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Abstract

Recurrent event queries (REQ) constitute a
special class of search queries occurring at
regular, predictable time intervals. The fresh-
ness of documents ranked for such queries is
generally of critical importance. REQ forms a
significant volume, as much as 6% of query
traffic received by search engines. In this
work, we develop an improved REQ classi-
fier that could provide significant improve-
ments in addressing this problem. We ana-
lyze REQ queries, and develop novel features
from multiple sources, and evaluate them us-
ing machine learning techniques. From histor-
ical query logs, we develop features utilizing
query frequency, click information, and user
intent dynamics within a search session. We
also develop temporal features by time series
analysis from query frequency. Other gener-
ated features include word matching with re-
current event seed words and time sensitiv-
ity of search result set. We use Naive Bayes,
SVM and decision tree based logistic regres-
sion model to train REQ classifier. The re-
sults on test data show that our models outper-
formed baseline approach significantly. Ex-
periments on a commercial Web search en-
gine also show significant gains in overall rel-
evance, and thus overall user experience.

1 Introduction

REQ pertains to queries about events which oc-
cur at regular, predictable time intervals, most often
weekly, monthly, annually, bi-annually, etc. Natu-
rally, users issue REQ periodically. REQ usually re-
fer to:

Organized public events such as festivals, confer-
ences, expos, sports competitions, elections: winter
olympics, boston marathon, the International Ocean
Research Conference, oscar night.

Public holidays and other noteworthy dates: labor day,
date of Good Friday, Thanksgiving, black friday.

Products with annual model releases, such as car models:
ford explorer, prius.

Lottery drawings: California lotto results.
TV shows and programs which are currently running:

American idol, Inside Edition.
Cultural related activities: presidential election, tax re-

turn, 1040 form.
Our interest in studying REQ arises from the chal-
lenge imposed on Web search ranking. To illustrate
this, we show an example in Fig. 1 that snapshots
the real ranking results of the query,EMNLP, is-
sued in 2010 when the authors composed this pa-
per, on Google search engine. It is obvious the
ranking is not satisfactory because the page about
EMNLP2008is on the first position in 2010. Ide-
ally, the page aboutEMNLP2010on the 6th position
should be on the first position even if users don’t
explicitly issue the query,EMNLP 2010, because
EMNLP is a REQ. The query, “EMNLP”, implic-
itly, without a year qualifier, needs to be served the
most recent pages about “EMNLP”.

A better search ranking result cannot be achieved
if we do not categorize “EMNLP” as a REQ, and
provide special ranking treatment to such queries.
Existing search engines adopt a fairly involved rank-
ing algorithm to order Web search results by con-
sidering many factors. Time is an important fac-
tor but not the most critical. The page’s rank-
ing score mostly depends on other features such
as tf-idf (Salton and McGill, 1983), BM25 (Jones
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Figure 1: A real problematic ranking result by Google for
a REQ query, “EMNLP”. The EMNLP2010 page should
be on the 1st position.

et al., 2000), anchor text, historical clicks, pager-
ank (Brin and Page, 1998), and overall page qual-
ity. New pages about EMNLP2010 obtain less fa-
vorable feature values than the pages of 2009 earlier
in terms of anchor text, click or pagerank because
they have existed for a shorter time and haven’t ac-
cumulated sufficient popularity to make them stand
out. Without special treatment, the new pages about
“EMNLP2010” will typically not be ranked appro-
priately for the users.

Typically, a recurrent event is associated with a
root, and spawns a large set of queries. Oscar,
for instance, is a recurrent event about the annual
Academy Award. Based on this, queries like “oscar
best actress”, “oscar best dress”, “oscar best movie
award”, are all recurrent event queries. As such,
REQ is a highly frequent category of query in Web
search. By Web search query log analysis, we ob-
serve that there about 5-6% queries of total query
volume belongs to this category.

In this work, we learn if a query is in the REQ
class, by effectively combining multiple features.
Our features are developed through analysis of his-
torical query logs. We discuss our approaches in de-

tail in Section 3. We then develop a REQ classi-
fier where all the features are integrated by machine
learning models. We use Naive Bayes, SVM and de-
cision tree based logistic regression models. These
models are described in Section 4. Our experiments
for REQ classifier and Web search ranking are de-
tailed in Section 5 and 6.

2 Related Work

We found our work were related to two other prob-
lems: general query classification and time-sensitive
query classification. For general query classifica-
tion, the task is to assign a Web search query to
one or more predefined categories based on its top-
ics. In the query classification contest in KDD-
CUP 2005 (Li et al., 2005), seven categories and
67 sub-categories were defined. The winning so-
lution (Shen et al., 2005) used multiple classifiers
integrated by ensemble method. The difficulties for
query classification are from short queries, lack of
labeled data, and query sense ambiguity. Most pop-
ular studies use query log, web search results, unla-
beled data to enrich query classification (Shen et al.,
2006; Beitzel et al., 2005), or use document classifi-
cation to predict query classification (Broder et al., ).
General query classification is also studied for query
intent detection by (Li et al., 2008).

There are many prior works to study the time sen-
sitivity issue in web search. For example, Baeza-
Yateset al. (Baeza-Yates et al., 2002) studied the re-
lation between the web dynamics, structure and page
quality, and demonstrated that PageRank is biased
against new pages. In T-Rank Light and T-Rank al-
gorithms (Berberich et al., 2005), both activity (i.e.,
update rates) and freshness (i.e., timestamps of most
recent updates) of pages and links are taken into ac-
count for link analysis. Choet al. (Cho et al., 2005)
proposed a page quality ranking function in order to
alleviate the problem of popularity-based ranking,
and they used the derivatives of PageRank to fore-
cast future PageRank values for new pages. Pandey
et al. (Pandey et al., 2005) studied the tradeoff be-
tween new page exploration and high-quality page
exploitation, which is based on a ranking method to
randomly promote some new pages so that they can
accumulate links quickly.

More recently, Donget al. (Dong et al., 2010a)
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proposed a machine-learned framework to improve
ranking result freshness, in which novel features,
modeling algorithms and editorial guideline are used
to deal with time sensitivities of queries and doc-
uments. In another work (Dong et al., 2010b), they
use micro-blogging data (e.g., Twitter data) to detect
fresh URLs. Novel and effective features are also
extracted for fresh URLs so that ranking recency in
web search is improved.

Perhaps the most related work to this paper is
the query classification approach used in (Zhang
et al., 2009) and (Metzler et al., 2009), in which
year qualified queries (YQQs) are detected based
on heuristic rules. For example, a query contain-
ing a year stamp is an explicit YQQ; if the year
stamp is removed from this YQQ, the remaining part
of this query is also a YQQ, which is called im-
plicit YQQ. Different ranking approaches were used
in (Zhang et al., 2009) and (Metzler et al., 2009)
where (Zhang et al., 2009) boosted pages of the most
latest year while (Metzler et al., 2009) promoted
pages of the most influential years. Similarly, Nunes
et al. (Nunes, 2007) applied information extraction
techniques to identify temporal expression in web
search queries, and found 1.5% of queries contain-
ing temporal expression.

Dong et al. (Dong et al., 2010a) proposed a
breaking-news query classifier with high accuracy
and reasonable coverage, which works not by mod-
eling each individual topic and tracking it over time,
but by modeling each discrete time slot, and compar-
ing the models representing different time slots. The
buzziness of a query is computed as the language
model likelihood difference between different time
slots. In this approach, both query log and news
contents are exploited to compute language model
likelihood.

Diaz (Diaz, 2009) determined the newsworthiness
of a query by predicting the probability of a user
clicks on the news display of a query. In this frame-
work, the data sources of both query log and news
corpus are leveraged to compute contextual features.
Furthermore, the online click feedback also plays a
critical role for future click prediction.

Konig et al. (Knig et al., 2009) estimated the
click-through rate for dedicated news search result
with a supervised model, which is to satisfy the
requirement of adapting quickly to emerging news

event. Some additional corpora such as blog crawl
and Wikipedia is used for buzziness inference. Com-
pared with (Diaz, 2009), different feature and learn-
ing algorithms are used.

Elsaset al. (Elsas and Dumais, 2010) studied
improving relevance ranking by detecting document
content change to leverage temporal information.

3 Feature Generation

To better understand our work, we first introduce
three terms. We subdivide all raw queries in query
log into three categories: Explicit Timestamp, Im-
plicit Timestamp, and No Timestamp. An Explicit
Timestamp query contains at least one token being a
time indicator. For example,emnlp 2010, 2007 De-
cember holiday calendar, amsterdam weather sum-
mer 2009, Google Q1 reports 2010. These queries
are considered to conatin time indicators, because
we can regard{2010, 2007, 2009} as year indica-
tor, decemberasmonthindicator,{summer, Q1(first
quarter)} as seasonalindicator. To simplify our
work, we only consider theyear indicators,2010,
2007, 2009. Suchyear indicators are also the most
important and most popular indicators, as noted in
(Zhang et al., 2009). Any query containing at least
oneyear indicator is an Explicit Timestamp query.
Due to word sense ambiguity, some queries labeled
as Explicit Timestamp by this method may have no
connection with time such asWindows Office 2007,
2010 Sunset Boulevard, or call number 2008. In this
work, we tolerate this type of error because word
sense disambiguation is a peripheral problem for this
task.

Implicit Timestamp queries are resulted by re-
moving all year indicators from the corresponding
Explicit Timestamp queries. For example, the Im-
plicit Timestamp query ofemnlp 2010is emnlp.
All other queries are No Timestamp queries because
they have never been found together with ayear in-
dicator.

Classifying queries into the above three cate-
gories depends on the used query log. A search
engine company partner provided us a query log
from 08/01/2009 to 02/29/2010 for this research.
We found the proportions of the three categories
in this query log are 13.8% (Explicit), 17.1% (Im-
plicit) and 69.1% (No Timestamp). These numbers
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could be slightly different depending on the source
of query logs. Note that 17.1% of Implicit Times-
tamp queries in the query log is a significant num-
ber. However, not all Implicit Timestamp queries
are REQ. Many Implicit Timestamp queries have no
time sense. They belong to Implicit Timestamp just
because users issued the query with ayear indica-
tor through varied intents. For example, “google” is
found to be an Implicit Timestamp query since there
were many “google 2008” or “google 2009” in the
query log.

The next few sections introduce our work in rec-
ognizing recurrent event time sense for Implicit
Timestamp queries. We first focus on features.
There are many features that were exploited in REQ
classifier. We extract these features from query log,
query session log, click log, search results, time se-
ries and NLP morphological analysis.

3.1 Query log analysis

The following features are extracted from query log
analysis:
QueryDailyFrequency: the total counts of the
query divided by the number of the days in the pe-
riod.
ExplicitQueryRatio: Ratio of number of counts
query was issued with year and number of counts
query was issued with or without year. This feature
is the method used by (Zhang et al., 2009).
UniqExplicitQueryCount: Number of uniq Ex-
plicit Timestamp queries associated with query. For
example, if a query was issued with query+2009 and
query+2008, this feature’s value is two.
ChiSquareYearDist: this feature is the distance be-
tween two distributions: one is frequency distribu-
tion over years for all REQ queries. The other is
that for single REQ query. It is calculated through
following steps: (a) Aggregate the frequencies for
all queries for all years. Suppose we observe all
years from 2001 to 2010. So we can get vector,
E = ( a f10

sum1 ,
a f09
sum1 , ...,

a f01
sum1) wherea fi is the frequency

sum of year 20i for all REQ queries. sum1 =
a f10 + a f09 + ... + a f01, the sum of all year fre-
quency. (b) Given a query, suppose we observe
this query’s yearly frequency distribution is ,Oq

=

(q f10, q f09, , ..., q f01). q fi is this query’s frequency
for the year 20i. Pad the slot with zeros if no fre-
quency found. The expected distribution for this

query is, Eq
= ( sum2∗a f10

sum1 ,
sum2∗a f09

sum1 , ...,
sum2∗a f01

sum1 ),
where sum2 = q f10 + q f09 + ... + q f01 is sum of
all year frequency for the query. (d) Calculate CHI-
squared value to represent the different yearly fre-
quency distribution betweenEq andOq according to

χ2
=
∑N

i=1
(Oq

i −Eq
i )2

Eq
i

. Using CHI square distance as a

method is widely used for statistical hypothesis test.
We found it to be a useful feature for REQ classifier.

3.2 Query reformulation

If users cannot find the newest page by issuing Im-
plicit Timestamp query, they may re-issue the query
using an Explicit Timestamp query. We can detect
this change in a search session (a 30 minutes period
for each query). By finding this kind of behavior
from users, we next extract three features.
UserSwitch: Number of unique users that switched
from Implicit Timestamp queries to Explicit Times-
tamp queries.
YearSwitch: Number of unique year-like tokens
switched by users in a query session.
NormalizedUserSwitch: Feature UserSwitch di-
vided by QueryDailyFrequency.

3.3 Click log analysis

If a query is time sensitive, users may click a
page that displays the year indicator on title or
url. An example that shows year indicator on
url is www.lsi.upc.edu/events/emnlp2010/call.html.
Search engine click log saves all users’ click infor-
mation. We used click log to derive the following
features.
YearUrlTop5CTR: Aggregated click through rate
(CTR) of all top five URLs containing a year in-
dicator. CTR of an URL is defined as the number
of clicks of an URL divided by the number of page
views.
YearUrlFPCTR: Aggregated click through rate
(CTR) of all first page URLs containing a year in-
dicator.

3.4 Search engine result set

For each Implicited Timestamp query, we can scrape
the search engine to get search results. We count the
number of titles and urls that contain year indicator.
We use this number as a feature, and generate 6 fea-
tures.
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TitleYearTop5: the number of titles containing a
year indication on the top 5 results. This value is
4 in Fig. 1.
TitleYearTop10: the number of titles containing a
year indication on the top 10 results. This value is 6
in Fig. 1.
TitleYearTop30: the number of titles containing a
year indication on the top 30 results.
UrlYearTop5: the number of urls containing a year
indication on the top 5 results. This value is 1 in
Fig. 1.
UrlYearTop10: the number of urls containing a year
indication on the top 10 results.
UrlYearTop30: the number of titles containing a
year indication on the top 30 results.

3.5 Time series analysis

Recurrent event query has periodic occurrence pat-
tern in time series. Top graph of Figure 2 shows the
frequency change of the query, “Oscar”. The annual
event usually starts from Oscar nomination as ear-
lier as last year December to award announcement
of February this year. So a small spike and a big
spike are observed in the graph to indicate nomina-
tion period and ceremony period. There are a period
of silence between the two periods. The frequency
pattern keeps unchanged each year. We show three
years (2007,8,9) in the graph. By making use of re-
current event queries’ periodic properties, we calcu-
lated the query period as a new feature.

We use autocorrelation to calculate the period.

R(τ) =

∑N−τ
t=1 (xt − µ)(xt+τ − µ)

{
∑N−τ

t=1 (xt − µ)2(xt+τ − µ)2}1/2

wherex(t) is query daily frequency.N is the num-
ber of days used for this query. We can get maxi-
mum of 3 years data for some queries but only a few
months for others.R(τ) is autocorrelation function.
Peaks (the local biggestR(τ) given a time window)
can be detected fromR(τ) plot. The periodT is cal-
culated as the duration between two neighbor peaks.
T = 365 for the query, “Oscar”. The bottom graph
of Fig. 2 shows the autocorrelation function plot for
the query Oscar.

3.6 Recurrent event seed word list

Many recurrent event queries share some common
words that have recurrent time sense. We list most

new results top schedule
football festival movie world
show day best tax
result calendar honda ford

download exam nfl miss
awards toyota tour sale

american fair list pictures
election game basketball cup

Table 1: Top recurrent event seed words

frequently used recurrent seeds in Table 1. Those
seeds are likely combined with other words to form
new recurrent event queries. For example, the seed,
“new”, can be used by queries “new bmw cars”,
“whitney houston new songs”, “apple new iphone”,
or “hairstyle new”.

To generate the seed list, we tokenized all the
queries from Implicit Timestamp queries and split
all the tokens. We then sort and unique all the to-
kens, and submit top tokens to professional editors
who are asked to pick 8,000 seeds from the top fre-
quent tokens. Some top tokens were removed if they
are not qualified to form recurrent event queries. The
editors took about four days to do the judgment ac-
cording to the token’s time sense and examples of
recurrent event queries. However, this is a one-time
effort. A token will be in the seed if there are many
recurrent event examples formed by this token, by
editors’ judgment.

Table 1 shows 32 top seeds. Some seeds connect
with time such as, “new, schedule, day, best, calen-
dar”; some relate to sports, “football, game, nfl, tour,
basketball, cup”; some about cars, “honda, ford, toy-
ota”. The reason why “miss” is in the seeds is that
there are many annual events about beauty contest
such as “miss america, miss california, miss korea”.

We use the seed list to generate the following
three features:
AveNumberTokensSeeds: number of tokens that is
in the seed list divided by number of tokens in the
query.
AveNumberTokensNotSeeds: number of tokens
that is not in the seed list divided by number of to-
kens in the query.
DiffNumberTokensSeeds: The difference of the
above two values.
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Figure 2: Frequency waveform(top) and corresponding autocorrelation curve (bottom) for queryOscar.

4 Learning Approach for REQ

The REQ classification is a typical machine learn-
ing task. GivenM observed samples used for train-
ing data,{(x0, y0), (x1, y1), · · · , (xM, yM)} wherexi is
a feature vector we developed in last section for a
given query. yi is the observation value,{+1,−1},
indicating the class of REQ and non-REQ. The task
is to find the class probability given an unknown fea-
ture vector,x′, that is,

p(y = c|x′), c = +1,−1. (1)

There are a lot of machine learning methods ap-
plicable to implement Eq. 1. In this work, we
adopted three representative methods.

The first method is Naive Bayes method. This
method treats features independent. Ifx is enx-
tended into feature vector,x = {x0, x1, · · · , xN} then,

p(y = c|x) =
1
Z

p(c)
i=N∏

i=0

p(xi |c)

The second method is SVM. In this work we used
the tool for our experiments, LIBSVM (Chang and
Lin, 2001). Because SVM is a well known approach
and widely used in many classification task, we skip
to describe how to use this tool. Readers can turn to
the reference for more details.

The third method is based on decision tree based
logistic regression model. The probability is given
by the formula below,

p(y = c|x) =
1

1+ e− f (x)
(2)

We employ Gradient Boosted Decision Tree algo-
rithm (Friedman, 2001) to learn the functionf (X).
Gradient Boosted Decision Tree is an additive re-
gression algorithm consisting of an ensemble of
trees, fitted to current residuals, gradients of the loss
function, in a forward step-wise manner. It itera-
tively fits an additive model as

ft(x) = Tt(x;Θ) + λ
T∑

t=1

βtTt(x;Θt)

such that certain loss functionL(yi , fT(x + i)) is
minimized, whereTt(x;Θt) is a tree at iterationt,
weighted by parameterβt, with a finite number of
parameters,Θt andλ is the learning rate. At iteration
t, treeTt(x; β) is induced to fit the negative gradient
by least squares.
The optimal weights of treesβt are determined by

βt = argminβ

N∑

i

L(yi , ft−1(xi) + βT(xi , θ))

Each node in the trees represents a split on a fea-
ture. The tuneable parameters in such a machine-
learnt model include the number of leaf nodes in
each tree, the relative contribution of score from
each tree called the shrinkage, and total number of
shallow decision trees.

The relative importance of a featureSi , in such
forests of decision trees, is aggregated over all the
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m shallow decision trees (Breiman et al., 1984) as
follows:

S2
i =

1
M

M∑

m=1

L−1∑

n=1

wl ∗ wr

wl + wr
(ylyr )

2I (vt = i) (3)

wherevt is the feature on which a split occurs,yl

andyr are the mean regression responses from the
right, and left sub-tree, andwl andwr are the corre-
sponding weights to the means, as measured by the
number of training examples traversing the left and
right sub-trees.

5 REQ Learner Evaluation

We collected 6,000 queries labeled as either Recur-
rent or Non-recurrent by professional human edi-
tors. The 6,000 queries were sampled from Implicit
Timestamp queries according to frequency distribu-
tion to be representative. We split the queries into
5,000 for training and 1,000 for test. For each query,
we calculated features’ values as described in Sec-
tion 3.

The Naive Bayes method used single Gaussian
function for each independent feature. Mean and
variance were calculated from the training data.

As for LIBSVM, we used C-SVC, linear function
as kernel and 1.0 of shrinkage.

The parameters used in the regression model were
20 of trees, 20 of nodes and 0.8 of learning rate
(shrinkage).

The test results are shown in Fig. 3, recall-
precision curve. We set a series of threshold to the
probability of c = +1 calculated by Eq. 1 so that
we can get the point values of recall and precision in
Fig. 3. For example, if we set a threshold of 0.6, a
query with a probability larger than 0.6 is classified
as REQ. Otherwise, it is non-REQ. The precision
is a measure of correctly classified REQ queries di-
vided by all classified REQ queries. The recall is a
measure of correctly classified REQ queries divided
by all REQ queries in test data.

In addition to the three plots, we also show the
results using only one feature, ExplicitQueryRatio,
for comparison with the classification method used
by (Zhang et al., 2009).All the three models us-
ing all features performed better than the existing
method using ExplicitQueryRatio. The highest im-
provement was achieved by GBDT regression tree
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Figure 3: Comparison of precision and recall rate be-
tween our method and the existing method.

model. The results of Naive Bayes were lower than
SVM and GBDTree. This model is weaker because
it treats features independently. Typically SVMs and
GBDT gives comparable results on a large class of
problems. Since for this task we use features from
different sources, the feature values are designed to
have larger dynamic range, which is better handled
by GBDT.

The features’ importance ranked by Equation 3
is shown in Table 2. We list the top 10 features.
The No.1 important feature is ExplicitQueryRatio.
The second and seventh features are from search ses-
sion analysis by counting users who changed queries
from Implicit Timestamp to Explicit Timestamp.
This is a strong source of features. The time se-
ries analysis feature is ranked No.3. Calculation of
this feature needs two years query log to be much
more effective, but we didn’t get so large data for
many queries. One of the features from recurrent
event seed list is ranked No.4. This is also an impor-
tant feature source. The ChiSquareYearDist feature
is ranked 5th, that proves the recurrent event query
frequency has a statistical distribution pattern over
years. TitleYearTop30 and TitleYearTop10 that are
derived from scraping results are ranked the 9th and
10th important.

Fig. 4 shows the distribution of feature values for
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Feature Rank Score
ExplicitQueryRatio 1 100
NormalizedUserSwitch 2 71.7
AutoCorrelation 3 54.0
AveNumberTokenSeeds 4 48.7
ChiSquareYearDist 5 36.3
YearUrlFPCTR 6 19.1
UserSwitch 7 11.7
QueryDailyFreq 8 10.7
TitleYearTop30 9 10.6
TitleYearTop10 10 5.8

Table 2: Top 10 most important features: rank and im-
portance score (100 is maximum)

1

2

3

4

5

6

7

8

9

10

Figure 4: Feature value distribution of all data
(blue=REQ, red=non-REQ)

each sample of the 6,000 data, where each point rep-
resents a query and each line represents a feature’s
value for all queries. One point is a query. The fea-
tures are ordered according to feature importance of
Table 2. The “blue” points indicate REQ queries and
the “red” points, non-REQ queries. Some features
are continuous like the 1st and 2nd. Some feature
values are discrete like the last two indicating Ti-
tleYearTop30 and TitleYearTop10. There are “red”
samples in the 4th feature but overlapped with and
covered by “blue” samples visually.

In the Table 3, we show F-Measure values as we
gradually added features from the feature, Explicit-
QueryRatio, according to feature importance in Ta-
ble 2. We listed the F-Measure values under three
threshold, 0.6, 0.7 and 0.8. Higher threshold will in-
crease classifier precision rate but reduce recall rate.
F-Measure is a metric combining precision rate and
recall rate. It is clearly observed that the classifier
performance is improved as more features are used.

Threshold
Feature 0.6 0.7 0.8
ExplicitQueryRatio 0.833 0.833 0.752
+NormalizedUserSwitch 0.840 0.837 0.791
+AutoCorrelation 0.850 0.839 0.823
+AveNumberTokenSeeds 0.857 0.854 0.834
+ChiSquareYearDist 0.857 0.864 0.839
+YearUrlFPCTR 0.869 0.867 0.837
+UserSwitch 0.862 0.862 0.846
+QueryDailyFreq 0.860 0.852 0.847
+TitleYearTop30 0.854 0.853 0.843
+TitleYearTop10 0.858 0.861 0.852
+All 0.876 0.867 0.862

Table 3: F-Measures as varying thresholds by adding top
features.

Query Probability
ncaa men’s basketball tournament 0.999
bmw 328i sedan reviews 0.999
new apple iphone release 0.932
sigir 0.920
new york weather in april 0.717
academy awards reviews 0.404
google ipo 0.120
adidas jp 0.082

Table 4: Probabilities of example queries by GBDT tree
classifier

Some query examples, and their scores from our
model are listed in Table 4. The last two exam-
ples,google ipoandadidas jp, have very low values,
and are not REQs. The first four queries are typical
REQs. They have higher values of features Explicit-
QueryRatio,Normalized UserSwitch and YearUrlF-
PCTR. Although bothnew apple iphone release re-
views and academy awards reviewsare about re-
views, academy awards reviewshas lower value
of NormalizedUserSwitch and ChiSquareYearDist
could be the reason for a lower score.

6 Web Search Ranking

In this section, we use the approach proposed
by (Zhang et al., 2009) to test the REQ classifier
for Web search ranking. In their approach, search
ranking is altered by boosting pages with most re-
cent year if the query is a REQ. The year indicator
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DCG@5 DCG@1
bucket #(query) Organic Our’s % over Organic Organic Ours % over Organic

[0.0,0.1] 59 6.87 6.96 1.48(-2.3) 4.08 4.19 2.69(-1.07)
[0.1,0.2] 76 5.86 6.01 2.52(0.98) 2.88 2.91 1.14(1.69)
[0.2,0.3] 85 6.33 6.41 1.24(2.12) 3.7 3.7 0.0(0.8)
[0.3,0.4] 75 5.18 5.24 1.18(-0.7) 2.92 2.95 1.14(1.37)
[0.4,0.5] 78 4.96 4.82 -2.84(-1.35) 2.5 2.42 -3.06(0)
[0.5,0.6] 84 5.4 5.37 -0.45(-0.3) 2.82 2.85 1.05(-1.5)
[0.6,0.7] 78 4.78) 5.19) 8.42(3.64) 2.56 2.83 10.75(4.1)
[0.7,0.8] 80 4.45 4.60 3.41(3.19) 2.21 2.26 1.98(2.8)
[0.8,0.9] 78 4.81 4.96 3.15(4.79) 2.32 2.33 0.55(0.65)
[0.9,1.0] 107 5.08 5.50 8.41*(4.41) 2.64 3.09 16.78*(1.36)

[0.0,1.0] 800 5.33 5.47 2.74*(2.17) 2.83 2.93 3.6*(1.26)

Table 5: REQ learner improves search engine organic results. The numbers in the brackets are by Zhang’s methods.
Direct comparison with Zhang’s method is valid only in the last line, using all queries. A sign “∗” indicates statistical
significance (p-value<0.05)

can be detected either from title or URL of the re-
sult. For clarity, we re-write their ranking function
as below,

F(q, d) = R(q, d) + [e(do, dn) + k]eλα(q)

where the ranking function,F(q, d), consists of
two parts: the base functionR(q, d) plus boosting.
If the queryq is not a REQ, boosting is set to zero.
Otherwise, boosting is decided bye(do, dn), k, λ and
α(q). e(do, dn) is the difference of base ranking score
between the oldest page and the newest page. If the
newest page has a lower ranking score than the old-
est page, then the difference is added to the newest
page to promote the ranking of the newest page.
α(q) is the confidence score of a REQ query. It is

the value of Eq. 1.λ andk are two empirical param-
eters. (Zhang et al., 2009)’s work has experimented
the effects of using different value ofλ andk (λ = 0
equals to no discounts for ranking adjustment). We
usedλ = 0.4 andk = 0.3 which were the best con-
figuration in (Zhang et al., 2009).

For evaluating our methods, we randomly ex-
tracted 800 queries from the Implicit Timestamp
queries. We scraped a commercial search engine us-
ing the 800 queries. We extracted the top five search
results for each query under three configures: or-
ganic search engine results, (Zhang et al., 2009)’s
method and ours using REQ classifier. We asked

human editors to judge all the scraped (query, url)
pairs. Editors assign five grades according to rel-
evance between query and articles: Perfect, Excel-
lent, Good, Fair, and Bad. For example, a “Perfect”
grade means the content of the url match exactly the
query intent.

We use Discounted Cumulative Gain
(DCG) (Jarvelin and Kekalainen, 2002) at rankk as
our primary evaluation metrics to measure retrieval
performance. DCG is defined as,

DCG@k =
k∑

i=1

2r(i) − 1
log2(1+ i)

wherer(i) ∈ {0 . . . 4} is the relevance grade of theith
ranked document.

The Web search ranking results are shown in Ta-
ble 5. We used GBDT tree learning methods be-
cause it achieved the best results. We divided 800
test queries into 10 buckets according to the classi-
fier probability. The bucket, [0.0,0.1], contains the
query with a classifier probability greater than 0 but
less than 0.1. Our results are compared with organic
search results, but we also show the improvements
over search organic by (Zhang et al., 2009) in the
brackets. Because Zhang’s approach output differ-
ent classifier values from Ours for the same query,
buckets of the same range in the Table contain dif-
ferent queries. Hence, it is inappropriate to compare
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Zhang’s with Ours for the same buckets except the
last row where we used all the queries.

Our classifier’s overall performance is much bet-
ter than the organic search results. We achieved
2.74% DCG@5 gain and 3.6% DCG@1 gain over
organic search for all queries. The gains are higher
than (Zhang et al., 2009)’s results with regards to
improvement over organic results. By direct com-
parison, Ours was 2.7% better than Zhangs signif-
icantly in terms of DCG@1 by Wilcoxon signifi-
cant test. DCG@5 is 1.1% better, but not signifi-
cant. The table also show that the higher buckets
with higher probability achieved higher DCG gain
than the lower buckets overall. Our approach ob-
served 16.78% DCG@1 gain for bucket [0.9,1.0].
This shows that our methods are very effective.

7 Conclusions

We found most of REQ are long tail queries that
pose a major challenge to Web search. We have
demonstrated learning REQ is important for Web
search. this type of queries can’t be solved in tra-
ditional ranking method. We found building a REQ
classifier was a good solution. Our work described
using machine learning method to build REQ clas-
sifier. Our proposed methods are novel compar-
ing with traditional query classification methods.
We identified and developed features from query
log, search session, click and time series analysis.
We applied several ML approaches including Naive
Bayes, SVM and GBDT tree to implement REQ
learner. Finally, we show through ranking experi-
ments that the methods we proposed are very effec-
tive and beneficial for search engine ranking.
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