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ABSTRACT
Today’s popular web search engines expand the search pro-
cess beyond crawled web pages to specialized corpora (“ver-
ticals”) like images, videos, news, local, sports, finance, and
shopping etc., each with its own specialized search engine.
Search federation deals with problems of the selection of
search engines to query and merging of their results into a
single result set. Despite a few recent advances, the problem
is still very challenging. First, due to the heterogeneous na-
ture of different verticals, how the system merges the vertical
results with the web documents to serve the user’s informa-
tion need is still an open problem. Moreover, the scale of the
search engine and the increasing number of vertical proper-
ties requires a solution which is efficient and scaleable. In
this paper, we propose an unified framework for the search
federation problem. We model the search federation as a
contextual bandit problem. The system uses reward as a
proxy for user satisfaction. Given a query, our system pre-
dicts the expected reward for each vertical, then organizes
the search result page (SERP) in a way which maximizes
the total reward. Instead of relying on human judges, our
system leverages implicit user feedback to learn the model.
The method is efficient to implement and can be applied to
verticals of different nature. We have successfully deployed
the system to three different markets, and it handles mul-
tiple verticals in each market. The system is now serving
hundreds of millions of queries live each day, and has im-
proved user metrics considerably.
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1. INTRODUCTION
Modern search engines have gone beyond presenting only

web text documents. They have extended their services
to include results from specialized corpora or verticals likes
news, local search, movie, shopping etc. When a user issues
a query, the search engine sends it to different vertical search
engines, and the results returned by these engines are then
aggregated together with the web (algo) results and com-
posed into a search results page (SERP), as the example
shown in Figure 1. This process is usually referred as aggre-
gated search or federated search. A good search federation
system can help enhancing the user’s search experience. The
results from the verticals are presented to the users in a visu-
ally appealing interface and contain useful information. For
example, a movie result usually contains the movie poster
and showtime information, and a local search result contains
the address and telephone of the target business.

Given a user query, the system should first decide the pos-
sible vertical intent(s) of the query and send it to the corre-
sponding vertical backend(s). Some queries may express the
intent for vertical content explicitly, (e.g., “election news”
and “news about sandy”), other queries’ intent maybe im-
plicit (e.g., “election” and “sandy”). Moreover, some specific
queries may contain multiple intents. A user who searches
for “coffee bean” may look for a local shop which sells coffee
beans (local intent), plan to buy coffee beans online (shop-
ping intent), or search for an article which recommends cof-
fee beans (web articles). Therefore, how to compare the rel-
evance of these items, and place the verticals in the correct
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Figure 1: An example SERP for the query “coffee”
shows image, food, local and shopping verticals at
different positions.

position within the web text documents become particularly
challenging. This problem is different from the core rank-
ing problem in web search, where the textual web corpus of
the same properties are compared with each other. In fed-
erated search, even though vertical databases usually have
more structured representation, they are unlikely to share
common features due to their heterogeneous nature. Hence
we can not directly apply the same machinery used in web
ranking.

Model-based triggering approach has become popular in
recent years, and machine learning techniques have been
used to fit the models. A new challenge that comes with
this approach is how to gather enough data with labels to
train the model. Hiring editors to judge the results can be
expensive and is not scaleable. The judgements can be bi-
ased because many queries contain multiple intents. How
does the system know if a user who searches for “starbucks”

is looking for a nearby starbucks store or intends to navi-
gate to Starbucks’ office site? Furthermore, the intent of a
query may also shift over time. In such cases, it is crucial
to quickly identify the new intent. Another possible solu-
tion is by analyzing users click logs and obtaining training
data for the model. Several studies have been conducted
for the web documents ranking application, but few on the
federated search setup. Different from the traditional web
ranking problem, where all the documents are presented to
the user in a ranked order, if a vertical has not been trig-
gered given a query and/or has not been slotted above a web
document, the system will receive no feedback, and thus will
have no knowledge as to whether it matches the user’s intent
or if its results are preferred over a web document.

Several research projects have attempted to address re-
lated issues from different perspectives. In this paper, we
present a unified search federation system. It addresses the
challenge of aggregating the vertical results on the SERP
in a unified and principled approach. The system currently
serves three major markets of Yahoo! – USA1, Taiwan2 and
Hongkong 3, and controls a dozen verticals in total. It is
serving hundreds of millions of queries live each day, and has
improved user metrics considerably. We formulated it as a
contextual bandit problem, an approach which collects train-
ing data using an exploration/exploitation strategy, and up-
dates its model based on the user-click feedback to maximize
the total user satisfaction in the long run. We will review
the related work in Section 2. Then, we formalize the defi-
nition of our problem, and introduce the framework of our
federation system (Section 3). In Section 4, we present the
method we implemented in each part of our system, and an
offline evaluation method to evaluate our model. Finally, we
show the performance improvement of our system over the
old system on real web search traffic (Section 5).

2. RELATED WORK
The search federation problem has been studied in academia

and the industry from various perspectives. Resource selec-
tion [4, 25] and query classification [22, 23, 15] have been
studied extensively in information retrieval, and is very rele-
vant to federated search. Most prior approaches to resource
selection assume that different resources can be described
using similar features [24], while in modern search engines
verticals usually containing rich and a large variety of at-
tributes such as images, videos and local listing. Hence, we
are facing the problem that the vertical results can not be de-
scribed using textual features, and we have to create a rank-
ing function which can merge the results from these hetero-
geneous resources. Since several verticals are genre-specific,
query classifier can potentially be used to trigger these verti-
cals. However, even if query contains the intent, the vertical
database may not have suitable content matching the query
which will result in irrelevant result being triggered. Some
work has been conducted on addressing the vertical selec-
tion problem directly. Li et al. [15] use lexical features and a
query-click graph to propagate category labels to unlabeled
queries for shopping and job verticals. Diaz [8] investigates
the problem of whether or not to show the news vertical
above the web results. Agruello et al. [2] use a machine

1http://search.yahoo.com
2http://tw.search.yahoo.com/
3http://hk.search.yahoo.com/
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learning algorithm to learn models to decide the relevance
of the vertical given a query, where human judges are used
to generated ground truth labels for the verticals. Most of
these papers focused on the problem of selecting the most
relevant vertical and triggering them (on a fixed position),
with the notable exception where Ponnuswami et al. [18] ad-
dressed the problem of placing one or multiple relevant ver-
ticals among the web documents. In this paper, the authors
propose a machine learning framework which formulates the
learning problem as a pairwise ranking problem and col-
lects their training data through a randomized bucket. Our
system, which has been developed independently from this
paper, is very similar to it in the gist. However, Ponnuswami
et al.’s system has several limitations. First, the triggering
and slotting is based on threshold computed to match cer-
tain coverage target, while our system only slots a vertical
in a certain position if it thinks the results are more rele-
vant than the web documents below. Second, they do not
have a principled and unbiased approach to evaluate their
system offline. Last but not least, their system is not capa-
ble of continuously updating its model, which is critical for
dynamic verticals like news.

Bandit approaches have recently become popular in web
applications. Radlinski et al. use a bandit model to adapt
retrieval results [20]. Li et al. model personalized recom-
mendation of news articles as a contextual bandit problem
and evaluate on offline data collected using random traf-
fic [14]. Bandit approaches have also been applied to adver-
tisement placement systems [16, 13, 10]. Although it seems
natural to model federated search as a bandit problem, it is
the first time this tool is used to formulate the problem.

Hiring human editors to generate labeled training data can
be expensive, time consuming, and does not scale well. This
motivates the efforts to generate labeled training data by an-
alyzing the users’ interaction with the SERP. Joachims [12]
uses clicks and skips as preference judgments for learning
ranking model. In [19], Radlinski and Joachims create pref-
erence labels from the engagement difference by randomizing
consecutive search result pairs to users. Ji et al. [11] learn
entities ranking model in a local vertical search engine from
click-through logs. Motivated from the above works, we ran-
domly slot verticals at available positions in the SERP and
use the user’s click-skip interaction for generating labeled
train data. An interesting study conducted by Chen et al. [7]
observes that user click behavior in federation search is very
different from that in traditional web search, and calls for a
new model to interpret the user’s behavior. The reward def-
inition in our framework is general, and can use click model
and metrics as well.

3. PROBLEM STATEMENT AND FORMAL-
IZATION

The problem statement for our federation system is to
“trigger and slot verticals on SERP in a page-aware fashion
such that the user satisfaction is maximized while subjecting
to the business constraints”.

In this section, we will first describe the system, then we
will define the multi-armed bandit problem formally (Sec-
tion 3.2) and show how federated search can be formalized
as a bandit problem (Section 3.3).

3.1 Overview
When a user issues a query q in Yahoo!’s search engine, our

system decides which verticals may be relevant to the query
and passes the query to the corresponding vertical backends.
Some of the backends may contain relevant content. These
results are integrated together with the web documents, and
composed into an unified SERP shown to the users by the
system. The SERP is generated according to the princi-
ple of maximizing the expected user satisfaction while also
subjecting to a few constraints. Constraints mainly come
from the business restriction, such as the maximum number
of verticals that can be slotted on a page, the positions a
certain type of vertical can be shown at, not being allowed
to change the ranking of web documents, certain coverage
constraints for a vertical, etc.

3.2 A Multi-armed Contextual Bandit Formu-
lation

The search federation problem can be modeled as a multi-
armed contextual bandit problem. In the following section,
we will briefly introduce the bandit problem. Due to space
limitation, this is a very quick account of the bandit learning
framework – interested readers are referred to [5][Section 6]
for a comprehensive introduction.

A bandit algorithmA works in discrete rounds t = 1, 2, 3, . . .,
T. At time t:

1. A observes a set of available arms or actions A and
their associated contexts represented as feature vector
xt,a, ∀a ∈ A.

2. A estimates the expected rewards rx,t for each action
based on the observed rewards from previous trails.

3. A chooses an action at ∈ At based on a defined action
selection strategy, and the reward of the chosen action
rt,at is revealed to the algorithm.

4. A then improves its expected reward estimator and
action selection strategy with the new observation
(rt,at , at,xt,at).

It is important to emphasize that no feedback is observed
for other unchosen actions. The total reward of A is defined
as

∑T
t=1 rt,at , and the goal of the algorithm is to maximize

the total rewards in the long run. If the underlying distri-
butions of the rewards for each action given the context are
known, then the problem becomes simple as in each round it
can just exploit the action which receives the best expected
reward. However, the true distributions of the rewards are
not known, and the seemingly optimal action may in fact be
biased and suboptimal due to imprecision in the algorithm’s
knowledge about the world. Because of the fact that the
algorithm will not receive any feedback from the unchosen
actions, in order to get a good knowledge of them, A has
to gather information about them by choosing these seem-
ingly suboptimal actions. This kind of strategy is referred
as exploration. Exploration could harm the received reward
in short term as some suboptimal action may be chosen.
On the other hand, obtaining information about the action
through exploration can help the algorithms get a better es-
timation of the actions’ rewards, and in turn increase the
long term overall reward. Obviously, a good tradeoff be-
tween exploration and exploitation is needed for the algo-
rithm to work well.
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3.3 Our Formulation
In the scenario of search federation, we may consider the

SERP as an action. Under the constraint that the system
cannot change the ranking of web documents, the action
becomes putting available verticals at the allowed positions.
In our case, verticals could be shown at the top of the page,
between two web documents, or at the bottom of the page.
Due to their different interfaces and business constraints,
the allowed slot may be different for each vertical.

The user satisfaction given the SERP can be viewed as
the reward. We need to first quantitatively define what is
user satisfaction. Unfortunately, it is difficult to measure
user satisfaction directly. Many definitions for the proxy of
user satisfaction exist - all the way from simple click-through
rates (CTRs), Long Dwell Time (LDT) clicks, to session
based formulations such as path to success (PTS), search
success, query reformulation etc. Even though session-level
metrics can be reliable indicators of user satisfaction, they
require handling of complex credit assignment problem, i.e.
how much each of the slotting decisions eventually help to-
wards user satisfaction, in order to be able to optimize for
them. It is also possible to consider the full SERP configura-
tion as an independent action. However, it will require a lot
more data to construct the model due to the large number of
possible actions (an enumeration of different combinations of
the verticals on the allowed positions). Therefore, we chose
to measure the reward of each vertical and web document,
and the total reward of the action is the sum of the rewards
of the items composing the SERP. In this paper, we decided
to use click-skip based reward as the proxy for user satis-
faction (as illustrated in Figure 2), as it outperformed click-
only reward in our preliminary experiments. The click-skip
reward assumes a cascade model of user behavior on SERP,
i.e., a user starts examining the page from top to bottom
and clicks only on the results that are perceived to be use-
ful. The user stops when he/she finds the desired content.
If no useful result is found, the search page is abandoned.
When an item (vertical or web document) is clicked (one or
more time), a reward of 1 is received; when it is skipped (no
click on the item, and a click happens below the item), a
reward of -1 is received. If none of these events occur for a
result, it is assumed to be “abandoned” and gets a reward
of 0. Such reward definition is far from perfect, but the no-
tion helps overcome the position bias compared to metrics
like CTR. For some verticals which show rich information
through their template (e.g., a local vertical shows the tele-
phone and address of the business, and a movie vertical has
show times and rating listed), the users get their desired in-
formation without a click. Hence it is hard to distinguish
“good” and “bad” abandonment. We chose to not use aban-
donments in training our reward prediction model. We will
discuss the details of our reward predictor in the next sec-
tion (Section 4.2). Other more sophisticated metrics could
be taken into consideration, for example, LDT on a clicked
vertical could be treated as a very positive feedback, while
LDT on an abandoned page with content vertical (e.g., lo-
cal) presented without a click and query reformulation could
also be a positive feedback. We will investigate these opin-
ions in our future study. In this paper, we will only use
click-skip reward as our target metric.

Given a query, besides the textual features, we could also
compute the intent of the query using query classifiers and
extract various information from the backend response. More
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Figure 2: Figures illustrated examples how the click-
skip based reward is computed. The left column
shows the SERP pages with ten results and the re-
sults which receive a click are marked with a check
mark. The middle column illustrates the rewards
for each item on the pages.

details about the features we are using are explained in Sec-
tion 4.3.

4. OVERVIEW OF THE SYSTEM
Our system has runtime and offline components, Figure 3

illustrates the core components of the system. When a query
comes to the search engine, it is sent to the federation layer
to gather results from various backends. The layer decides
whether to conduct exploration on the query or do exploita-
tion. In either cases, the query is federated to all backends
and from the content returned, features are computed. If ex-
ploration is chosen, the verticals are slotted randomly and
the features along with rest of the context are logged. Oth-
erwise, the model is used to score the results and then the
slotting decisions are taken using the slotting mechanism.
Offline, on the Hadoop grids, the logs are aggregated and
processed to compute the rewards for each of the events of
interest using the extracted features. Subsequently training
and test data is generated from it and model(s) are trained
and evaluated. The best model gets deployed to the runtime
system. In the remaining part of this section we will explain
each component individually.

4.1 Data Collection Through Exploration
One of the simplest and most straightforward bandit ex-

ploration algorithms is ε-greed [21]. In each round, with
probability ε, the algorithm will choose a random action; and
with probability 1− ε, the algorithm will choose the action
with the highest expected reward. When each query comes,
the system decides if it should explore or exploit by toss-
ing a biased coin. Exploration is done in a uniform random
way with 100% dispatch rate to all the vertical backends,
then the vertical(s) with content are randomly positioned in
allowed slots with uniform probability. The randomly gen-
erated SERP is not influenced by the existing production
ranking system. As a consequence, the model generated
with this data is also devoid of any such influence from the
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Figure 3: A high-level overview of our system. It
can be divided into a runtime component and an
offline component.

existing ranking system. Moreover, being randomly gener-
ated, the SERP is not subject to any positional bias as each
vertical has a known probability to be placed in each of the
available positions. This exploration SERP is then shown
to the user who interacts with it in a normal fashion. The
user interaction with the SERP, along with context infor-
mation like query, user information, location, and features
from backends, are recorded at runtime.

Offline, the system generates training and test examples
from the recorded data. Each example corresponds to a
slotting decision that was taken and consists of a 4-tuple
(π, p, x, r), where π is the decision taken, i.e., which item (a
vertical or a web document) is shown at a particular posi-
tion on SERP, p, x and r are the probability the item gets
slotted in the corresponding position, the feature vector and
the reward for the decision, respectively. We use web1, web2,
. . . , web10 to denote the web documents from position 1 to
position 10. Since we do not change the ranking of web
document and they are always shown, their probabilities of
getting slotted will always equal 1. The probability is then
converted into an importance weight for the particular ex-
ample using ω = 1/p. The idea is that if an item has a lower
probability to be shown at a certain position (due to busi-
ness constraints and different vertical database coverage),
then the example has to be treated more importantly than
an item frequently (e.g., web documents) shown. Our learn-
ing algorithm has to take the importance weight of each
example into consideration. As a result, the model is less
likely to be affected by the noise from current system and
setup. In practice, giving high importance weight to rare
examples will also alleviate the data imbalance problem.

We use the whole production traffic to collect the data.
Unlike other works (e.g., [18]) which continuously expose
a small bucket of users to random results, each user will
subject to random exploration, but with very low chance so
that the user may not even notice it.

4.2 Statistical Model
We assume that the expected reward of an item π is lin-

ear in its d-dimensional context feature xπ with a unknown
coefficient parameter w∗

π, and is independent of its position
and other results on the SERP. It can be represented as:

E[rπ|xπ] = xπ ·w∗
π.

We use regularized linear regression with logistic loss to es-
timate the coefficient parameter from the training data col-
lected through random exploration. To train the regressor,
we use Vowpal Wabbit (VW) [1] as it has several desirable
properties - it is very efficient at, both, the training and
prediction phases, can scale to a large number of features
and extremely big datasets, and can handle sparse features
through feature hashing [26]. During training, we first ini-
tialize the model with a single pass of Stochastic Gradient
Descent, then optimize the model using L-BFGS. In prac-
tice, we found batch optimization yields better results. VW
is also capable of training the model in a distributed fashion.
It allows us to retrain the model on the entire dataset with
108 − 109 examples in a few minutes.

4.3 Feature Representation
A large part of our features come from the works of Diaz

et al. [8, 2]. In addition, we also extract features from
the results representing the quality of the backend contents.
The big advantage of these features is that they allow us to
filter out irrelevant or low quality content even if the query
contains the vertical intent. The features used by our system
can be summarized into the following categories:

• Global result set features: features derived from
all the responses received. They indicate the content
availability of each backend.

• Query features: lexical features such as the query
unigrams, bigrams and co-occurrence statistics. We
also use outputs of query classifiers, and historical ses-
sion based query features, etc.

• Corpus level features: query independent features
derived for each vertical and web document such as
historical CTRs, user preferences, etc.

• Backend features: extracted from the backend re-
sponses. A list of statistical summary features such as
relevance scores and ranking features of each individ-
ual results. For some verticals, we also extract some
domain specific meta features, such as if the movie is
on-screen and if the movie poster is available in the
movie vertical, and the number of hits for the news
articles from the news backend in the last few hours.

We have also tested using user information such as age group,
gender and location, as features, but offline experiments
show no gains from them. Perhaps more powerful personal
features which can infer a user’s interest could also be con-
sidered.

4.4 Slotting Mechanism
In exploitation mode, based on the predicted rewards of

the participant verticals and other web documents, we use
a locally greedy slotting algorithm to determine the final
slotting decision. The algorithm starts from the top of the
page, and decides the vertical to be slotted at each allowed
position, while subjecting to the business constrains, from
top to bottom. For each position, we pick a vertical from
the remaining verticals with the highest expect reward, and
compare it with the expected reward of the web document at
the position below that position. For a vertical to be shown,
its expected reward must be higher than the expected re-
ward of that web document. For example, if a News vertical
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is allowed to be shown at any position above the web3 re-
sult, its expected reward must be at least higher than the
expected reward of web3, otherwise it will not be triggered.
Our model maps these heterogenous entities like the web
documents and verticals into an uniform reward target, and
allows us to compare their relevance and rank them in a
principled way.

4.5 Model Updates
Since users’ information needs and vertical corpus change

with time, it is desirable to periodically update the model to
adapt to these changes. This is particularly true for News.
Given a query, whether to trigger a News vertical changes
with time. In our system, we update the model by retrain-
ing and redeploying the models periodically. Currently, the
model update goes out daily, although the system allows us
to update the model every five minutes.

4.6 Offline Policy Evaluation
Compared to a problem in the standard supervise setting,

evaluation of the performance of a new system in federated
search can be difficult because of the interactive nature of
the task. The offline data is collected using a particular log-
ging policy, and the action chosen by the logging policy may
be different from the action chosen by the algorithm. Re-
wards are only observed if a vertical is triggered and slotted
at a position examined by the user. Even though the same
vertical is slotted at the same position, the user’s behavior
could be completely different if another vertical is shown on
top of it. Due to the positional bias, a vertical slotted at a
high position is likely to attract more clicks even though it
is less relevant. Hiring human judges to do side by side tests
is expensive, and does not scale well. It would seem that the
only way to test the system is through A/B test on live traf-
fic. However, it is not practical to deploy a model for online
test until we are confident that the model is going to deliver
a reasonably good performance. One solution is to build
a simulator to evaluate the effectiveness of the algorithm.
Motivated by the offline policy evaluator proposed by Li et
al. [14] for the online recommendation systems, we propose
a similar method for federated search. The method is sim-
ple to implement, and is unbiased, thanks to data collected
through uniformly random exploration. Given a stream of
events (rt,at , at, p(at),xt) collected through random explo-
ration, where at = {πTOP

t , πSLOT2
t , . . . , πBOTTOM

t } is the
slotting decision for each position on the SERP and p(at)
is the probability for the SERP to be generated in uniform
random slotting, the average reward for the T offline events
can be computed as

r̄ =
1

T

∑
(rt,at ,at,p(at),xt)

rt,atI(A(xt) == at)

p(at)
,

where I is the indicator function and A(xt) is the slotting
decisions made by our algorithm. Since we assume a cascade
model of user behavior, for a page to be counted, the slotting
decision at every position

A(xt) = {π̂TOP
t , π̂SLOT2

t , . . . , π̂BOTTOM
t }

must match with the random exploration event, i.e., π̂*
t ==

π*
t , otherwise the data will be discarded in offline evalua-

tion.

5. RESULTS
Our system is a module of the Yahoo! search engine, and

controls parts of its federation experience. The system has
been deployed to three different markets – USA, Taiwan
and Hongkong, and controls a dozen verticals in total. It
serves hundreds of millions of queries live each day, and has
improved user metrics like Click Through Rate (CTR), cov-
erage and other user engagement metrics considerably. In
this section, we start by describing our model training pro-
cess and offline experimental setup. To show the effective-
ness of our system, we then show the relative improvements
over the old federation system from our bucket tests in USA
and Taiwan. The old USA federation was built using edito-
rial input, heuristic, and a hodge-podge of machine learning
techniques applied in isolation to each vertical. For example,
the triggering and slotting of the News vertical was decided
by a whitelist generated by an offline model at some fixed
positions, or several realtime models [9, 8], one for each po-
sition. The models were trained against CTR targets based
on user feedback. On the other hand, the model for trig-
gering and slotting of the Local vertical was trained against
editorial targets. It classified the intent of the query, but
did not consider the content match from the backend. The
training data of the old Taiwan federation system [2] was
generated by sending random queries against all the partici-
pating vertical backends, and the collected data was labeled
by the editor. A GBDT [27] model was trained to scored
the participating verticals. Similar to the method proposed
in this paper, this system compared the scores of the verti-
cal to web relevance scores at each of the allowed position
and the winning result was shown there. The system re-
quires the web ranking function to return a calibrated score
comparable to the scores of the verticals.

We separate the SERP into three different regions: TOP,
MIDDLE and BOTTOM (as shown in Figure 1), where any
position between Web1 and Web10 are categorized as the
MIDDLE region. Our federation system has an agreement
with various vertical owners to maintain a certain of level of
coverage at TOP. This is a straight-forward process, during
offline evaluation, if the coverage is lower than the agreed
level, we artificially boost the score of the verticals to reach
the desired coverage. The operation points can be obtained
deterministically from the test data.

5.1 Data Collection and Model Training
Our data was gathered using a very small fraction of the

search traffic for two weeks. We used the first 12 days of data
for training, and the last 2 days as the validation set. The
best modeling parameters were found through cross valida-
tion. The model which obtained the highest average reward
in offline evaluation was used for online testing. The offline
test results are reported in Table 1 and Table 2. In the test,
we compare our results with two simple baselines. The first
baseline is the click skip reward of the random exploration
bucket. The second baseline is that the algorithm will al-
ways show a vertical at a fixed position whenever contents
are available in the backend given a query. Although our
offline evaluation policy works for the whole SERP, here we
focused only on the TOP position in our offline evaluation.
Because it will require much more test data in order to ob-
tain a reliable estimation of the model’s performance, due
to the factor that the requirement for the exact matching
between the exploration SERP and the offline SERP will
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filter out a large part of the test data. In practice, we found
that offline evaluation using only the TOP position provides
a good guidance for how our model will perform online. As
expected, our system outperforms the weak baselines signif-
icantly. When we always show a vertical at a fix position
on the top, the CTR is relatively low because their content
are irrelevant. One observation we had during data collec-
tion is that the percentage of the actual relevant contents is
even less compared to the CTR numbers. Some users just
click on the top results regardless of the relevancy due to
positional bias. The “random” baseline performs relatively
well because it also includes results from web1, and the top
web results are usually also very relevant thus they have
high average CTR (due to recalls of different backends, the
web results have a much higher chance to be chosen by the
random baseline).

Reward CTR Coverage

Our system 0.24 38.6% –
News 29.6% 1.00%
Local 35.7% 1.99%

Shopping 19.9% 1.50%

Always News -0.45 9.1% 28.17%

Always Local -0.35 17.8% 13.04%

Always Shopping -0.44 4.69% 26.26%

Random -0.05 32.1% –

Table 1: Offline test results on the random explo-
ration data collected in USA in the span of two
weeks.

Reward CTR Coverage

Our system 0.78 48.00% –
News 19.6% 1.20%
Blog 35.7% 1.49%

Knowledge 30.1% 1.49%
Shopping 31.1% 1.27%

Always News -0.67 5.63% 22.94%

Always Blog -0.43 16.09% 78.11%

Always Knowledge -0.12 14.48% 78.62%

Always Shopping -0.19 5.05% 78.63%

Random -0.19 35.09% –

Table 2: Offline test results on the random explo-
ration data collected in Taiwan in the span of two
weeks.

5.2 Online Evaluation
The online bucket test results are shown in Table 3 and

Table 4. For the Taiwan results, we also report relative im-
provement on the overall CTR on all the verticals, relative
improvement on ratio of LDT clicks on all the verticals, and
relative improvement on average clicks on all the verticals
per 1,000 visitors. A LDT click is defined as a click on the
result where the time difference between the click and next
event in the same timeout session is more than 100 seconds,
or the click is the last event in the session. The ratio of
LDT clicks is the percentage of LDT clicks in all the clicks.
We argue that these metrics are a better proxy for user en-
gagement and satisfaction compared to metric like CTR.

We found that our system increases CTR and/or Coverage
at different regions of the page, particularly the middle part
of the page. For News, although the CTR has dropped, but
the coverage has been increased significantly. Moreover, the
Ratio of LDT Clicks and average clicks on all the verticals
have been improved significantly compared to the old sys-
tem in Taiwan. Notice that this metric is computed for all
the verticals including the verticals which are not controlled
by our system. If we only consider the participant verticals,
the improvement will look more salient.

Vertical Position Change in CTR Change in Coverage

News TOP -12.8% 81.846%
MIDDLE 208.7% 98.6%

Local TOP 10.9% -25.13%
MIDDLE 5.02% 98.6%

Shopping TOP 31.3% -39.2%
BOTTOM 141.1% 84.0%

Table 3: USA bucket test results. The table reports
the relative improvements over the old USA federa-
tion system. News results was collected from Oct 28
to Nov 30, 2011, while Local results were collected
from Oct 03 to Oct 21, 2012.

5.3 Editorial Evaluation
For offline analysis, we requested editors to help us eval-

uate the relevance of the SERP page by conducting Side-
by-Side test against the old USA production system. The
editors are shown the SERP produced by two systems, and
provide a grade {“New system much better”, “New system
better”, “Same/can not judge”, “Old system better”, “Old
system much better” } (the editors do not know which sys-
tems are new or old during the test). The judgements were
influenced by two factors: relevancy and ranking. Here we
focus on two verticals, News and Local.

In the News test, we sampled queries which triggered the
News vertical by the new system and/or the old system, and
took a snap shot of the SERP generated by the two systems
immediately. The result is shown in Figure 4 (a). From
the test, editors found our system has significantly increase
the coverage compared to the old system, and can trigger
trending News which are usually neglected by old system.
In the Local test, we use a set of 1000 local intent queries
collected in our previous study. The result is shown in Figure
4 (b). From the test, editors found that our system triggered
Local DD for many queries with local intent which was not
triggered by the old system. Most of the cases, where the
old system performed “better” compared to the new system,
are Local DD being slotted at a higher position compared
to the old system. This is because the new system ranks
the DD according to their relevancy compared to the web
links. This difference would not affect the user experiences
significantly.

5.4 Discussion
Our system leverages user feedback in a systematic man-

ner and has positive impact on user satisfaction. It learns
the user’s intent using a data driven approach. Moreover,
our system unifies the the decision making for all the par-
ticipant verticals that allows to make content and context
aware decisions that are optimal at the page level. For ex-
ample, our model automatically learns that for queries like
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Vertical Position Change in CTR Change in Coverage
News TOP -13.04% 99.0%

MIDDLE 26.6% 337.0%

Blog TOP 27.92% -39.78%
MIDDLE 25.63% 221.14%
BOTTOM 8.23% -26.55%

Shopping TOP 57.6% 58.6%
MIDDLE 39.33% 232.97%
BOTTOM -1.83% 96.06%

Knowledge BOTTOM 57.8% -4.1%

Overall CTR on all the verticals 15.2%
Ratio of LDT Clicks on all the verticals 18.9%

Average Clicks on all the verticals per 1,000 visitor 25.3%

Table 4: Taiwan bucket test results from July 7 through Jul 18, 2012. The table reports the relative
improvements over the old Taiwan federation system.

“starbucks” and “apple store” majority of the users want to
navigate to the official website, and place the Local verti-
cal in the second position. Contention resolution between
multiple relevant verticals is also data driven. It’s hard to
quantify how much coverage each vertical at different re-
gions of the SERP should have, and historical data is rarely
a good indication. We do not enforce a coverage target while
training the model, and the system decides the triggering
and slotting according to the maximization of user satisfac-
tion principle. To honor the agreement with various vertical
owners about coverage, we introduce an additional param-
eter for each vertical to allow us to tune the coverage at
the TOP position. To figure out the optimal coverage, a
prolonged series of bucket tests are needed. Ponnuswami et
al. developed a method to characterize the performance of
models using different operation points in one of their recent
papers [17]. Similar methods could also be applied here to
choose the operation points.

Exploration using a tiny percentage of online traffic allows
us to collect training data for both the head and tail queries.
Machine trained model using features from the backend and
query classifiers also help the model generalize to queries
which have never been seen before. Editors have found that
our system performs much better compared to the old sys-
tem trained using editorial data in terms of tail queries. For
instance, queries like “home plumbing” and “dog coats” suc-
cessfully trigger Local and Shopping verticals respectively.
Although the exploration traffic is small, it may still affect
user experience. On the other hand, random exploration
allows us to get an unbiased estimation of the expected re-
ward. Therefore, when adding a new vertical to the system,
it is necessary to collect a sufficient amount of training data
through exploration. After that, it is possible to further re-
duce the exploration traffic, and use user log from the pro-
duction traffic to bootstrap the performance of the model.
Another possible solution is to join the human judgement
data with the noisy user feedback data for model training,
as suggested in [6].

The system can be easily extended to include new verticals
and can be deployed to new markets quickly. It is capable of
updating its model every five minutes. Currently, we do not
enable this function, and the model is updated daily with
minimum human intervention. Through periodical updates,
we have observed improvements for some dynamic verticals

like News, while on verticals which are relatively stale the
gain is negligible. To enable frequent automatic model up-
dates, a robust monitoring process is needed to be setup
first.

Due to the different characteristics of the language and
backend in the three markets, we collected the training data
separately and trained an independent model for each of the
markets. When deploy to global markets with less traffic, it
is also possible to train an unified model with training data
collected from all the different markets if these markets have
the same type of backends.

6. CONCLUSIONS AND FUTURE WORK
This paper describes a search federation system that makes

effective use of implicit user feedback in a principled man-
ner. We model the search federation system as a contex-
tual bandit problem. The system works with heterogeneous
backends and it learns the users preference from their inter-
action with the verticals. It has been successfully deployed
in multiple markets and impacts millions of users.

Future work will focus on developing a more sophisticated
reward function which captures the user’s satisfaction pre-
cisely. For example, the new reward function could integrate
with other online metrics such as the LDT clicks, and con-
sider the whole search session, as well as other browsing
behaviors of the user. Another interesting direction is to
extend the random based exploration decision to “guided”
exploration where the system decides to explore only when
it has low confidence about the incoming queries. Guided
exploration can reduce the impact of exploration on user
experience, and make efficient use of the limited traffic to
collect user feedback on data where the system is mostly
uncertain about. Various exploration approaches have been
proposed in bandit literatures [3, 5, 14, 10], but little study
has been conducted in ranking setup.
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