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ABSTRACT
Entities (e.g., person, movie or place) play an important role
in real-world applications and learning entity types has at-
tracted much attention in recent years. Most conventional
automatic techniques use large corpora, such as news arti-
cles, to learn types of entities. However, such text corpora
focus on general knowledge about entities in an objective
way. Hence, it is difficult to satisfy those users with spe-
cific and personalized needs for an entity. Recent years have
witnessed an explosive expansion in the mining of search
query logs, which contain billions of entities. The word pat-
terns and click-throughs in search logs are not found in text
corpora, thus providing a complemental source for discov-
ering entity types based on user behaviors. In this paper,
we study the problem of learning entity types from search
query logs and address the following challenges: (1) queries
are short texts, and information related to entities is usually
very sparse; (2) large amounts of irrelevant information ex-
ists in search logs, bringing noise in detecting entity types.
In this paper, we first model query logs using a bipartite
graph with entities and their auxiliary information, such as
contextual words and clicked URLs. Then we propose a
graph-based framework called ELP (Ensemble framework
based on Lable Propagation) to simultaneously learn the
types of both entities and auxiliary signals. In ELP, two
separate strategies are designed to fix the problems of spar-
sity and noise in query logs. Extensive empirical studies are
conducted on real search logs to evaluate the effectiveness
of the proposed ELP framework.

Categories and Subject Descriptors
H.2.8 [Database management]: Database applications-
Data mining
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1. INTRODUCTION
An entity is something that exists in itself, actually or po-

tentially, concretely or abstractly, physically or not 1. Enti-
ties are forming the building block for various web applica-
tions. Yelp 2 is building on top of a corpus of local class en-
tities (e.g., the restaurant entity “The French Laundry”, the
Point of Interest entity “Golden Gate Bridge”, etc.) associ-
ated with user reviews. IMDB 3 has a large corpus of movie
and actor class entities. Modern search engines like Bing,
Google and Yahoo! start building Knowledge Graph con-
taining a large collection of diverse types of entities. When a
user issues a question about an entity (e.g., “net worth of Bill
Gates” or “phone number of Gary Danko”), the search en-
gine can retrieve results directly from the knowledge graph,
satisfying the user’s need and providing better user experi-
ence. Recent study shows that around 70% of the queries
contain entity information [31, 22]. Hence, the coverage of
entities is very important for these applications. Moreover,
knowing the exact types of entities can help the application
decide the best way in presenting results to users.

Various entity repositories, ranging from the more general
collaborative knowledge bases such as Wikipedia and Free-
base to the domain-specific corpora such as IMDB and Yelp,
are widely used to extract entity information and aggre-
gate the information into a comprehensive knowledge graph.
However, there are several problems with this approach: (a)
coverage: it is one of the key metric in measuring the quality
of knowledge. Knowledge bases like Wikipedia and Freebase
primary focus on popular entities from a few limited types,
while other domain-specific corpora are more expensive to
obtain. Plus, little information exists in knowledge bases
for many less popular entities or newly generated entities,
such as a new music title. It is difficult to identify and ex-
tract such entities in time; (b) ambiguity: multiple types of
entity are often associated with the same string collected
from the same or different sources. For example, the token
“Chicago” is not only a city entity, but also a movie entity or
a rock band entity. How to separate them apart in case little
is known about the types of the entities, and how to rank
these entities according to the popularity and/or user intent,
are both quite challenging; (c) discrepancy: errors may ex-
ist due to user-generated contents via crowdsourcing, thus
information extracted from these sources may be noisy and
inconsistent.

1http://en.wikipedia.org/wiki/Entity
2http://www.yelp.com/
3http://www.imdb.com/
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(a) Search query logs (b) Graph construction (c) Learning steps 

Figure 1: An intuitive example of learning entity types from search query logs. In (b), the four-pointed
orange and blue stars mean the person and place types, respectively. The number next to a star shows the
probability of a node belonging to a type. “1.0” means the type is already known and “?” means that we need
to learn the type from search query logs. In (c), each black arrowed line shows the propagation direction and
the circled number on each line represents the order of the propagation process.

A lot of research work in the literature tries to overcome
the above challenges from different perspectives. The exist-
ing knowledge bases could only cover a fraction of the whole
entity space. In order to expand the size of knowledge bases,
many automatic techniques have been proposed to discover
entities and their types from different large corpora, such as
news articles and web pages [3, 9, 30]. In addition, disam-
biguating entities from news reports is also studied in [14,
20]. Other sources such as search query logs can also be
leveraged to extract and disambiguate entities. Since the
search engine has become the main information source for
most people to look for information, search query logs can
be a nice complementary source for extracting new entity
information as well as learning entity popularity and dis-
ambiguating entities. A few state-of-the-art approaches are
proposed to classify and disambiguate entities in query logs
[16, 26, 6]. For instance, intent-based Model (IM) [26] pre-
dicts entity type distributions by jointly modeling user in-
tent and entity types via probabilistic inference in a graph-
ical manner. Fast Entity Linker (FEL) is proposed in [6]
to disambiguate entities by linking queries to entities in a
knowledge base. However, these methods do not fully ex-
plore the importance of auxiliary signals in query logs, i.e.
the structural language patterns (contextual word patterns)
in queries and the clicked domains from relevant web URL
results. For example, given the query “menu of Purple Pig”
and a user’s clicked domain URL “yelp.com”, both the pat-
tern “menu of” and the clicked URL help predicting “Pur-
ple Pig” as a local restaurant entity. Therefore, knowing
the types of these important signals can help mining entity
types from query logs more effectively.

In this paper, we model search query logs into a bipartite
graph to encode relations between entities and important
signals. Two kinds of nodes, entities and their auxiliary in-
formation, are contained in the constructed bipartite graph
shown in Figure 1 (b). With such a bipartite graph, we can
take advantage of the encoded relations [35] to learn entity
types. Moreover, the type information can also be assigned
to auxiliary nodes, thereby helping disambiguating entities
via user-generated texts (e.g., contextual words) and user
feedbacks (e.g., clicked URLs). In this paper, we apply a
graph-based Label Propagation (LP) method to simultane-
ously learn types of both entities and auxiliary signals. Fig-
ure 1 (c) shows the steps of LP in an intuitive way. Given a

small number of prior-known entities, the types of these en-
tities are first propagated to the connected auxiliary nodes,
and then the types are propagated back from auxiliary nodes
to unknown entities. Despite the simple idea, mining entity
types from the built graph is still a challenging task due to
the following reasons:

• Queries are short texts, and information related to en-
tities is usually very sparse. It is non-trivial to explore
the hidden connections among entities and auxiliary
information in search logs.

• Large amounts of irrelevant information exists in search
logs, bringing noise in detecting entity types. It is dif-
ficult to discover and remove such noisy information
from search logs.

In order to address these two issues, we propose an Ensemble
framework based on Label Propagation (ELP) to simulta-
neously learn types of both entities and auxiliary signals.
Specifically, we design two separate strategies to fix the prob-
lems of sparsity and noise in query logs, respectively.

In summary, our contributions are as follows:

• We represent query logs as a bipartite graph about
entities and their auxiliary signals. We leverage such
interconnected relationships between entities and their
auxiliary signals to learn both entity types and auxil-
iary node types together.

• We propose an Ensemble framework based on Label
Propagation (ELP) and design two separate strate-
gies in ELP to effectively learn node types from search
query logs.

• We conduct extensive empirical studies on search logs
from a real-world search engine to demonstrate the
effectiveness of the proposed ELP framework. In ad-
dition, some case studies show that ELP can learn im-
portant word patterns for different types of entities,
as well as disambiguating entities via the connected
auxiliary informaiton.

2. BACKGROUND
In this section, we first introduce several related concepts

and notations. Then, we will formally define the problem of
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learning node types from a bipartite entity-auxiliary graph
extracted from query logs.

Definition 1. A Bipartite Entity-Auxiliary (EA) Gra-
ph: A bipartite entity-auxiliary (EA) graph is represented
as an undirected graph G = (V, E). V is the set of nodes
(objects), including two types of objects, i.e., entities E =
{e1, ..., eM} and auxiliary signals A = {a1, ..., aN}. E ⊆
E×A is the set of links (relations) between the nodes in V ,
which involves the associatedWith link between entities and
auxiliary signals. LetW denote an M×N weight matrix, in
which element wij equals the frequency associating ei and
aj .

Figure 1 (b) shows an example of a bipartite EA graph
extracted from the search query logs in Figure 1 (a). Three
entities are connected with six auxiliary signals, including
four contextual words and two clicked URLs.

In EA graph, each entity has at least one type (label) in
reality. We assume there are K labels for entities (K ≥ 2)
and represent entity types as Y ∈ RM×K . yik ∈ Y is a non-
negative real number indicating the probability that entity
ei belongs to label k. In practice, a small set of entities (seed
entities) in the graph may be manually labeled with their
types. We denote the labeled entity set as EL. In Figure 1
(b), both “New York” and “Taylor Swift” are considered as
seed entities. We use Y0 to denote an instantiation of Y that
is consistent with the seed labels. Given an entity ei ∈ EL

with n labels (n ≥ 1), we set y0ik as 1.0/n if ei has label k,
otherwise 0. Given the entity ei ∈ E\EL without labels, we
have y0ik = 0 for any label k.

From the existing search logs D, we can extract a bipar-
tite graph G = (V, E) and get Y0 according to some seed
entities EL. Our goal is to learn entity types Y from G.
Since the auxiliary nodes can also carry labels with them
to indicate the important interconnections between entities
and the auxiliary signals, another goal is to assign labels to
those auxiliary nodes in G. We use Z ∈ RN×K as labels
of auxiliary nodes, where the element zjk is a non-negative
real number indicating the probability that aj relates to la-
bel k. Thus our ultimate goal becomes to estimate Y and
Z given G and EL. In order to solve this problem, we apply
a graph-based Label Propagation (LP) method to leverage
these important auxiliary signals via their connections with
the target entities as shown in Figure 1 (c).

3. PROPOSED METHOD
In this section, we propose an Ensemble framework based

on LP (ELP) to simultaneously learn types of both entities
and auxiliary signals from query logs. Before proceeding, we
first introduce how to build the entity-auxiliary graph from
real-world search logs.

3.1 Graph Construction
Given search logs, we first have to extract entities from

queries. Several methods are applied to find entities in
this paper. First, we use a part-of-speech tagger [1] to
extract contiguous words of proper nouns, common nouns
and capitalized words [16, 17] to form noun phrases. Sec-
ond, we match the extracted noun phrases according to a
dictionary of entities built from knowledge bases, such as
Wikipedia, Freebase and Yelp. We do not use the type in-
formation in those knowledge bases. We assume that the
types of entities are unknown in the experiments. These
methods help us detect entities in high precision. Besides,

we can use a more complex model in [10] to identify the
entity and the background part (i.e., contextual words). In
the example of the search logs in Figure 1 (a), we extract
“New York”, “Maxwell” and “Taylor Swift” as entities. Thus,
“home sales”, “real estate”, “albums” and “songs” are con-
sidered as contextual words. In our experiments, we use
both the uni-gram and binary-grams of contexts as auxiliary
nodes. The stop-word nodes are removed from our graph.

In search logs, clicked URLs are also very important for
learning entity types. Since each clicked URL may have
several levels of domain names to point to a certain webpage,
there will be too many redundant nodes of clicked URLs in
the constructed graph. Therefore, we group a set of URLs
into a single auxiliary node if they have exactly the same top-
and second-level domain names. In Figure 1 (a), we only
show the first two domain names for the clicked URLs. We
use the frequencies of entities and auxiliary nodes appearing
together in the query logs as weights of corresponding edges.

Such a bipartite graph helps encode relations between en-
tities and important auxiliary signals from search query logs.
We can take advantage of the encoded relations to discover
entity types by applying the graph-based LP method. How-
ever, directly applying LP may not be satisfying due to the
following issues in query logs:

1. Queries are short texts, and information related to
entities is usually very sparse. LP may not propagate labels
adequately. Therefore, it is necessary to explore the hidden
connections in EA graph.

2. Large amounts of irrelevant information exists in search
logs, bringing noise in detecting entity types. LP may prop-
agate errors out and enlarge the error information due to
the noise. Hence, it is imperative to discover and remove
such noisy information from the EA graph.

In the following, we first focus our attention on how to
apply LP on the built graph to learn types of both entities
and auxiliary signals simultaneously. Then we introduce two
separate strategies LPA and LPD to address the problem
of sparsity and noise in the EA graph respectively. After
that, we describe the proposed ELP framework that takes
advantage of the LPA and LPD strategies.

3.2 Methodology

3.2.1 The LP Method
The problem of learning with labeled and unlabeled data

from graphs has been investigated in [36, 37, 18, 33, 11].
The objective and algorithm of the LP method used in this
paper are heavily influenced by the works of [36, 18]. Given
the collection of search log data D, we can extract an entity-
auxiliary graph G = (V, E) with a weight matrixW as intro-
duced in Section 2. With a small set of seed entities EL, we
can initialize Y0. Our goal is to automatically estimate Y
for entities and Z for auxiliary nodes according to W and
Y0. We define a normalized frequency matrix as follows:

N = D−1/2W, (1)

where D is a diagonal matrix and each element dii ∈ D is
the sum of all the elements in the ith row (or column) of
WW>. Intuitively, dii can be interpreted as the volume of
all length-of-two paths that start at ei. The reason we use
such a normalization is to guarantee the convergence of LP
as shown in [18].
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Algorithm 1 The LP algorithm

Input: Search query log D, a set of seed entities EL and a
trade-off parameter α

Output: Label matrices Y and Z
1: //graph construction step

Build an entity-auxiliary graph G = (V, E) from D
2: //initialization step

Initialize Y as Y0 according to EL

3: Compute the weight matrix W from G
4: Compute N from W according to Equation (1)
5: //iterative computation step
6: while NOT converged do
7: //propagation step from entities to auxiliary nodes

Compute Zt according to Equation (2)
8: //propagation step from auxiliary nodes to entities

Compute Yt according to Equation (3)
9: end while

10: Normalize Y and Z according to Equation (5)

With the above definitions and notations, LP iteratively
updates Y and Z. For the t-th iteration, it first propagates
the types of entities to the connected auxiliary nodes:

Zt = N>Yt−1. (2)

Then it propagates the types back to entities from the aux-
iliary nodes as follows:

Yt = αNZt + (1− α)Y0, (3)

where α is a parameter to trade off the label consistency
between the intrinsic graph structure and the seed entities.
It has been shown in [18] that the sequence of Yt asymptot-
ically converges to:

Y∗ = (1− α)(1− αD−1/2WW>D−1/2)−1Y0. (4)

The time complexity of LP is O(T |E|), where T is the itera-
tion number and |E| is the number of connections in the EA
graph. Through our experiments, the algorithm converges
after no more than 20 rounds in most cases. The LP method
is summarized in Algorithm 1.

Once Y and Z are obtained, we normalize their elements
to get the posterior probabilities p(k|ei) for i = 1, ...,M and
p(k|aj) for j = 1, ..., N as follows:

p(k|ei) = yik/

k∑
l=1

yil,

p(k|aj) = zjk/

k∑
l=1

zjl.

(5)

3.2.2 The Proposed LPA Strategy
Directly applying LP may not be satisfying because the

connections extracted from query logs are very sparse and
LP cannot propagate labels adequately. Therefore, we pro-
pose a strategy LPA (Label Propagation after Adding more
connections) to explore the hidden connections in the EA
graph. We take advantage of the word2vec tool 4 to connect
entities with more contextual words and help the LP model
propagate labels more effectively.

4https://code.google.com/p/word2vec/
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Figure 2: Two seperate intuitive examples of the
updated graphs obtained from the LPA and LPD
strategies. The dashed black edges in (a) represent
the hidden connections explored by LPA. In (b),
the dashed box of the auxiliary node means that
the node is multi-type, and the dashed orange edges
represent the connections we should get rid of ac-
cording to LPD.

The intuition behind LPA is that, if one entity e connects
with one auxiliary node a1 and a1 has a high similarity with
another auxiliary node a2, we should connect e with a2 to ex-
pand the connections in the bipartite EA graph. Hence, we
need to measure the similarities among auxiliary nodes first.
In this paper, we focus on contextual words and measure
their similarities according to the semantic meanings by the
word2vec tool. The word2vec tool provides an efficient im-
plementation of the continuous bag-of-words and skip-gram
architectures for computing vector representations of words
[23, 24, 25]. By calculating the distance between two vector
representations, we can obtain the similarity value for two
words. Hence, given the auxiliary node set A = {aj}Nj=1,

we could get a similarity matrix S ∈ RN×N , where each el-
ement sij ∈ S denotes the similarity value between ai and
aj . The above exploration of connections can be formulated
as follows:

WA =W ×S, (6)

where WA is the updated weight matrix according to LPA.
Intuitively, wij ∈ WA can be interpreted as the weight ag-
gregation of all length-of-two paths from ei to aj via every
aj′ ∈ A. Given the search logs in Figure 1 (a), we show an
intuitive example of the updated graph according to LPA in
Figure 2 (a). We assume that the contextual words “home
sales” and “real estate” are very similar so we connect “New
York” with “real estate” in Figure 2 (a). With such a denser
graph, we could run the LP algorithm to propagate labels
more effectively. We denote the node types learned from
LPA as YA and ZA for entities and auxiliary nodes, respec-
tively.

3.2.3 The Proposed LPD Strategy
Another issue of directly applying LP is that noise may

exist in the built EA graph so that LP may propagate er-
rors out and enlarge the error information. Therefore, we
propose a strategy LPD (Label Propagation after Deleting
noisy nodes) to discover and get rid of noisy information in
the EA graph.

The basic idea of LPD is to discover some multi-type
auxiliary nodes and delete them with their corresponding
connections in the constructed EA graph. Here multi-type
nodes mean contextual words or clicked URLs that cover
several types of entities. For example, “picture” relates to
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several entity types, such as media, location, and person.
Hence, it is not informative to take such contextual word
into consideration. We apply a similar approach in [2] to
get rid of some multi-type auxiliary nodes and update the
graph accordingly. Specifically, we start by calculating the
similarity (e.g., cosine similarity) between two entities ac-
cording to the bag-of-word representations of their auxiliary
nodes. Low similarity pairs are more likely to represent en-
tities with different types. Hence, auxiliary nodes involved
with such entities are not likely to be very specific. So we can
consider low similarity pairs as voters and let the auxiliary
nodes be the candidates. Each pair votes for its auxiliary
nodes they share. The more votes an auxiliary node gets,
the higher probability of multi-type it is. We can then apply
a threshold to get rid of some auxiliary nodes and update the
EA graph accordingly. Figure 2 (b) gives an intuitive exam-
ple of the updated graph according to LPD. In this figure,
we assume the clicked URL“www.en.wikipedia.org/wiki/” is
a multi-type node and delete it with its corresponding edges
from the graph. Then we can run LP on such a cleaner graph
so that the error information can be propagated out as little
as possible. We denote the node types learned from LPD as
YD and ZD for entities and auxiliary nodes, respectively.

3.2.4 The Proposed ELP Framework
Given the proposed LPA and LPD strategies, we can sim-

ply combine them together to derive another two strategies,
LPAD and LPDA. LPAD updates the graph by first adding
more connections and then deleting noisy nodes. The node
types learned from LPAD are denoted as YAD and ZAD for
entities and auxiliary nodes, respectively. LPDA updates
the graph in an opposite way, i.e., first deleting noisy nodes
and then adding connections based on the remaining nodes.
We denote the node types learned from LPDA as YDA and
ZDA for entities and auxiliary nodes, respectively.

Since each strategy has its advantage, we propose an Ensemble
framework based on LP (ELP) to combine them together
and maximize the margin [12]. We run each strategy sep-
arately and select the best one as the final result for each
node as follows:

Y = max{YA,YD,YAD,YDA},
Z = max{ZA,ZD,ZAD,ZDA}.

(7)

In practice, we can also use the weighted results of the
four strategies as the final solution. Since it would bring
several weight parameters for these strategies, we calculate
the results of ELP according to Equation (7) for simplicity
in the experiments.

4. EXPERIMENTS
In this section, we conduct extensive experiments to eval-

uate the proposed ELP framework. After introducing the
datasets and the experimental settings, we compare differ-
ent baseline methods.

4.1 Data Processing
We collect a large set of click-through data (denoted as

a system set) over a continuous period of time from a real-
world search engine. Then a small number of click-through
data are sampled from the system set and denoted as a gold
set. We manually labeled entities from queries of the gold set
with correct types. The labeled data are only used for seed

Table 1: Statistics of the collected query data.
Dataset #Queries #Clicked URLs

Gold 16,903 2,369,618
System 217,223,831 1,556,499,551

Table 2: Statistics of the entity-auxiliary graphs. “EC

Links” means the entity-context links and “EU Links”

means the entity-URL links.

#Auxiliary nodes #Links

Dataset #Entities #Contexts #URLs #EC Links #EU Links
Gold 934 1,445 10,059 3,323 36,475

System 10,722 39,279 24,107 514,489 221,668

Table 3: Distributions of labels for entities.
Labels

Dataset Local Media Person

Gold 36.6% 36.4% 27.0%
System 33.5% 33.7% 32.8%

selections and performance evaluations in the experiments.
The basis statistics of these two datasets are shown in Table
1.

In the experiments, we focus on 3 target types of classes,
namely Local, Media and Person. By following the extrac-
tion rules in Section 3.1, we get entities and related auxiliary
signals belonging to these 3 target types. In order to build a
compact and reliable graph, we apply a threshold to get rid
of some infrequent nodes. For example, we set the threshold
as 1 for the gold dataset and filter out those nodes appear-
ing only 1 time. The basic statistics of nodes and links in
the entity-auxiliary graphs are represented in Table 2. The
distributions of the 3 target labels for entities are shown in
Table 3.

4.2 Compared Methods
In order to show that the LP model fits the constructed

graph very well, we compare LP with several traditional
classification methods. Given the bipartite EA graph, we
consider the connected auxiliary nodes as features for each
entity and the frequencies (the edge weights) as feature val-
ues. We focus on the following methods:

• SVM: Support Vector Machine (SVM) is a popular
classification method. Since non-linear RBF kernel is
widely used in SVM models, we apply SVM (RBF) on
the constructed bipartite EA graph.

• KNN: We compare with the K-Nearest Neighbors method
(KNN) to show the effectiveness of the LP method. We
denote the KNN method using n neighbors as KNN-n.

• DT: The Decision Tree method (DT) is applied on
features extracted from the EA graph.

• NB: We apply the Naive Bayers (NB) on features of
entities extracted from the built EA graph.

• LP: The original Label Propagation method (LP) is
applied on the EA graph without the feature extrac-
tion.

In addition, in order to show the effectiveness of the pro-
posed ELP framework, we compare with different variations
of the LP model. Since both contextual words and clicked
URLs can be considered as auxiliary information for entities
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in search query logs, we can construct three different bipar-
tite graphs. They are the Entity-Context (EC) graph, the
Entity-clicked URL (EU) graph and the Entity-Auxiliary
(EA) graph. The EA graph considers both the contexts and
clicked URLs as the auxiliary information in search query
logs, so it contains more information than the EC and EU
graphs. We can apply our proposed strategies on these dif-
ferent graphs and we summarize them as follows:

• LP: There are three versions for LP. They are LP (C),
LP (U) and LP (A). LP (C) focuses on the EC graph.
Similarly, LP (U) applies on the EU graph and LP (A)
runs on the EA graph.

• LPA: We derive two baselines from LPA. The first one
is LPA (C), which applies the LPA strategy on the bi-
partite EC graph. The other one is LPA (A) on the EA
graph. The effectiveness of using more auxiliary infor-
mation from search query logs can be demonstrated
by comparing LPA (C) with LPA (A). Since the LPA
strategy focuses on expanding the hidden connections
between entities and contextual words, we cannot ap-
ply it on the EU graph.

• LPD: Three baselines can be generated from LPD.
They are LPD (C), LPD (U) and LPD (A) on the EC,
EU and EA graphs respectively. In particular, LPD
(C) means that we first get rid of the top k multi-type
contextual words and then apply the LP method on
the updated EC graph. LPD (U) is derived in a sim-
ilar way. For LPD (A), we first find the top k multi-
type contextual words from the EC graph and the top
k multi-type clicked URLs from the EU graph. Af-
ter that we delete these contextual words and clicked
URLs from the EA graph and apply LP on the up-
dated graph. In this way, we guarantee that the most
ambiguous auxiliary nodes (both contextual words and
clicked URLs) are removed from the EA graph.

• LPAD: There are two baselines based on LPAD. They
are LPAD (C) and LPAD (A). Specifically, LPAD (C)
contains three steps: (1) expand connections and up-
date the EC graph; (2) delete multi-type nodes in the
denser EC graph; (3) run LP on the latest EC graph.
LPAD (A) executes in a similar way.

• LPDA: We generate LPDA (C) and LPDA (A) from
LPDA. LPDA (C) updates the EC graph by first delet-
ing multi-type contextual words and then expanding
hidden connections between entities and the remaining
contextual words. LPDA (A) updates the EA graph
in a similar way.

• ELP: We also derive two versions for ELP. They are
ELP (C) and ELP (A). ELP (C) combines LPA (C),
LPD (C), LPAD (C) and LPDA (C) in an ensemble
way while ELP (A) ensembles LPA (A), LPD (A),
LPAD (A) and LPDA (A) together to achieve a better
performance.

For a fair comparison, we use the same parameter settings
for the baselines related to the LP method. Specifically, we
test with different α values for LP and find that α ∈ (0.5, 0.9)
yields similar good results. So we set the parameter α to be

0.75 as in [18]. In order to get the similarities among con-
textual words, we use a pre-trained vectors5 on about 100
billion words and phrases from various news articles. For
the number of auxiliary nodes that should be deleted, we
set it to be 10 in the experiments. In addition, we use SVM
(RBF) with optimized parameters and other traditional clas-
sifiers with default parameters in our experiments. For each
node, we can get a list of non-negative real numbers from LP
indicating the posterior probabilities that the node relates
to a label. We clamp these probabilities to 0/1 values for
simplicity.

In order to evaluate the results, we focus on the labeled
data and use accuracy and weighted average of the F1 score
of each class (abbreviated as “weighted-F1”) as the perfor-
mance measures for entities. Weighted-F1 means that we
calculate the F1 score for each label and find their aver-
age value weighted by the number of true instances for each
label. This metric takes the label imbalance into consider-
ation. For an entity with multi-labels, if the learned label
matches with one of its multiple labels, we consider it as a
correct prediction. Since we do not have ground truth for the
auxiliary information, we will not present the quantitative
analysis on the auxiliary information. We only show some
qualitative analysis in Section 4.4. In the experiments, we
randomly select a certain portion (e.g., 10%) of the entities
as seeds for 10 times and report the average performances
for models related to LP. We use the same seed entities as
the training data for the traditional classification models.

4.3 Performance Evaluation
In this subsection, we show the performances of the pro-

posed ELP framework. We first demonstrate that how the
LP method takes advantage of the constructed bipartite EA
graph compared with some traditional classification models.
Due to space limit, we only show the performances on the
EC graph of the gold dataset in Table 4. Similar perfor-
mances can be obtained for other graphs.

It can be observed from Table 4 that LP consistently
outperforms other classification methods on accuracy and
weighted-F1 scores for different amounts of seed entities
(training data). It illustrates that the constructed graph
helps the LP method propagate the label information out
very well. Since all the other classifiers ignore the graph
structure, important information may be missing and the
performances are not so well compared with the LP method
that takes advantage of the graph structure. In addition,
when the amount of seed entities increases, the performances
become better for almost all classifiers except the SVM method
with the RBF kernel. It seems that more training data
does not help SVM (RBF) very much. However, in real-
ity, more seed entities means more annotations and human
labelings. With large volumes of new queries, extracting
such supervised information from search query logs can be
very expensive and time consuming. In Table 4, LP can
only achieve 45% of accuracy when 1% of data are selected
as seeds. The performance should be improved if we explore
the hidden connections and get rid of multi-type nodes in
the constructed graph as in the proposed ELP framework.
So in the following, we focus on the gold dataset with 1% of
seed entities to show the effectiveness of ELP.

5freebase-vectors-skipgram1000-en.bin.gz. It can be down-
loaded from https://code.google.com/p/word2vec/.
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Table 4: Average performances with different amounts of seed entities for 10 times on the EC graph of the
gold dataset. The results are reported as “average performance + (rank)”. “↑” indicates that the larger the
value the better the performance.

Percentages of seed entities

Metric Method 1% 10% 20% 30% 40% 50%

Accuracy ↑

SVM (RBF) 0.3720 (3) 0.3876 (5) 0.3853 (5) 0.3763 (5) 0.4139 (5) 0.4206 (5)
KNN-1 0.3610 (5) 0.4617 (4) 0.5100 (4) 0.5406 (4) 0.5591 (4) 0.5779 (4)

DT 0.3688 (4) 0.4995 (3) 0.5568 (3) 0.5818 (3) 0.5989 (3) 0.6036 (3)
NB 0.3752 (2) 0.5713 (2) 0.6106 (2) 0.6317 (2) 0.6271 (2) 0.6318 (2)
LP 0.4544 (1) 0.6959 (1) 0.7204 (1) 0.7313 (1) 0.7350 (1) 0.7386 (1)

Weighted-F1 ↑

SVM (RBF) 0.2278 (3) 0.2445 (5) 0.2353 (5) 0.2206 (5) 0.2858 (5) 0.2918 (5)
KNN-1 0.2248 (4) 0.4190 (4) 0.4987 (4) 0.5304 (4) 0.5522 (4) 0.5755 (4)

DT 0.2231 (5) 0.4608 (3) 0.5404 (3) 0.5702 (3) 0.5903 (3) 0.5977 (3)
NB 0.2789 (2) 0.5643 (2) 0.6066 (2) 0.6295 (2) 0.6233 (2) 0.6293 (2)
LP 0.3904 (1) 0.6910 (1) 0.7188 (1) 0.7308 (1) 0.7346 (1) 0.7385 (1)

The results of different methods based on LP are shown
in Table 5. It can be observed that ELP (A) outperforms
other baseline methods on both accuracy and weighted-F1
and ELP (C) can also achieve a very good performance. ELP
(A) outperforms ELP (C) with an improvement of 21% on
the accuracy. It shows that more auxiliary nodes help ELP
achieve a better performance on learning entity types from
search query logs.

In particular, due to the noisy information in search query
logs, directly applying the LP method on the constructed
EA graph may reduce the performance as shown in Table 5.
However, the results can be improved if we better build the
graph as introduced in LPA and LPD. We can observe that
the performance of LPA (LPD) on the EA graph are better
than those on the EC and EU graphs. It demonstrates that
using more high-quality auxiliary nodes can provide more
important information and facilitate the process of LPA or
LPD. Moreover, compared with the original LP method,
both LPA and LPD can improve the performances for all
the constructed bipartite graphs (i.e., EC, EU and EA). For
example, LPA (A) significantly outperforms LP (A) with
improvements of 45% and 104% on accuracy and weighted-
F1, respectively. Furthermore, LPA seems more powerful
than LPD on both the EC and EA graphs. It shows that
exploring hidden connections among the sparse graph plays
a more important role in learning entity types from search
query logs.

Though LPA and LPD perform better than LP, our pro-
posed ELP framework achieves better results than the LPA
and LPD strategies. Specifically, ELP (A) outperforms LPA
(A) with an improvement of 22% on the weighted-F1 score.
In addition, ELP also performs better than LPAD and LPDA
with an average improvement of 18% on the weighted-F1
score as shown in Table 5. It implies that ELP can maximize
the effectiveness of combining different strategies together.
Simply combining LPA and LPD together (e.g., LPAD and
LPDA) may not make full use of the operations of adding
more connections and deleting the noisy nodes.

In summary, with the help of exploring hidden connections
and getting rid of noisy nodes, the proposed ELP framework
can achieve an accuracy of 68% on the EA graph with only
1% of entities as seeds. From Table 4, we can see that the
LP method needs around 10% of seed entities to get the
same accuracy score. Therefore, ELP can help significantly
reduce the cost of human labeling in learning entity types
from search query logs.

We further show the effectiveness of the proposed ELP
framework on the larger system set. Only 0.1% of seed en-
tities are used in the experiments to test the power of ELP.
Since we only labeled entities in the gold set and these enti-

Table 5: Average performances with 1% of seed en-
tities for 10 times on the gold dataset. The results
are reported as “average performance + (rank)”. “↑”
indicates that the larger the value the better the
performance.

Metric

Graph Method Accuracy ↑ Weighted-F1 ↑

EC

LP (C) 0.45 (8) 0.39 (8)
LPA (C) 0.53 (5) 0.49 (5)
LPD (C) 0.50 (7) 0.45 (6)

LPAD (C) 0.53 (5) 0.49 (5)
LPDA (C) 0.54 (4) 0.50 (4)

ELP (C) 0.56 (3) 0.56 (2)

EU
LP (U) 0.39 (10) 0.26 (10)

LPD (U) 0.52 (6) 0.44 (7)

EA

LP (A) 0.40 (9) 0.27 (9)
LPA (A) 0.58 (2) 0.55 (3)
LPD (A) 0.53 (5) 0.45 (6)

LPAD (A) 0.58 (2) 0.55 (3)
LPDA (A) 0.58 (2) 0.55 (3)

ELP (A) 0.68 (1) 0.67 (1)

Table 6: Average performances with 0.1% of seed
entities for 10 times on the system dataset. The
results are reported as “average performance +
(rank)”. “↑” indicates that the larger the value the
better the performance.

Metric

Graph Method Accuracy ↑ Weighted-F1 ↑

EC

LP (C) 0.44 (6) 0.32 (8)
LPA (C) 0.45 (5) 0.37 (5)
LPD (C) 0.50 (4) 0.41 (4)

LPAD (C) 0.45 (5) 0.37 (5)
LPDA (C) 0.45 (5) 0.37 (5)

ELP (C) 0.57 (2) 0.56 (2)

EU
LP (U) 0.40 (9) 0.27 (10)

LPD (U) 0.43 (7) 0.34 (7)

EA

LP (A) 0.42 (8) 0.30 (9)
LPA (A) 0.55 (3) 0.51 (3)
LPD (A) 0.44 (6) 0.36 (6)

LPAD (A) 0.55 (3) 0.51 (3)
LPDA (A) 0.55 (3) 0.51 (3)

ELP (A) 0.59 (1) 0.58 (1)

ties are included in the system set, we calculate the accuracy
and weighted-F1 scores on the labeled entities in the system
set. The performances are presented in Table 6. We can get
similar observations for the system set.

4.4 Case Study
In this subsection, we present several case studies to show

the effectiveness of the proposed ELP framework. We first
show the most popular auxiliary nodes with their labels
learned from ELP and explain how such auxiliary informa-
tion can help detect new entities from search query logs.
Then we give some examples of the hidden connections we
explored in LPA. After that, we list several multi-type aux-
iliary nodes discovered in LPD. At the end, we will analyze
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Table 7: The most popular auxiliary information
learned from ELP (A) on the gold dataset.

Auxiliary Information

Label Top k Contextual Word Clicked URL

Local

1 high school hamptoninn3.hilton.com/en/

2 Sale in www.homes.com/Real_Estate

3 IL www.wunderground.com/weather-forcast/

4 Orlando www.accuweather.com/en/

5 Coupons www.city-data.com/city/

Media

1 Watch www.tv.com/shows/

2 Cast tv.yahoo.com/shows/

3 Season tv.msn.com/tv/

4 Songs tv.yahoo.com/news/

5 Episode yidio.com/show/

Person

1 Biography www.theguardian.com/film/

2 Site marquee.blogs.cnn.com/2014/

3 Naked images.fanpop.com/images/

4 Nude movies.msn.com/movies/

5 Divorce www.tmz.com/2014/

the potential to disambiguate multi-label entities in the pro-
posed ELP framework.

4.4.1 Popular Auxiliary Information
Given the gold dataset, we first randomly select 1% of

entities as seeds and run ELP on the EA graph. Then we
apply a threshold (e.g., larger than 10) to select the most
popular contextual words and clicked URLs separately. Af-
ter that, we group the auxiliary nodes according to their
learned types and rank nodes in each group by the learned
probability value in a decreasing order. Due to space limit,
we only show the top 5 related auxiliary information learned
from ELP (A) for the gold dataset in Table 7. We can ob-
serve that people care about the education, real estate and
weather very much when they search about local entities.

4.4.2 New Entity Discovery
With the learned types of auxiliary nodes in Table 7, we

can discover new entities easily. For example, if a new TV
series is released, we can detect it as a new entity when peo-
ple search with the word “episode”. In our experiments, we
consider those entities appearing few times (≤ 2) as new en-
tities and ELP can learn their types correctly. For instance,
“Pogo” (an online game) appears only twice and ELP de-
tects it as a media entity because its connected contextual
words are “app” and “ipad”. However, “Pogo” refers to a mu-
sical artist and a comic strip in Wikipedia. Therefore, the
ELP method helps us discover “Pogo” as a new media entity,
and we can add such information to the current knowledge
graph.

4.4.3 Hidden Connections
Now we analyze how the hidden connections we explored

help LPA fully propagate labels. We focus on those entities
with few connected contextual words and give some exam-
ples of the entities with their hidden connections we discov-
ered from the gold dataset as shown in Table 8. It can be ob-
served that the hidden connections provide complementary
and discriminative information for learning entity types. For
example, given the entity “Big Brother” and its connected
contextual word “CBS”, the word “showtime” help predict
“Big Brother” as an entity of media with more confidence.
In addition, the hidden connections can help learn entity
types more correctly. Take the entity “George Clooney” as
an instance. The connected contexts “movie” and “new” are
a bit ambiguous and“George Clooney”may be considered as
an entity of media because “movie” is more related to media.

Table 8: Some entities and their connected contex-
tual words from query logs. The hidden connected
contextual words explored by LPA are also shown
in the last column.

Contextual Word

Label Entity Existing word Hidden word

Media Big Brother CBS Showtime
Person George Clooney Movie, New Wedding
Media Haunted Taylor Swift Music, Video
Person Sarah McLachlan Song Single
Local Starbucks free, coffee open, free shipping, zip code

Table 9: The multi-type auxiliary information dis-
covered from LPD on the gold dataset.

Auxiliary Information

Top k Contextual Word Clicked URL

1 Online en.wikipedia.org/wiki/

2 Lyrics geo.yahoo.com/t/

3 News video.search.yahoo.com/video/

4 Free video.search.yahoo.com/search/

5 Hotels images.search.yahoo.com/search/

6 Movie search.yahoo.com/

7 Newspaper news.search.yahoo.com/

8 Weather www.imdb.com/title/

9 Map www.youtube.com/

10 Jobs news.yahoo.com/photos/

However, if we connect“George Clooney”with“wedding”, we
can easily learn that “George Clooney” is an entity of per-
son. Therefore, exploring the hidden connections in query
logs can help learn entity types more accurately.

4.4.4 Multi-type Auxiliary Information
Here we analyze the effectiveness of discovering and re-

moving the multi-type auxiliary information from LPD. We
list the 10 most ambiguous auxiliary nodes discovered from
the gold dataset in Table 9. It can be observed that these
auxiliary nodes are related to different types of entities and
getting rid of them can help propagate labels more accu-
rately in LP. For example, the contextual word “Online” can
refer to the online information of a place, a movie and a per-
son. In addition, the clicked URL “en.wikipedia.org/wiki/”
is related to a navigational website that contains diverse in-
formation. It is difficult to detect the type of an entity if
such URLs are connected with the target entity. Therefore,
we identify the ambiguous auxiliary nodes and remove them
from our constructed graph.

4.4.5 Entity Disambiguation
According to the proposed ELP framework, we can get a

list of non-negative real numbers indicating the probabilities
that an entity relates to a type. We clamp these probabilities
to 0/1 values for simplicity in the performance evaluation.
However, in reality, a lot of entities have more than one
type. In this subsection, we analyze the potential of ELP to
disambiguate multi-label entities.

We first analyze those entities without ambiguity. From
our experimental results, ELP gives high probability values
to the types of these entities. For example, given the en-
tity “Gold Digger”, ELP learns a probability value of 0.94
for the media type. Similarly, “’Walt Disney World” has a
probability value of 0.80 for the local type.

We also focus on those multi-type entities to see whether
it is easy to disambiguate them in our experiments. We
take the entity “Maxwell” as an example. ELP learns it as
a local entity with a probability of 0.48 and a person entity
with a probability of 0.37. Table 10 shows some connected
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Table 10: Some auxiliary nodes for a multi-label en-
tity “Maxwell”. We group them according to their
types learned from ELP.

Auxiliary Information

Label Top k Contextual Word Clicked URL

Local

1 Real estate www.zillow.com/homedetails/

2 Weather forecast www.realtor.com/realestateandhomes/

3 Map of www.healthgrades.com/physician/

4 Sale in www.homes.com/Real_Estate/

5 Homes for sale www.wunderground.com/weather-forecast/

Person

1 New album www.allmusic.com/artist/

2 Discography www.jango.com/music/

3 Songs by www.oldies.com/artist-songs/

4 Albums www.songkick.com/artists/

5 Full album www.mtv.com/artists/
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Figure 3: Parameter analysis on the gold dataset.

auxiliary nodes for “Maxwell”. We group them according
to their labels learned from ELP and rank them by their
probability values in a decreasing order. It can be observed
that the auxiliary nodes for “Maxwell” as a local entity and
a person entity are very different. Hence, ELP provides the
potential for us to further split the entity node “Maxwell”
into two nodes to better build the entity-auxiliary graph
from search query logs.

4.5 Sensitivity Analysis
In this subsection, we assess the benefit of ELP with dif-

ferent amounts of seed entities. We focus on the EC and EA
graphs extracted from the gold dataset and fix other param-
eters. Figure 3 (a) shows the classification accuracies. We
find that the performances become better when we increase
the seed entities. Moreover, the results stabilize when we
use more than 10% of seed entities.

We also demonstrate the effect of the numbers of deleted
nodes in Figure 3 (b). Here we fix 1% of seed entities and
other parameters, but vary the numbers of deleted nodes. It
can be observed that the best accuracy is achieved when we
remove 10 multi-type auxiliary nodes. The noise may still
exist if we get rid of too few nodes and the performance can-
not be improved dramatically. However, information may be
imcomplete if we delete too many nodes as shown in Figure
3 (b). So in our experiments, we set the number of deleted
nodes as 10.

5. RELATED WORK
Entity extraction and classification have rapidly developed

over the past few years [1, 5, 26]. Several methods are pro-
posed to extract entities from web documents [3, 30] and
the disambiguation of entities from news articles is studied
in [14, 20]. In recent years, the extraction and classifica-
tion of entities over query logs receive a lot of attention [27,
26, 16, 1, 17] and disambiguating entities in queries is also
investigated in [6]. However, all these existing methods do
not fully explore the importance of the auxiliary information

related to entities. Our study is different since we encode en-
tities and the important auxiliary information together into
a bipartite graph and learn the types of both entities and
auxiliary nodes simultaneously.

The graph-based label propagation method is also very
popular in information retrieval tasks [18, 33]. Li et al.
use click graphs, a bipartite-graph representation of click-
through data from search query logs, to improve query in-
tent classifiers [18]. Spam webpages are detected using the
link structure of the click-through bipartite graph in [33].
It propagates spam scores iteratively between queries and
URLs from a few seed pages/sites. In our work, we focus
on learning entity types from search query logs, which dif-
fers from the task in [18, 33]. In addition, these models do
not consider the sparsity and noise issues in search query
logs. Our work proposes two separate strategies to explore
hidden connections in the constructed bipartite graph and
detect noisy information in query logs.

Besides the label propagation, many other learning meth-
ods, including Markov random walks [15], learning with lo-
cal and global consistency [36, 8] and manifold regulariza-
tion [4], are based on graphs. Furthermore, Chang et al.
[7] proposed an unsupervised embedding scheme on graphs
with heterogeneous components. Their method systemati-
cally captures network similarity between pairwise nodes by
a deep learning framework. Though these models differ in
their optimization objectives, they all share the same under-
lying assumption that if two samples are close in the intrinsic
geometry of an input space, their conditional distributions
will be similar.

The entity-oriented analysis of query data is also related
to our work [13, 32]. For example, class attributes are ex-
tracted from search query logs for entities in [29, 28] as a
complement source for existing knowledge bases. Based on
the attributes, synonymous query intent templates are iden-
tified in [19]. In addition, entity-related search actions, an-
notations, and recommendation systems are studied in [22,
21, 34], respectively. However, our work is different from
them since we study the problem of detecting entity types
from search query logs.

6. CONCLUSION
In this paper, we study the problem of discovering entity

types from search query logs. In order to take advantage of
word patterns and user feedbacks (e.g., clicked URLs) from
query logs, we construct a bipartite graph to encode entities
and the important auxiliary information together. Based
on this, the framework ELP is proposed to simultaneously
learn types of both entities and auxiliary signals. In order
to effectively learn node types, two separate strategies LPA
and LPD are proposed and incorporated into ELP. Extensive
empirical studies are conducted on real-world search logs to
evaluate the effectiveness of the proposed ELP framework.

There are several interesting directions for future work.
Since the constructed bipartite graph from search query logs
reflects the most popular trending of entities, it can provide
complementary information for the current knowledge bases.
One direction of our future work is to explore the possibil-
ity of incorporating the built graph to the current knowl-
edge bases. Another potential direction is to further dis-
ambiguate multi-label entities effectively based on the built
bipartite graph, which is a hot but challenging problem in
recent years.
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