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ABSTRACT
Learning to rank arises in many information retrieval appli-
cations, ranging from Web search engine, online advertising
to recommendation system. In learning to rank, the perfor-
mance of a ranking model is strongly affected by the number
of labeled examples in the training set; on the other hand,
obtaining labeled examples for training data is very expen-
sive and time-consuming. This presents a great need for the
active learning approaches to select most informative exam-
ples for ranking learning; however, in the literature there is
still very limited work to address active learning for rank-
ing. In this paper, we propose a general active learning
framework, Expected Loss Optimization (ELO), for rank-
ing. The ELO framework is applicable to a wide range of
ranking functions. Under this framework, we derive a novel
algorithm, Expected DCG Loss Optimization (ELO-DCG),
to select most informative examples. Furthermore, we in-
vestigate both query and document level active learning for
raking and propose a two-stage ELO-DCG algorithm which
incorporate both query and document selection into active
learning. Extensive experiments on real-world Web search
data sets have demonstrated great potential and effective-
ness of the proposed framework and algorithms.
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1. INTRODUCTION
Ranking is the core component of many important infor-

mation retrieval problems, such as web search, recommen-
dation, computational advertising. Learning to rank rep-
resents an important class of supervised machine learning
tasks with the goal of automatically constructing ranking
functions from training data. As many other supervised ma-
chine learning problems, the quality of a ranking function is
highly correlated with the amount of labeled data used to
train the function. Due to the complexity of many rank-
ing problems, a large amount of labeled training examples
is usually required to learn a high quality ranking function.
However, in most applications, while it is easy to collect un-
labeled samples, it is very expensive and time-consuming to
label the samples.

Active learning comes as a paradigm to reduce the label-
ing effort in supervised learning. It has been mostly stud-
ied in the context of classification tasks [19]. Existing al-
gorithms for learning to rank may be categorized into three
groups: pointwise approach [8], pairwise approach [25], and
listwise approach [21]. Compared to active learning for clas-
sification, active learning for ranking faces some unique chal-
lenges. First, there is no notion of classification margin in
ranking. Hence, many of the margin-based active learning
algorithms proposed for classification tasks are not readily
applicable to ranking. Further more, even some straightfor-
ward active learning approach, such as query-by-committee,
has not been justified for the ranking tasks under regres-
sion framework. Second, in most supervised learning setting,
each data sample can be treated completely independent of
each other. In learning to rank, data examples are not inde-
pendent, though they are conditionally independent given a
query. We need to consider this data dependence in select-
ing data and tailor active learning algorithms according to
the underlying learning to rank schemes. There is a great
need for an active learning framework for ranking.

In this paper, we attempt to address those two important
and challenging aspects of active learning for ranking. We
first propose a general active learning framework, Expected



Loss Optimization (ELO), and apply it to ranking. The key
idea of the proposed framework is that given a loss function,
the samples minimizing the expected loss are the most infor-
mative ones. Under this framework, we derive a novel active
learning algorithm for ranking, which uses function ensemble
to select most informative examples that minimizes a chosen
loss. For the rest of the paper, we use web search ranking
problem as an example to illustrate the ideas and perform
evaluation. But the proposed method is generic and may
be applicable to all ranking applications. In the case of web
search ranking, we minimize the expected DCG loss, one of
the most commonly used loss for web search ranking. This
algorithm may be easily adapted to other ranking loss such
as NDCG or Average Precision. To address the data depen-
dency issue, the proposed algorithm is further extended to
a two-stage active learning schema to seamlessly integrate
query level and document level data selection.

The main contributions of the paper are summarized as
follows.

• We propose a general active learning framework based on
expected loss optimization. This framework is applica-
ble to various ranking scenarios with a wide spectrum of
learners and loss functions. We also provides a theoreti-
cally justified measure of the informativeness .

• Under the ELO framework, we derive novel algorithms to
select most informative examples by optimizing the ex-
pected DCG loss. Those selected examples represent the
ones that the current ranking model is most uncertain
about and they may lead to a large DCG loss if predicted
incorrectly.

• We propose a two stage active learning algorithm for rank-
ing, which addresses the sample dependence issue by first
performing query level selection and then document level
selection.

2. RELATED WORK
The main motivation for active learning is that it usually

requires time and/or money for the human expert to label
examples and those resources should not be wasted to label
non-informative samples, but be spent on interesting ones.

Optimal Experimental Design [12] is closely related to ac-
tive learning as it attempts to find a set of points such that
the variance of the estimate is minimized. In contrast to this
“batch” formulation, the term active learning often refers to
an incremental strategy [7].

There has been various types of strategies for active learn-
ing that we now review. A comprehensive survey can be
found in [20]. The simplest and maybe most common strat-
egy is uncertainty sampling [18], where the active learning
algorithm queries points for which the label uncertainty is
the highest. The drawback of this type of approach is that
it often mixes two types of uncertainties, the one stemming
from the noise and the variance. The noise is something in-
trinsic to the learning problem which does not depend on the
size of the training set. An active learner should not spend
too much effort in querying points in noisy regions of the
input space. On the other hand, the variance is the uncer-
tainty in the model parameters resulting from the finiteness
of the training set. Active learning should thus try to mini-
mize this variance and this was first proposed in [7].

In Bayesian terms, the variance is computed by integrat-
ing over the posterior distribution of the model parameters.
But in practice, it may be difficult or impossible to compute
this posterior distribution. Instead, one can randomly sam-
ple models from the posterior distribution [9]. An heuristic
way of doing so is to use a bagging type of algorithm [1].
This type of analysis can be seen as an extension of the
Query-By-Committee (QBC) algorithm [14] which has been
derived in a noise free classification setting. In that case,
the posterior distribution is uniform over the version space
– the space of consistent hypothesis with the labeled data
– and the QBC algorithm selects points on which random
functions in the version space have the highest disagreement.

Another fairly common heuristic for active learning is to
select points that once added in the training set are expected
to result in a large model change [20] or a large increase in
the objective function value that is being optimized [4].

Compared with traditional active learning, there is still
limited work on the active learning for ranking. Donmez
and Carbonell studied the problem of document selection in
ranking [11]. Their algorithm selects the documents which,
once added to the training set, are the most likely to result
in a large change in the model parameters of the ranking
function. They apply their algorithm to RankSVM [17] and
RankBoost [13]. Also in the context of RankSVM, [24] sug-
gests to add the most ambiguous pairs of documents to the
training set, that is documents whose predicted relevance
scores are very close under the current model. Other works
based on pairwise ranking include [6, 10]. In case of binary
relevance, [5] proposed a greedy algorithm which selects doc-
ument that are the most likely to differentiate two ranking
systems in terms of average precision. Finally, an empirical
comparison of document selection strategies for learning to
rank can be found in [2].

There are some related works about query sampling. [23]
empirically shows that having more queries but less number
of documents per query is better than having more docu-
ments and less queries. Yang et. al. propose a greedy query
selection algorithm that tries to maximize a linear combi-
nation of query difficulty, query density and query diversity
[22].

3. EXPECTED LOSS OPTIMIZATION FOR
ACTIVE LEARNING

As explained in the previous section, a natural strategy
for active learning is based on variance minimization. The
variance, in the context of regression, stems from the uncer-
tainty in the prediction due to the finiteness of the training
set. Cohn et. al [7] proposes to select the next instance
to be labeled as the one with the highest variance. How-
ever, this approach applies only to regression and we aim at
generalizing it through the Bayesian expected loss [3].

In the rest of the section, we first review Bayesian decision
theory in section 3.1 and then introduce the Expected Loss
Optimization (ELO) principle for active learning. In section
3.2 we show that in the cases of classification and regression,
applying ELO turns out to be equivalent to standard active
learning method. Finally, we present ELO for ranking in
section 3.3.

3.1 Bayesian Decision Theory
We consider a classical Bayesian framework to learn a



function f : X → Y parametrized by a vector θ. The
training data D is made of n examples, (x1, y1), . . . , (xn, yn).
Bayesian learning consists in:

1. Specifying a prior P (θ) on the parameters and a like-
lihood function P (y|x, θ).

2. Computing the likelihood of the training data, P (D|θ) =∏n
i=1 P (yi|xi, θ).

3. Applying Bayes rule to get the posterior distribution of
the model parameters, P (θ|D) = P (D|θ)P (θ)/P (D).

4. For a test point x, computing the predictive distribu-
tion P (y|x, D) =

∫
θ
P (y|x, θ)P (θ|D)dθ.

Note that in such a Bayesian formalism, the prediction is a
distribution instead of an element of the output space Y. In
order to know which action to perform (or which element to
predict), Bayesian decision theory needs a loss function. Let
`(a, y) be the loss incurred by performing action a when the
true output is y. Then the Bayesian expected loss is defined
as the expected loss under the predictive distribution:

ρ(a) :=

∫

y

`(a, y)P (y|x, D)dy. (1)

The best action according to Bayesian decision theory is
the one that minimizes that loss: a∗ := arg mina ρ(a). Cen-
tral to our analysis is the expected loss (EL) of that action,
ρ(a∗) or

EL(x) := min
a

∫

y

`(a, y)P (y|x, D)dy. (2)

This quantity should be understood as follows: given that
we have taken the best action a∗ for the input x, and that
the true output is in fact given by P (y|x, D), what is, in
expectation, the loss to be incurred once the true output is
revealed?

The overall generalization error (i.e. the expected error
on unseen examples) is the average of the expected loss over
the input distribution:

∫
x

EL(x)P (x)dx. Thus, in order to
minimize this generalization error, our active learning strat-
egy consists in selecting the input instance x to maximize
the expected loss:

arg max
x

EL(x).

3.2 ELO for Regression and Classification
In this section, we show that the ELO principle for active

learning is equivalent to well known active learning strategies
for classification and regression. In the cases of regression
and classification, the ”action” a discussed above is simply
the prediction of an element in the output space Y.

Regression.
The output space is Y = R and the loss function is the

squared loss `(a, y) = (a − y)2. It is well known that the
prediction minimizing this square loss is the mean of the
distribution and that the expected loss is the variance:

arg min
a

∫

y

(a− y)2P (y|x, D)dy = µ

and min
a

∫

y

(a− y)2P (y|x, D)dy = σ2,

where µ and σ2 are the mean and variance of the predictive
distribution. So in the regression case, ELO will choose the
point with the highest predictive variance which is exactly
one of the classical strategy for active learning [7].

Classification.
The output space for binary classification is Y = {−1, 1}

and the loss is the 0/1 loss: `(a, y) = 0 if a = y, 1 otherwise.
The optimal prediction is given according to arg maxa∈Y P (y =
a|x, D) and the expected loss turns out to be:

min(P (y = 1|x, D), P (y = −1|x, D)),

which is maximum when P (y = 1|x, D) = P (y = −1|x, D) =
0.5, that is when we are completely uncertain about the
class label. This uncertainty based active learning is the
most popular one for classification which was first proposed
in [18].

3.3 ELO for Ranking
In the case of ranking, the input instance is a query and

a set of documents associated with it, while the output is
a vector of relevance scores. If the query q has n docu-
ments, let us denote by Xq := (x1, . . . , xn) the feature vec-
tors describing these (query,document) pairs and by Y :=
(y1, . . . , yn) their labels. As before we have a predictive dis-
tribution P (Y |Xq, D). Unlike active learning for classifi-
cation and regression, active learning for ranking can select
examples at different levels. One is query level, which selects
a query with all associated documents Xq; the other one is
document level, which selects documents xi individually .

Query level. In the case of ranking, the ”action” in ELO
framework is slightly different than before because we are
not directly interested in predicting the scores, but instead
we want to produce a ranking. So the set of actions is the
set of permutations of length n and for a given permutation
π, the rank of the i-th document π(i). The expected loss for
a given π can thus be written as:

∫

Y

`(π, Y )P (Y |Xq, D)dY, (3)

where `(π, Y ) quantifies the loss in ranking according to π if
the true labels are given by Y . The next section will detail
the computation of the expected loss where ` is the DCG
loss.

As before, the ELO principle for active learning tells us
to select the queries with the highest expected losses:

EL(q) := min
π

∫

Y

`(π, Y )P (Y |Xq, D)dY. (4)

As an aside, note that the ranking minimizing the loss (3)
is not necessarily the one obtained by sorting the documents
according to their mean predicted scores. This has already
been noted for instance in [26, section 3.1].

Document level. Selecting the most informative document
is a bit more complex because the loss function in ranking
is defined at the query level and not at the document level.
We can still use the expected loss (4), but only consider
the predictive distribution for the document of interest and
consider the scores for the other documents fixed. Then we
take an expectation over the scores of the other documents.



This leads to:

EL(q, i) =

∫

Y i

min
π

∫

yi

`(π, Y )P (Y |Xq, D)dyidY i, (5)

where EL(q, i) is the expected loss for query q associated
with the i-th document and Y i is the vector Y after remov-
ing yi.

4. ALGORITHM DERIVATION
We now provide practical implementation details of the

ELO principle for active learning and in particular specifie
how to compute equations (4) and (5) in case of the DCG
loss.

The difficulty of implementing the formulations of the pre-
vious section lies in the fact that the computation of the pos-
terior distributions P (yi|xi, D) and the integrals is in general
intractable. For this reason, we instead use an ensemble of
learners and replace the integrals by sums over the ensem-
ble. As in [1], we propose to use bootstrap to construct the
ensemble. More precisely, the labeled set is subsampled sev-
eral times and for each subsample, a relevance function is
learned. The predictive distribution for a document is then
given by the predicted relevance scores by various functions
in the ensemble. The use of bootstrap to estimate predic-
tive distributions is not new and there has been some work
investigating whether the two procedures are equivalent [16].

Finally note that in our framework we need to estimate the
relevance scores. This is why we concentrate in this paper
on pointwise approaches for learning to rank since pairwise
and listwise approaches would not produce such relevance
estimates.

4.1 Query Level Active Learning
If the metric of interest is DCG, the associated loss is

the difference between the DCG for that ranking and the
ranking with largest DCG:

`(π, Y ) = max
π′

DCG(π′, Y )−DCG(π, Y ), (6)

where DCG(π, Y ) =
∑

i
2yi−1

log2(1+π(i))
.

Combining equations (4) and (6), the expected loss for a
given q is expressed as follows:

EL(q) =

∫

Y

max
π

DCG(π, Y )P (Y |Xq, D)dY

−max
π

∫

Y

DCG(π, Y )P (Y |Xq, D)dY. (7)

The maximum in the first component of the expected loss
can easily be found by sorting the documents according to
Y . We rewrite the integral in the second component as:

∫

Y

DCG(π, Y )P (Y |Xq, D)dY

=
∑

i

1

log2(1 + π(i))

∫

yi

(2yi − 1)P (yi|xi, D)dyi

︸ ︷︷ ︸
:=ti

, (8)

with which the maximum can now be found by sorting the
ti.

The pseudo-code for selecting queries based on equation
(7) is presented in algorithm 1. The notations and defini-
tions are as follows:

• G is the gain function defined as G(s) = 2s − 1.

• The notation 〈·〉 means average. For instance, 〈di〉 =
1
N

∑N
i=1 di.

• BDCG is a function which takes as input a set of gain
values and returns the corresponding best DCG:

BDCG({gj}) =
∑

j

gj

log2(1 + π∗(j))
,

where π∗ is the permutation sorting the gj in decreas-
ing order.

Algorithm 1 Query Level ELO-DCG Algorithm

Require: Labeled set L, unlabeled set U
for i=1,. . . ,N do N=size of the ensemble

Subsample L and learn a relevance function
si

j ← score predicted by that function on the j-th doc-
ument in U .

end for
for q=1,. . . ,Q do Q = number of queries in U
I ← documents associated to q
for i=1,. . . ,N do

di ← BDCG({G(si
j)}j∈I)

end for
tj ←

〈
G(si

j)
〉

d ← BDCG({tj}j∈I)
EL(q) ← 〈di〉 − d

end for
Select the queries q which have the highest values EL(q).

4.2 Document Level Active Learning
Combining equations (5) and (6), the expected loss of the

i-th document is expressed as:

EL(q, i) =

∫

Y i

[∫

yi

max
π

DCG(π, Y )P (Y |Xq, D)dyi

− max
π

∫

yi

DCG(π, Y )P (Y |Xq, D)dyi

]
dY i, (9)

which is similar to equation (7) except that the uncertainty
is on yi instead of the entire vector Y and that there is
an outer expectation on the relevance values for the other
documents. The corresponding pseudo-code is provided in
algorithm 2.

4.3 Two-stage Active Learning
Both query level and document level active learning have

their own drawbacks. Since query level active learning se-
lects all documents associated with a query, it is tend to
include non-informative documents when there are a large
number of documents associated with each query. For ex-
ample, in Web search applications, there are large amount
of Web documents associated for a query; most of them are
non-informative, since the quality of a ranking function is
mainly measured by its ranking output on a small number
of top ranked Web documents. On the other hand, doc-
ument level active learning selects documents individually.
This selection process implies unrealistic assumption that
documents are independent, which leads to some undesir-
able results. For example, an informative query could be



Algorithm 2 Document Level ELO-DCG Algorithm

Require: Labeled set L, unlabeled doc U for a given query
for i=1,. . . ,N do N=size of the ensemble

Subsample L and learn a relevance function
si

j ← score predicted by that function on the j-th doc-
ument in U .

end for
for all j ∈ U do

EL(j) ← 0 Expected loss for the j-th document
for i=1,. . . ,N do Outer integral in (5)

tk ← si
k, ∀k 6= j

for p=1,. . . ,N do
tj ← sp

j

dp ← BDCG({G(tk)})
end for
gk ← G(si

k), ∀k 6= j
gj ←

〈
G(si

j)
〉

EL(j) ← EL(j) + 〈dp〉 − BDCG({gk})
end for

end for
Select the documents (for the given query) which have the
highest values of EL(j).

missed if none of its documents is selected; or only one doc-
ument is selected for a query, which is not a good example
in ranking learning.

Therefore, it is natural to combine query level and docu-
ment level into two-stage active learning. A realistic assump-
tion for ranking data is that queries are independent and the
documents are independent given on a query. Based on this
assumption, we propose the following two-stage ELO-DCG
algorithm: first, applying Algorithm 1 to select most in-
formative queries; then, applying Algorithm 2 to select the
most informative queries for each selected query.

5. EXPERIMENTAL EVALUATION
As a general active learning algorithm for ranking, ELO-

DCG can be applied to a wide range of ranking applications.
In this section, we apply different versions of ELO-DCG al-
gorithms to Web search ranking to demonstrate the prop-
erties and effectiveness of our algorithm. We denote query
level, document level, and two-stage ELO-DCG algorithms
as ELO-DCG-Q, ELO-DCG-D, and ELO-DCG-QD, respec-
tively.

5.1 Data Sets
We use Web search data from a commercial search engine.

The data set consists of a random sample of about 10,000
queries with about half million Web documents. Those
query-document pairs are labeled using a five-grade label-
ing scheme: {Bad, Fair, Good, Excellent, Perfect}.

For a query-document pair (q; d), a feature vector x is
generated and the features generally fall into the following
three categories. Query features comprise features depen-
dent on the query q only and have constant values across
all the documents, for example, the number of terms in the
query, whether or not the query is a person name, etc. Docu-
ment features comprise features dependent on the document
d only and have constant values across all the queries, for
example, the number of inbound links pointing to the docu-
ment, the amount of anchor-texts in bytes for the document,

Data set Number of examples
base set 2k ∼2,000
base set 4k ∼ 4,000
base set 8k ∼8,000

AL set ∼160,000
test set ∼180,000

Table 1: Sizes of the five data sets.

and the language identity of the document, etc. Query-
document features comprise features dependent on the re-
lation of the query q with respect to the document d, for
example, the number of times each term in the query q ap-
pears in the document d, the number of times each term in
the query q appears in the anchor-texts of the document d,
etc. We selected about five hundred features in total.

We randomly divide this data set into three subsets, base
training set, active learning set, and test set. From the base
training set, we randomly sample four small data sets to
simulate small size labeled data sets L. The active learning
data set is used as a large size unlabeled data set U from
which active learning algorithms will select the most infor-
mative examples. The true labels from active learning set
are not revealed to the ranking learners unless the exam-
ples are selected for active learning. The test set is used
to evaluate the ranking functions trained with the selected
examples plus base set examples. We kept test set large to
have rigorous evaluations on ranking functions. The sizes of
those five data sets are summarized in Table 1.

5.2 Experimental Setting
For the learner, we use Gradient Boosting Decision Tree

(GBDT) [15].
The input for ELO-DCG algorithm is a base data set L

and the AL data set U . The size of the function ensemble is
set as 8 for all experiments. ELO-DCG algorithm selects top
m informative examples; those m examples are then added
to the base set to train a new ranking function; the perfor-
mance of this new function is then evaluated on the test set.
Each algorithm with each base set is tested on 14 different
m, ranging from 500 to 80,000. For every experimental set-
ting, 10 runs are repeated and in each run the base set is
re-sampled to generate a new function ensemble.

For the performance measure for ranking models, we se-
lect to use DCG-k, since users of a search engine are only
interested in the top-k results of a query rather than a sorted
order of the entire document collection. In this study, we se-
lect k as 10. The average DCG of 10 runs is reported for
each experiment setting.

5.3 Document Level Active Learning
We first investigate document level active learning, since

documents correspond to basic elements to be selected in
the traditional active learning framework. We compare doc-
ument level ELO-DCG algorithm with random selection (de-
noted by Random-D) and a classical active learning ap-
proach based on Variance Reduction (VR) [7], which selects
document examples with largest variance on the prediction
scores.

Figure 1 compares the three document level active learn-
ing methods in terms of DCG-10 of the resulting ranking
functions on the test set. Those ranking functions are trained
with base data set and the selected examples. X-axis de-
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Figure 1: DCG comparison of document level ELO-DCG, variance reduction based document selection, and
random document selection with base sets of sizes 2k,4k, and 8k shows that ELO-DCG algorithm outperforms
the other two document selection methods at various sizes of selected examples.

notes number of examples selected by the active learning al-
gorithm. For all three methods, the DCG increases with the
number of added examples. This agrees with the intuition
that the quality of a ranking function is positively correlated
with the number of examples in the training set. ELO-DCG
consistently outperforms the other two methods. An pos-
sible explanation is that ELO-DCG optimizes the expected
DCG loss that is directly related to the objective function
DCG-10 used to evaluate the ranking quality; on the other
hand, VR reduces the score variance that is not directly re-
lated to the objective function. In fact, VR performs even
worse than random document selection when the size of the
selected example is small. An advantage of the ELO-DCG
algorithm is its capability to optimize directly based on the
ultimate loss function to measure ranking quality.

5.4 Query Level Active Learning
In this section, we show that query level ELO-DCG algo-

rithm effectively selects informative queries to improve the
learning to rank performance. Since traditional active learn-
ing approaches cannot directly applied to query selection in
ranking, we compare it with random query selection (de-
noted by Random-Q) used in practice.

Figure 2 shows the DCG comparison results. we observe
that for all three base sets, ELO-DCG performs better than
random selection for all different sample sizes (from 500 to
80,000) that are added to base sets. Moreover, ELO-DCG
converges much faster than random selection, i.e., ELO-
DCG attains the best DCG that the whole AL data set can
attain with much less examples added to the train data.

5.5 Two-stage Active Learning
In this section, we compare two-stage ELO-DCG algo-

rithm with other two two-stage active learning algorithms.
One is two-stage random selection, i.e. random query selec-
tion followed by random document selection for each query.
The other one is a widely used approach in practice, which
first randomly selects queries and then select top k relevant
documents for each query based on current ranking func-
tions (such as top k Web sites returned by the current search
engine)[23]. In our experimental setting, this approach cor-
responds to randomly query selection followed by selecting k
documents with highest mean relevance scores within each
selected query. We denote this approach as top-K. In all

three two-stage algorithms, we simply fix the number of doc-
uments per query at 15 based on the results from [23].

Figure 3 shows the DCG comparison results for two-stage
active learning. We observe that among all three base sets,
ELO-DCG performs the best and top-K performs the sec-
ond. This result demonstrates that two-stage OLE-DCG
effectively select most informative documents for most infor-
mative queries. A possible reason that top-K performs bet-
ter than random selection is that top-k selects more perfect
and excellent examples. Those examples contribute more to
DCG than bad and fair examples.

We have observed that ELO-DCG algorithms perform
best in all three active learning scenarios, query level, docu-
ment level, and two stage active learning. Next, we compare
three versions of ELO-DCG with each other.

Figure 4 shows DCG comparisons of two-stage ELO-DCG,
query level ELO-DCG, and document level ELO-DCG. We
observe that for all three based sets, two stage ELO-DCG
performs best. The reason that two-stage algorithm per-
forms best may root in its reasonable assumption for the
ranking data: queries are independent; the documents are
conditionally independent given a query. On the other hand,
the document level algorithm makes the incorrect assump-
tion about document independence and may miss informa-
tive information at the query level; the query level algorithm
selects all documents associated with a query, which are not
all informative.

5.6 Cost reduction of Two-stage ELO-DCG Al-
gorithm

In this section, we show the reduction in labeling cost
achieved by ELO-DCG compared with the widely used top-
K approach in practice.

In Table 2, the saturated size means that when the exam-
ples of this size are selected and added back to the base set
to train a ranking function, the performance of the learned
ranking function is equivalent to the ranking function trained
with all active learning data. From the first row of Table 2,
we observe that for the base set of size 2k, 64k is the sat-
urated size for two-stage ELO-DCG algorithm and 80k is
the saturated size for top-K approach; hence, 64k selected
examples from two-stage ELO-DCG algorithm is equivalent
to 80k selected examples from top-K approach. This means
that two-stage ELO-DCG algorithm can reduce the cost by
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Figure 2: DCG comparisons of query level ELO-DCG and random query selection with base sets of sizes
2k,4k, and 8k shows that ELO-DCG algorithm outperforms random selection at various sizes of selected
examples.
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Figure 3: DCG comparisons of two-stage ELO-DCG, two-stage random selection, and top-K selection with
base set 2k,4k, and 8k shows that ELO-DCG algorithm performs best.

20%. The largest percentage of cost reduced, 64%, is from
base set 8k.

6. CONCLUSIONS
We propose a general expected loss optimization frame-

work for ranking, which is applicable to active learning sce-
narios for various ranking learners. Under ELO framework,
we derive novel algorithms, query level ELO-DCG and doc-
ument level ELO-DCG, to select most informative examples
to minimize the expected DCG loss. We propose a two stage
active learning algorithm to select the most effective exam-
ples for the most effective queries. Extensive experiments
on real-world Web search data sets have demonstrated great
potential and effectiveness of the proposed framework and
algorithms.
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