lar testing data are high and DCGdemotes and DCGdemotes on recency
testing data are low. This is because the distribution of recency
ranking data is different from that of regular ranking data (more de-
tailed interpretation will be presented in Section 8.1). Furthermore,
we observe the gap between DCGdemote and DCGnodemote is large,
which implies the ranking recency is bad. This is expected because
the judging guideline on regular ranking data does not consistently
take recency into consideration.

When the recency training data is used (weight > 0), the DCG
values on recency testing data (both DCGdemote and DCGnodemote)
become higher than the case that weight is 0. With the recency
training data being given more weight, DCGdemote and DCGnodemote

values remain similar and DCGregular values become lower. This
means overall relevance becomes worse although DCGdemote val-
ues do not change significantly. The gap between DCGdemote and
DCGnodemote becomes smaller, which means the ranking recency is
improved.

When only recency training data is used (weight is ∞, i.e., re-
cency dedicated modeling), the DCG values on recency testing data
are high. Furthermore, there is no gap between DCGdemote and
DCGnodemote, i.e., the ranking recency is good. However, the overall
relevance becomes bad as DCGregular values are low, this is due to
the overfitting on recency ranking data.

To summarize, we need to select models which give good DCG
values on both recency testing data and regular testing data; at the
same time, the gap between DCGdemote and DCGnodemote should be
small. From Figure 2, the candidate models can be those with
weights being 1.0, 2.0 and 3.0.



Table 4: Offline NDCG results by different recency ranking
models.

NDCG5,regular NDCG5,demote NDCG5,nodemote

dedicated model 0.6517 (0.0%) 0.8086 (0.0%) 0.8089 (0.0%)

compositional model 0.6984 (7.2%) 0.8047 (−0.6%) 0.8087 (−0.02%)

over-weighting model 0.7154 (9.8%) 0.8113 (0.3%) 0.8155 (0.8%)
weight= 1.0

over-weighting model 0.7136 (9.5%) 0.8066 (−0.2%) 0.8116 (0.3%)
weight= 2.0

over-weighting model 0.7110 (9.1%) 0.8016 (−0.9%) 0.8068 (−0.3%)
weight= 3.0

adaptation model 0.6772 (3.9%) 0.8763 (8.4%) 0.8864 (9.6%)
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Figure 3: Testing results of adaptation model.

7.1.2 Adaptation model results
Figure 3 shows the testing results by adaptation model on both

recency testing data and regular testing data. The base model con-
sists of 1000 trees, and adaptation appends another 1000 tree in
order to minimize recency loss. As we can see, there is a large
jump in effectiveness for recency testing data when additive trees
are appended. However, we also need to consider regular testing
data, on which the NDCG values become lower. This implies that,
with more additive trees, the model is more overfitted on recency
ranking data because only the recency training data is used to train
the additive trees; however, the overall relevance may be hurt in
sense of the NDCG values on regular testing data.

7.2 Online results
We performed three days of online tests on 05/29/2009 (150

queries), 06/02/2009 (150 queries) and 06/05/2009 (150 queries).
We compare different models with a baseline model, which is de-
rived from regular ranking data. Therefore, the baseline has good
relevance but bad recency. Note that this baseline model is different
from the baseline model (dedicated model) used in offline experi-
ments. Table 5 and Table 6 show the online testing results with
NDCGs and DCG gains respectively. For each model category, we
present the model with the best DCG results. The over-weighting
model with weight being 2.0 is the best among its category. Due to
system issues, we were not able to use compositional model for this
online test. However, based on the offline experiments, the compo-
sitional model does not give the best results. Therefore, we mainly
explore over-weighting model and adaptation model.

We observe that over-weighting model is consistently stronger

Table 5: Online NDCG results by different recency ranking
models.

(a) only on recency queries
NDCG5,nodemote NDCG5,demote

baseline model 0.9111 (0.0%) 0.8941 (0.0%)
over-weighting model 0.9160 (0.5%) 0.9041 (1.1%)
adaptation model 0.9094 (−0.2%) 0.8948 (0.1%)

(b) on all queries classified as recency queries
NDCG5,nodemote NDCG5,demote

baseline model 0.9092 (0.0%) 0.8931 (0.0%)
over-weighting model 0.9143 (0.6%) 0.9025 (1.1%)
adaptation model 0.9067 (−0.3%) 0.8931 (0.0%)

Table 6: Online DCG gains over baseline by different recency
ranking models.

(a) only on recency queries
∆DCG5,nodemote ∆DCG5,demote

over-weighting model 1.7% 5.8%
adaptation model −0.5% 4.9%

(b) on all queries classified as recency queries
∆DCG5,nodemote ∆DCG5,demote

over-weighting model 1.1% 5.2%
adaptation model −1.2% 4.2%

than baseline model in sense of both NDCG and DCG gain. By
NDCGnodemote computed by the non-demotion grades, the NDCG
gain is limited, which means the non-recency-related relevance is
not improved much. However, by NDCGdemote, the NDCG gain
is significantly better than baseline, which means recency ranking
is significantly improved. Adaptation model is better than baseline
model in sense of ∆DCG5,demote (Table 6); however, its ∆DCG5,nodemote

is lower than that of baseline model, which suggests that the adap-
tation model improves recency while hurts non-recency relevance
a little bit. The models’ NDCG improvements are not as significant
as DCG improvements, which implies that the ranking improve-
ment mainly comes from easy search cases (the queries that can
return many good results). For the hard search cases (the queries
that return many bad results), it is improvement may need to rely
on crawler improvement because currently there are limited good
urls that have been discovered by the search engine.

Figure 4 shows the DCG gains for each of the three day’s testing
results by over-weighting model. Consistent trends are observed
that 1) DCGnodemote gains are always positive, which means the
overall non-recency relevance is better than baseline; 2) DCGdemote

gains are always better than DCGnodemote gains, which means that
ranking recency is improved 3) the non-recency queries caused
by inaccuracy of the query classifier dilute the DCG gains only
slightly, which means the precision of query classification is good.

Table 7 shows an example of the search results by baseline model
and over-weighting model. By non-recency-demotion grades, the
results by the two models are similar, which means their non-recency
relevances are close. However, when recency is taken into account,
the over-weighting model is better than baseline model, whose 3rd
and 4th ulrs are so outdated that their grades are demoted by 2 (from
excellence to fair).
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Figure 4: Online DCG gains by over-weighting model over baseline model on different test days.

Table 7: An example of ranking recency improvement. The
query is “mars rover name”.

(a) ranking result by baseline model
url gradenodemote gradedemote

1 http://marsrovername.jpl.nasa.gov/ excellent excellent
2 http://marsprogram.jpl.nasa.gov/ good good
3 http://www.lego.com/rovers/default.asp excellent fair
4 http://mars.jpl.nasa.gov/MPF/rover/name.html excellent fair
5 http://www.mars-rover.com/ bad bad

(b) ranking result by over-weighting model
url gradenodemote gradedemote

1 http://marsrovername.jpl.nasa.gov/ excellent excellent
2 http://mpfwww.jpl.nasa.gov/ good good
3 http://www.nasa.gov/home/hqnews/2009/may/HQ_09-

122_MSL_named_Curiosity.html
good good

4 http:/www.jpl.nasa.gov/news/news.cfm?release=2009-
089

excellent excellent

5 http://www.jpl.nasa.gov/missions/mer/ excellent excellent

Table 8: Indirect comparison of regular ranking data distri-
bution and recency ranking data distribution. The table slot
values are NDCG5,nodemotes, which are obtained by the training
and testing sets specified in the table.

recency testing data regular testing data
recency training data 0.7857 0.6497
random training data 0.7569 0.6865

8. DISCUSSIONS
Previous experiments have shown the efficacy of our learn-to-

rank approach for recency improvement. In this section, we further
analyze the critical factors in this approach, so that we can better
understand the results and improve them in future.

8.1 Data distribution
As we have observed in offline and online results, using recency

training data may help to improve NDCG5,nodemote on recency test-
ing data. This leads to the question: in feature space, if we do not
consider recency factor, what is the distribution difference between
recency ranking data and regular ranking data?

Recency query set is a subset of all queries. Intuitively, many
categories of queries can potentially be recency queries. For exam-
ple, a celebrity name query can be a recency query during a short
period of time when there are news related to this celebrity. Sim-
ilarly, product queries, news-event queries and many other queries

Table 9: The average ranks of the top 5 recency features,
and their average relative feature importance scores in over-
weighting models with different recency training data weight.
Recency training data weight is denoted by wt.

wt avg. rank avg. score
0.0 63.1 12.0
1.0 57.2 13.0
2.0 36.6 16.7
3.0 23.9 22.8
4.0 19.5 26.8

can be recency queries. On the other hand, there are some cate-
gories of queries that are unlikely to be recency queries, e.g., do-
main queries.

Due to the high dimensionality of ranking features, it is difficult
to directly compute the distribution difference between these two
types of data. Instead, we use different training/testing set combi-
nations to explore the distribution difference. As introduced in Sec-
tion 6.1, there are 41,678 query-url pairs in recency training data.
We randomly select the same amount of query-url pairs from reg-
ular training data, and we call the selected data as random training
data. We train two ranking models using recency training data and
random training data respectively, and apply them to recency test-
ing data and regular testing data to compare NDCG values. During
model training, recency features are excluded because our purpose
is to explore the non-recency-related distribution. Table 8 shows
that 1) on recency testing data (i.e., for recency ranking problem),
the model derived from recency training data is better than that de-
rived from random training data; 2) on regular training data (i.e., for
generic ranking problem), the model derived from random training
data is better. These observations imply that there is a significant
distribution difference between recency ranking data and regular
ranking data. This explains why when recency training data is used,
non-recency relevance on recency testing data may be improved.

8.2 Recency features
Recency features play key roles in recency model learning. We

compute feature importance by the method proposed in [10], and
rank the features by the descending order of the feature importance
scores. The importance score of the most important feature in the
whole feature set is 100.0. Table 9 shows the average ranks of
the top 5 recency features, and their average relative feature impor-
tance scores in over-weighting models with different recency train-
ing data weight. The more weight of recency training data is given,
the higher the average rank and the average feature importance for
recency features.

Below the most important five recency features with their impor-
tance ranks in the whole feature set (recency training data weight
value is 2.0):



12nd: the latest time that an external link to the url is discovered
on the Web;

19th: the earliest time that the url is discovered on the Web;
22nd: the mean time that the external links to the url are discov-

ered on the Web;
28th: the timestamp that first appears in the page content in

word-view order;
29th: the earliest timestamp that appears in the page content in

time order.
Therefore, linktime features are the most important recency fea-

tures among all recency features.
Recency features correlate with regular ranking features. For ex-

ample, compared with an old page, a fresh page usually have fewer
clicks and external links. While ranking model usually should fa-
vor the pages with more links and clicks, it should also promote
fresh pages for recency ranking problem. Thus, recency is compet-
ing with popularity, which is usually indicated by link-based fea-
tures and click-based features. We have examined the urls pairs
whose orders contradict with ground-truth labeling, and we find
that the click-based features are over-aggressive for most of the
cases. This leads to the interesting topic on how to appropriately
deal with the relationship between recency and popularity, and we
will study modeling approaches which can better exploit recency
features and popularity-related features.

9. CONCLUSIONS
We construct a web search system that improves ranking recency

while preserves good overall relevance. We propose a query clas-
sification algorithm that can automatically detect recency queries
with high precision; the detected recency queries are applied with
the recency ranking model. With recency demotion judgement
guideline, we incorporate recency into the optimization target. Dif-
ferent categories of recency features provide recency evidence and
are effectively employed in ranking model learning. To solve the
recency data insufficiency problem, we explored several model-
ing approaches by utilizing regular ranking data, which helps to
achieve good ranking recency as well as good relevance.

While the work in this paper proves that ranking recency can be
improved under learning-to-rank framework, there is much more
room for further improvement along this direction. For example,
from click log, we can either extract click-based recency features
to represent the urls’ recent popularity, or extract click preference
data to enhance recency training set. We will study these utilities
of click log to improve recency ranking. The current recency de-
motion judgement guideline is based on heuristic studies so that
the demotion may be biased for some cases. We need to explore
this issue in a systematic way so that the demotion may be more
appropriate for users.
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