
Predicting Primary Categories of Business Listings for
Local Search

Changsung Kang, Jeehaeng Lee, Yi Chang
Yahoo! Labs

Sunnyvale, CA
{ckang,jeehaeng,yichang}@yahoo-inc.com

ABSTRACT
We consider the problem of identifying primary categories
of a business listing among the categories provided by the
owner of the business. The category information submit-
ted by business owners cannot be trusted with absolute
certainty since they may purposefully add some secondary
or irrelevant categories to increase recall in local search re-
sults, which makes category search very challenging for lo-
cal search engines. Thus, identifying primary categories of a
business is a crucial problem in local search. This problem
can be cast as a multi-label classification problem with a
large number of categories. However, the large scale of the
problem makes it infeasible to use conventional supervised-
learning-based text categorization approaches.

We propose a large-scale classification framework that lever-
ages multiple types of classification labels to produce a highly
accurate classifier with fast training time. We effectively
combine the complementary label sources to refine predic-
tion. The experimental results indicate that our framework
achieves very high precision and recall and outperforms a
Centroid-based method.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Retrieval models

General Terms
Algorithms, Design, Experimentation

Keywords
Vertical search, Text categorization, Primary category

1. INTRODUCTION
Local search is growing faster than Web search with more

people using mobile devices. Studies show that at least
20% of Web queries have some local intent [9]. In local

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’12, October 29–November 2, 2012, Maui, HI, USA.
Copyright 2012 ACM 978-1-4503-1156-4/12/10 ...$10.00.

search, category queries such as “Restaurants” are known to
be harder than business name queries such as “Best Buy” in
the sense that the ranking quality for these queries by search
engines is inferior [6].

One of the challenges in category queries in local search is
that the category descriptions submitted by business owners
are often incorrect. They often add some secondary or irrele-
vant categories to increase recall. For example, the owner of
a Japanese restaurant may add “Korean Restaurants” to the
category description of the business, hoping that the busi-
ness may appear in the search results for the query “Korean
Restaurants”as well as for the query“Japanese restaurants”.
This motivates the problem of identifying primary (or true)
categories of a business. This can be considered as an multi-
label classification problem [7] in which we can assign mul-
tiple primary categories to a business. There has been a lot
of research in text categorization [4, 3, 1]. See [5, 8] for com-
prehensive surveys of the topic. However, the large number
of categories in local search (2K categories in total) makes
it impossible to use conventional supervised-learning-based
text categorization methods.

In this paper, we present a solution to the large-scale pri-
mary category prediction (multi-label classification) prob-
lem by combining three complementary label sources:

• Labels provided by human judges
• Labels provided by business owners
• Click signals provided by users in local search

In our proposed solution, a set of highly predictive fea-
tures are derived from labels from business owners and click
signals and then a classifier is trained from these features
using labels by human judges as targets. The experimental
results demonstrate that integrating these multiple sources
of labels is highly beneficial for a large-scale classification
problem.

2. PREDICTING PRIMARY CATEGORIES
In this section, we propose a machine learning approach

to identify primary categories of a business listing page.

2.1 Problem
Let D = {d1, d2, . . .} be the set of all business listing pages

stored in a local search index and C = {c1, c2, . . .} be the
set of all categories for local businesses defined by human
editors. Let T = {t1, t2, . . .} be the set of all terms appearing
in D. We assume that each business page d is represented
by a vector space model. The set of categories assigned to
a business listing d is denoted by Cd. We use Dc = {d | c ∈
Cd, d ∈ D} to denote the set of all listings that have c as

2591

Figure 1: An example of a business listing page.
Categories are highlighted in a red box.

one of the categories. A category c is a primary category of
a business listing d if c represents one of the main categories
of d. The primary category classification problem is posed
as follows: Given a business listing d and a category c ∈ Cd,
determine whether c is a primary category of d.

Figure 1 shows an example of a business listing page.
Based on the above definitions, Cd of this listing is the set
{“Steak Houses”, “Restaurants”, “Carry Out & Take Out”,
“American Restaurants”,“Seafood Restaurants”}. These cat-
egories are either provided by the owner of the business or
a third-party information provider. In this example, only
“Seafood Restaurants” is a primary category of the business
and the other categories are either secondary or irrelevant.

Note that our problem can be seen as a multi-label text
categorization problem since it is reasonable to assume that
a business may have multiple primary categories. Also, we
assume that there is at least one primary category for one
business listing. This assumption leads to a useful feature
normalization, which is discussed in Section 2.3.3.

2.2 Proposed Solution
The main challenge for our problem is the large number of

categories (2K categories in total), which makes it very dif-
ficult to apply conventional supervised-learning-based text
categorization approaches. Obtaining enough labels to train
a classifier for each category is not feasible. Thus, we need
to leverage some other types of pseudo labels to train a clas-
sifier. There are two such pseudo labels available for our
problem. One is the category description Cd assigned to
listings. Although Cd contains some incorrect categories, a
collection of listings with the same category carry important
information about the category. The other is the user clicks
gathered from local search click logs. Category names (e.g.,
“chinese restaurants”) are common queries in local search.
User clicks on business listings in the search results provide
important signals about the relationship between categories
and business listings.

Our proposed solution is as follows. We first derive a set
of features x to be used in our classifier from the above
two pseudo-label sources (discussed in detail in Section 2.3).
Note that a feature vector x is defined for a business listing-
category pair (d,c). For example, the click-through rate of
d for c (from the search results when c is used as a query) is
such a feature. Then, we train a classifier f(d, c) using train-
ing data {(x1, y1), (x2, y2), . . .} where yi is a label provided
by human judges.

Table 1 compares the three different types of label sources
leveraged in our solution. It is clear that the three sources
complement one another in terms of accuracy and cover-
age. Since categories by owners and user clicks have large
coverage, they are appropriate for being used as targets to
generate features (discussed in Section 2.3 in detail). On the
other hand, the editorial labels by human judges are very ac-
curate although they are not enough to train a classifier for
each class. Thus, we use it as the final learning targets to
combine the features (in Section 2.4).

2.3 Features
In this section, we discuss how features are derived. Note

that each feature is defined for a business listing-category
pair (d,c) to be used as a signal for our classifier f(d, c).

2.3.1 Centroid-based Similarity Features
For each category c ∈ C, we define

Centroidc =
∑
d∈Dc

d

where d is a business listing represented as a tf-idf weight
vector. In other words, Centroidc is the cumulated weight
vector for all the listings that share the category c in their
assigned categories. Then, we can compute the cosine simi-
larity measure between a business listing d and the centroid
vector Centroidc for a category c:

cosine sim(d, c) =
d · Centroidc
||d|| ||Centroidc||

(1)

We use cosine sim(d, c) as a feature for our classifier. The
motivation for this features is as follows. Each centroid vec-
tor Centroidc is a mixture of the true distribution of terms
for the category c and the noise due to errors in Cd. How-
ever, the true distribution dominates the centroid since the
error rate of categories assigned by owners is low (around
10%). Also, it should be noted that even when the owner
of a business may assign secondary or irrelevant categories
to the category description part of the content (Cd) to in-
crease recall for local search, it is less likely for the owner
to corrupt the overall content of the business data (d). For
example, “Korean Restaurants” can be easily added to the
category description of a Japanese restaurant by the owner
hoping that the business may appear in the search results
for the query “Korean Restaurants” as well as for the query
“Japanese restaurants”. However, the owner would not add
many Korean menu items to the content. Hence, we ex-
pect that cosine sim(d, c) will be high when c is a primary
category of d and low otherwise. Indeed, this hypothesis
is verified in the experimental results which show that the
centroid-based features are very effective for our classifica-
tion problem.

To reduce the dimension of the document vectors and min-
imize the noise in the centroids, we propose another simi-
larity feature based on new centroids generated by the χ2

method [10]. The χ2 statistic score χ2(t, c) for a term t and
a category c is

N(Nr+Nn− −Nr−Nn+)2

(Nr+ +Nr−)(Nn+ +Nn−)(Nr+ +Nn+)(Nr− +Nn−)

where Nr+ is the number of times t and c co-occur, Nn+ is
the number of times t occurs without c, Nr− is the number of
times c occurs without t, Nn− is the number of times neither

2592

Label sources Accuracy Coverage (how many listings are covered) Usage
Categories assigned by owners (Cd) medium high features in Section 2.3.1

User clicks high medium features in Section 2.3.2
Editorial labels high low labels y in training & testing

Table 1: Comparing different types of label sources.

c nor t occurs, and N is the total number of documents. If
the χ2 statistic score for t is high, it belongs to characteristic
vocabulary of c.

Using χ2 statistic scores, we generate a reduced set of
terms T ′c = {t ∈ T | χ2(t, c) > α} for each category c. Then,
we generate a new centroid filtered by the reduced terms:

Centroid′c = (Mc)(Centroidc)

where Mc is a diagonal matrix with Mc
ii = 1 if ti ∈ T ′c and

0 otherwise. Finally, a new similarity feature is

cosine simχ2(d, c) =
d · Centroid′c
||d|| ||Centroid′c||

(2)

2.3.2 Click-based Features
In local search, category queries such as “Restaurants” are

very common. User clicks on business listings in the search
results page provide crucial information about the relation-
ship between the query and the clicked listings: The more
clicks on a listing, the more likely the listing is to be about
the query. The key observation is: When a query q matches
a category name c, clicks on a listing d in the search results
page for q can be translated into a positive relationship be-
tween d and c. In this section, the features for a category
c are obtained from click statistics for c as a query in click
logs.

The simplest form of a click-based feature is the click-
through rate

CTR(d, c) = clicks/views (3)

where clicks and views are for d in the query sessions for c.
It is well known that CTR suffers from the position bias:
The results at higher positions get more clicks regardless of
their relevance. To address the position bias problem, we
use the following two click measures in addition to CTR.

COEC(d, c) =

N∑
i=1

clicksi
/ N∑

i=1

aCTRpi (4)

where clicksi ∈ {0, 1} denotes if d was clicked in the i-th
session out of N sessions in which d appeared for c, pi is the
position of d in the i-th session and aCTRp is the aggregated
CTR (over all queries and sessions) for position p.

SKIP CTR(d, c) = clicks/(clicks+ skips) (5)

where skips is the number of sessions in which d was not
clicked but some other results below d were clicked. Note
that SKIP CTR is a good approximation of so-called at-
tractiveness, defined to be the probability of a click on a
document given that the document is examined by the user.

2.3.3 Adding Normalized Features
The hypothesis that there is at least one primary category

for each d suggests that we need to consider the relationships
among the categories in Cd. To this end, we propose to
add a normalized feature normalized(feature(d, c)) for each
feature feature(d, c):

normalized(feature(d, c)) =
feature(d, c)

maxc′∈Cd
feature(d, c′)

For example, let Cd = {c1, c2} be the category set for d and
CTR(d, c1) = 0.4, CTR(d, c2) = 0.2 . Then, normalized
(CTR(d, c1)) = 1, normalized(CTR(d, c2)) = 0.5. The in-
tuition behind this normalization is: The category cmax =
arg maxc′∈Cd

feature(d, c′) is likely to be a primary category
regardless of its feature value according to the above hypoth-
esis. The relative information provided by the normalized
features combined with the original features increases the
predictive power of our classifier.

2.4 Classifier Training
Given training data {(x1, y1), (x2, y2), . . .}, we use the gra-

dient boosting method (GBDT) [2] to train a classifier f(d, c).
Each feature vector x consists of the features defined in
the previous section: x = {cosine sim(d, c), normalized
(cosine sim(d, c)), CTR(d, c), normalized(CTR(d, c)), . . .}.

The major difference between our framework and typical
text categorization frameworks is that there are much fewer
features in our framework but each feature is much stronger.
Most classifiers for text categorization use a set of terms as
features. On the other hand, we use a small number of very
strong features for the classifier. Each feature used in our
classifier can be even considered as a stand-alone model. In
Section 3, we show that each feature performs reasonably
well as a classifier. In this sense, the training step in our
framework can be viewed as combining multiple models to
improve prediction.

3. EXPERIMENTS
In this section, we present experimental results to validate

our approach.

3.1 Data
We use data sets from a commercial local search engine.

There are 20M business listings, 2K categories and 53M
terms in total. That is, ||D|| = 20M, ||C|| = 2K and ||T || =
53M. We obtain labels from human judges for 42K (listing,
category) pairs. We generate 12 features for the 42K (listing,
category) pairs in the editorial judgment data. To generate
click-based features in Section 2.3.2, we use 6-month click
logs in the local search engine. In addition to the features
defined in the previous section, one simple category term
frequency feature and its normalized version are included.
We use 50% of the data as training data and the rest as test
data.

2593

0.95

0.96

0.97

0.98

0.99

1

P
r
e
c
is
io
n

gbdt

skip_ctr

coec

0.9

0.91

0.92

0.93

0.94

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re
c
is
io
n

Recall

coec

ctr

centroid

centroid_chi

Figure 2: Precision vs. recall of different models.
Each point corresponds to a threshold value for the
output of a model.

3.2 Results
We evaluate the classifier trained as described in Section

2.4 using precision-recall as the evaluation metric. To see
the effectiveness of our proposed method, we compare it
with each of the features as a baseline:

• gbdt: our proposed method described in Section 2.4
• centroid: centroid-based similarity defined in Eq. (1)
• centroid chi: centroid-based similarity with χ2 filter-

ing defined in Eq. (2)
• ctr: CTR defined in Eq. (3)
• coec: COEC defined in Eq. (4)
• skip ctr: SKIP CTR defined in Eq. (5)

Figure 2 shows the comparion of different models based on
precision-recall. Our proposed classifier gbdt significantly
outperforms all baselines. The results show some interest-
ing characteristics of each feature. In general, click-based
features (ctr, coec and skip ctr) show higher precision
than centroid-based features given the same recall. How-
ever, click-based features suffer from a sudden drop in pre-
cision as recall decreases. This happens since a very high
CTR, for example, is likely to be due to a very small num-
ber of views (with a similar number of clicks). Also, we can
see that click-based features have limited recall compared
to centroid-based features: They can never achieve recall
higher than 70%. On the other hand, centroid-based fea-
tures can achieve much better recall (over 70%). Also, they
do not suffer from a sudden drop in precision as recall de-
creases. We also observe that the χ2-based term filtering
improves prediction. It is clear that our classifier combines
the benefits of different features to predict primary cate-
gories.

Table 2 shows the ordered categories by gbdt for “Red
Lobster” in Figure 1. The primary category of the business
“Seafood Restaurants” is on top while a irrelevant category
“Carry Out & Take Out” is on bottom.

4. CONCLUSIONS
We presented a solution to a large-scale multi-label classi-

fication problem in the context of finding primary categories

Category
Seafood Restaurants

Restaurants
Steak Houses

American Restaurants
Carry Out & Take Out

Table 2: Categories sorted by the gbdt outputs for
“Red Lobster” in Figure 1

of local businesses. We showed that we can combine multi-
ple label sources effectively to train a highly accurate classi-
fier. Also, we demonstrated that our classifier outperforms
a Centroid-based method.

One promising future direction is to investigate a method
that updates centroids iteratively using a classifier. We can
filter out bad categories in each listing based on the first
classifier, which leads to improved centroids. We can then
train a new classifier based on the improved centroids. Also,
we will investigate the usefulness of adding variants of sim-
ilarity features to the feature set.

5. REFERENCES
[1] W. W. Cohen and Y. Singer. Context-sensitive

learning methods for text categorization. ACM Trans.
Inf. Syst., 17(2):141–173, Apr. 1999.

[2] J. Friedman. Greedy function approximation: a
gradient boosting machine. Ann. Statist.,
29:1189–1232, 2001.

[3] T. Joachims. A probabilistic analysis of the rocchio
algorithm with tfidf for text categorization. In
Proceedings of the Fourteenth International
Conference on Machine Learning, ICML ’97, pages
143–151, San Francisco, CA, USA, 1997. Morgan
Kaufmann Publishers Inc.

[4] T. Joachims. Text categorization with suport vector
machines: Learning with many relevant features. In
Proceedings of the 10th European Conference on
Machine Learning, ECML ’98, pages 137–142,
London, UK, UK, 1998. Springer-Verlag.

[5] T. Joachims, Y. Yang. Text categorization.
Scholarpedia, 3(5):4242, 2008.

[6] C. Kang, X. Wang, Y. Chang, and B. Tseng. Learning
to rank with multi-aspect relevance for vertical search.
In Proceedings of the fifth ACM international
conference on Web search and data mining, WSDM
’12, pages 453–462, New York, NY, USA, 2012. ACM.

[7] F. Sebastiani. Machine learning in automated text
categorization. ACM Comput. Surv., 34(1):1–47, Mar.
2002.

[8] F. Sebastiani. Text categorization. In Text Mining and
its Applications to Intelligence, CRM and Knowledge
Management, pages 109–129. WIT Press, 2005.

[9] P. Venetis, H. Gonzalez, C. S. Jensen, and A. Y.
Halevy. Hyper-local, directions-based ranking of
places. PVLDB, 4(5):290–301, 2011.

[10] Y. Yang and J. O. Pedersen. A comparative study on
feature selection in text categorization. pages 412–420.
Morgan Kaufmann Publishers, 1997.

2594

