
Ranking with Auxiliary Data

Bo Long
Yahoo! Labs

701 First Avenue
Sunnyvale, California 94089
bolong@yahoo-inc.com

Yi Chang
Yahoo! Labs

701 First Avenue
Sunnyvale, California 94089

yichang@yahoo-inc.com

Srinivas Vadrevu
Yahoo! Labs

701 First Avenue
Sunnyvale, California 94089

svadrevu@yahoo-
inc.com

Shuang Hong Yang
College of Computing

Georgia Tech
shy@gatech.edu

Zhaohui Zheng
Yahoo! Labs

701 First Avenue
Sunnyvale, California 94089

zhaohui@yahoo-inc.com

ABSTRACT
Learning to rank arises in many information retrieval ap-
plications, ranging from Web search engine, online adver-
tising to recommendation system. In learning to rank, the
performance of a ranking function heavily depends on the
number of labeled examples in the training set; on the other
hand, obtaining labeled examples for training data is very
expensive and time-consuming. This presents a great need
for making use of available auxiliary data, i.e., the within-
domain unlabeled data and the out-of-domain labeled data.
In this paper, we propose a general framework for ranking
with auxiliary data, which is applicable to various ranking
applications. Under this framework, we derive a generic
ranking algorithm to effectively make use of both the within-
domain unlabeled data and the out-of-domain labeled data.
The proposed algorithm iteratively learns ranking functions
for target domain and source domains and enforces their
consensus on the unlabeled data in the target domain.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;

I.5.1 [Pattern Recognition]: Models-statistical

General Terms
algorithms

Keywords
Ranking, Auxiliary Data, Transfer learning, Semi-supervised

learning, Gradient boosting, Source Domain, Target Domain

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’10, October 26–30, 2010, Toronto, Ontario, Canada.
Copyright 2010 ACM 978-1-4503-0099-5/10/10 ...$10.00.

1. INTRODUCTION
Ranking is the core component of many important infor-

mation retrieval problems, such as web search, recommen-

dation, computational advertising. Learning to rank rep-

resents an important class of supervised machine learning

tasks with the goal of automatically constructing ranking

functions from training data. As many other supervised ma-

chine learning problems, the quality of a ranking function is

highly correlated with the amount of labeled data used to

train the function. Due to the complexity of many ranking

problems, a large amount of labeled training examples are

usually required to learn a high quality ranking function.

However, in most applications, while it is easy to collect un-

labeled samples, it is very expensive and time-consuming to

acquire labeled data.

Hence, ranking with auxiliary data comes as a paradigm

to reduce the labeling effort in learning to rank. In general,

auxiliary data can be any data except the labeled data from

the target domain. In this study, we use auxiliary data to

denote the following two types of data. The first one is the

out-of-domain labeled data, i.e., the labeled data from the

related domains. The second is the within-domain unlabeled

data, i.e., the unlabeled data from the target domain itself.

In this paper, we propose a general model to leverage

both out-of-domain labeled data and within-domain unla-

beled data for learning to rank. By optimizing the consensus

between the target domain ranking function and the source

domain ranking functions on the unlabeled data from the

target domain, the proposed model is capable of (1) trans-

ferring consistent information into the final target ranking

function to improve the robustness and (2) adapting the

target ranking function to the real-application data distri-

bution to reduce the overfilling. Our main contributions can

summarized as follows.

2. MODEL AND ALGORITHM
Let us first consider learning to rank under traditional em-

pirical risk minimization framework. Suppose that we only

have training data from the target domain, T = {(ai, bi)|ai ≻

bi}
n
i=1, where ai, bi ∈ R

d denote the feature vectors for

query-document examples and ai ≻ bi denotes that ai is

preferred over bi, i.e., ai should be ranked higher than bi.

Without loss of generality, here we assume that the input

is in the form of pairwise preference, since absolute relevant

judgement data and listwise preference data can be easily

transformed into the pairwise preference data.

Then, we formulate the problem of learning ranking func-

tions as computing a ranking function h ∈ H, where H is

a given function class, such that h match the set of prefer-

ences, i.e., h(ai) > h(bi), if ai ≻ bi; i = 1, 2, ..., n, as much

as possible. Given a loss function l to measure the prefer-

ence match, we have the following empirical risk objective

function,

R̃(h) =
1

n

n
∑

i=1

l(h(ai), h(bi)) (1)

Under the conventional risk minimization, if the training

data sample size n is small, the empirical risk R̃(h) is not a

reliable estimate of the true risk R(h) and we cannot expect

to obtain a good estimation of the target function h.

In the ranking with auxiliary data setting, besides a small

set of labeled data from the target domain T , we have ad-

ditional labeled data from m source domains,

S(j) = {(a
(j)
i , b

(j)
i)|a

(j)
i ≻ b

(j)
i }

nj

i=1 (2)

for j = 1, 2, ..., m, and a large amount of unlabeled data

from the target domain, U = {(ci, di)}
nu
i=1. For convenience,

we still put the unlabeled data in the format of pairs, even

we do not have the pairwise preference label information.

Now the goal is to use S(j) and U(j) to help learn the

ranking function h. To achieve this goal, we need to incor-

porate useful information from S(j) and U(j) into h. For

the out-of-domain data S(j),it is difficult to directly mea-

sure how useful they are, since it is difficult to measure how

difference between the true distributions of the source do-

mains and the true distribution of the target domain. How-

ever, intuitively, if we have an optimal ranking function h(j)

based on U(j), then the performance of h(j) on the target do-

main will provide a reasonable indication of the usefulness

of S(j). For example, if a optimal ranking function from

English Web search domain provides just a random guess of

the ranking on another language domain, we cannot expect

too much usefulness of the English domain for this target

domain. This enlightens us that one way to extract useful

information from source domains S(j) is through the ranking

function h(j). For the within-domain data, the most advan-

tage is that they can provide a data distribution very close

to the real application data to which the learned ranking

function h will be applied to.

Based on the above observations, we propose the following

model to learn the ranking function h with auxiliary data,

R̃(h, {h(j)}
nj

j=1) = α

n
∑

i=1

l(h(ai), h(bi)) +

m
∑

j=1

β
(j)

nj
∑

i=1

l(h(j)(a
(j)
i), h(j)(b

(j)
i)) +

γ

m
∑

j=1

nu
∑

i=1

l(h(ci), h(di), h
(j)(ci), h

(j)(dj)),

(3)

where α, β(j), and γ are non-negative constants that denote

weights for each components. The first component is based

on the labeled data from the target domain T ; the second

component is based on the labeled data from the source do-

main S(j); the third component aims to enforce the target

domain ranking function h and the source domain ranking

functions h(j) to be ”consensus” on the unlabeled data U

under the loss function l (here we overload the notation l

for simplicity). The intuition behind this model formulation

is that if h and h(j) predict ”consistent” ranking on the un-

labeled examples that consist of a representative sample of

real application data, then h is more likely predict correct

ranking on the real application data, since h obtains more

”confidence” in those real application examples during train-

ing process with the help from the source domain ranking

functions h(j).

Another important issue is how to design the loss function

l. We propose following loss functions for the ranking with

auxiliary data model in (3).

For the labeled data T and S(j), we use the following loss

function,

l(h(ai), h(bi)) =
1

2
(max{0, h(bi) − h(ai)})

2
. (4)

The motivation is that for a labeled pair ai ≻ bi, if h

matches the given preference, i.e., h(ai) > h(bi), then h

incurs no cost on the pair, otherwise the cost is given by

(h(bi) − h(ai))
2.

For the unlabeled data U , the loss function l is to measure

the consistence between h and h(j). We use the following

function,

l(h(ci), h(di), h
(j)(ci), h

(j)(di))

=
1

2
(max{0, h(di) − h(ci)})

2
I(h(j)(ci) > h

(j)(di))

+
1

2
(max{0, h(ci) − h(di)})

2
I(h(j)(ci) ≤ h

(j)(di)), (5)

where I is an indicator function such that

I(h(j)(ci) > h
(j)(di)) =

{

1 if h(j)(ci) > h(j)(di),

0 else.
(6)

For loss function in (5), if h and h(j) predict the same order

of preference for the pair (ci, di), the loss is 0; otherwise, the

loss is given by (h(ci) − h(di))
2.

Furthermore, to avoid constant solution, we revise the loss

functions to include a margin,

l(h(ai), h(bi)) =
1

2
(max{0, h(bi) − h(ai) + τ})2, (7)

and

l(h(ci), h(di), h
(j)(ci), h

(j)(di))

=
1

2
(max{0, h(di) − h(ci) + τ})2I(h(j)(ci) > h

(j)(di))

+
1

2
(max{0, h(ci) − h(di) + τ})2I(h(j)(ci) ≤ h

(j)(di)), (8)

where 0 < τ ≤ 1 is a constant.

Under the above model formulation, we we adopt a func-

tional gradient boost approach [2] to derive a gradient boost-

ing algorithm, Ranking with Auxiliary Data (RAD).

3. EXPERIMENTAL EVALUATION
As a generic ranking algorithm, RAD can be applied to

different ranking applications with different base learners.

In this section, we apply RAD to Web search data with

a popular base learner, regression tree, to demonstrate the

properties and effectiveness of RAD.

We compare our algorithms with the following fourth ap-

proaches. The first one is the baseline approach using the

target domain data only (called TD). The second one is an-

other baseline approach simply using the source domain data

(called SD) only. The third ones is an effective transfer

learning algorithm based on Optimal Combination of source

domain data and target domain data (called OC) [1, 3]. The

fourth one is a state-of-the-art ranking approach using un-

labeled data based on Self-Training (ST) [4].

We use Web search data from a commercial search engine.

In the data, each query-document example is represented

by a feature vector. Those query-document examples are

originally labeled using a five-grade labeling scheme: {Bad,

Fair, Good, Excellent, Perfect}. We then transform them

into pairwise preference data. We select to use four domains

corresponding to four different countries/languages, one for

the target domain T1 and three for the source domains, S1,

S2, and S3. The target domain T1 has 78,836 examples; each

of source domains S1, S2, and S3 has about 20k examples.

We randomly divide T1 into three subsets, about 10% for

labeled data T , about 80% for unlabeled dataU , about 10%

hold on for test.

For the performance measure for ranking models, we se-

lect to use Discounted Cumulative Gain (DCG), which has

been widely used to assess ranking quality in the context of

search engines. Specifically, we use DCG-k, since users of

a search engine are only interested in the top-k results of

a query rather than a sorted order of the entire document

collection. In this study, we select k as 5. For every exper-

imental setting, 10 runs are repeated and in each run the

target domain data set is randomly divided into the three

subsets as mentioned before. The average DCG of 10 runs

is reported for each experiment setting.

The ratio of weight coefficients α and β controls relative

weight of unlabeled data w.r.t the labeled data in the target

domain. Intuitively, this ration is important, since it is di-

rectly affect training of the ranking function h. On the other

hand, the weight coefficients β(j) does not directly affect the

training of h. In fact, in our experiments we observe that

the result is not sensitive to β(j).

0 0.2 0.4 0.6 0.8 1

9.8

10

10.2

10.4

10.6

Weight of Unlabeled Data

D
C

G
5

Unlabeled

Hold−on

Figure 1: Effect of relative weight of unlabeled data

against the total weight of labeled data and unla-

beled data in the target domain.

Hence, we carry out experiments to show how relative

weight of unlabeled data affects the performance of result-

ing h. We fix source domain data set as data set S1 and

change the ratio of α
α+β

, i.e, the relative weight of unlabeled

data against all the data in the target domain as shown in

the X axis in Figure 1. We test the learned h on both unla-

beled data set and hold-out data set. Test on unlabeled data

evaluate effectiveness of transduction learning, i.e., ranking

examples we can observe before we start training process.

This corresponds to real applications such that off-line rank-

ing of very import query-documents. Test on hold-out data

set evaluates the effectiveness of ranking on new examples.

Those two types of two test results correspond to two curves

in Figure 1.

Figure 1 shows that the relative weight of the unlabeled

data is not monotonically related to the performance. The

possible explanation for this is that unlabeled data have both

useful information and noisy information; when weigh of un-

labeled data reaches certain point, more noisy information

will be transferred into h and hence leads to performance de-

crease. For example, at the extreme case that relative weigh

of unlabeled is 1, i.e., the training data for h are just all the

unlabeled data with pseudo-labels from the source domain

function; hence inaccurate information from the source do-

main function will be transfered into h. We observe that

when relative weight equals to 0.3, the best performance is

archived. In all the following experiments, we use 0.3 this

optimal relative weigh.

we also observe that performance of h on the unlabeled

data is better than on the hold-out data. This verifies a

part of our model assumption that the more similar distri-

bution of unlabeled data is as the distribution of future new

examples, the more useful information the ranking function

h can obtain from unlabeled data. Test on unlabeled data

simulates the idea case that the distribution of the unlabeled

data is exactly the same as the distribution of the test data.

Hence, test on unlabeled data should provide better (or at

least equal in the case that unlabeled and hold-out data hap-

S1 S2 S3 All
9.2

9.4

9.6

9.8

10

10.2

10.4

10.6
D

C
G

5

TD

SD

OC

ST

RAD

Figure 2: Test on unlabeled data: comparing the

RAD algorithm with other algorithms on different

source domains shows that the RAD algorithm per-

forms best on different target domains.

S1 S2 S3 All
9.2

9.4

9.6

9.8

10

10.2

10.4

D
C

G
5

TD

SD

OC

ST

RAD

Figure 3: Test on hold-out data: comparing the

RAD algorithm with other algorithms on different

source domains shows that the RAD algorithm per-

forms best on different target domains.

pen to have the same distribution) performance than the

hold-out data.

Finally, we compare the RAD algorithms with other al-

gorithms on different source domains. By using different

source domains, we have different distances between the tar-

get domain and source domain. Based on the prior knowl-

edge about the languages/countries associated with these

domains, the difference between S1 and T1 is the smallest.

In fact, they are from two countries with same languages;

and S2 and S3 are different languages from T1.

From Figure 2 and From Figure 3, we observe the sim-

ilar results except that for the algorithms, SF and RAD,

involving unlabeled data, performance on hold-out data is

worse.

For the both figures, we observe that the RAD algorithm

provides best performance for three source domains and the

combination of all three domains. For the source domain S1,

which are similar to the target domain T1, the algorithms,

SD, OC, and RAD, perform better than for the other two

source domains, S2 and S3. This is consistent with the in-

tuition that more close the source domain is, more it is.

1 2 3 4 5 6
6

7

8

9

10

11

Percentage of Noise in Source Domain

D
C

G
5

S1

S2

S3

All

Figure 4: Effect of different levels of noise of the

source domain data on DCG5 of the RAD algorithm

shows that the multiple source domain data lead to

more robust models.

We can observe that RAD performs better with the com-

bination of three source domain data than with any single

domain. The possible reasons are (1) the combination of

three source domain data have a larger size and (2) the con-

sistence among three source domains and the target domain

provides more robust information than consistence between

a single source domain and the target domain (hence, it

leads to more robust ranking function h). We carry out

the following experiments to verify the second point. We

test the robustness of RAD algorithm under different source

domains by intentionally adding noise into the source do-

main data. We add noise as follows. A preference pair is

randomly selected, and its preference order is reversed. We

change different percentages of the source domain data to

create different levels of noise. Figure 4 shows that when the

noise in the source domain data increases, the performance

of the ranking model decrease; however, for multiple source

domain data, the performance decreases much less, i.e., the

ranking function trained with multiple source domain data

is more robust.

4. REFERENCES
[1] J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and

J. Wortman. Learning bounds for domain adaptation.

Advances in Neural Information Processing Systems,

20, 2008.

[2] J. Friedman. Greedy function approximation: a

gradient boosting machine. Annals of Statistics, pages

1189–1232, 2001.

[3] G. Schweikert, C. Widmer, B. Schölkopf, and

G. Rätsch. An empirical analysis of domain adaptation

algorithms for genomic sequence analysis. In NIPS,

pages 1433–1440, 2008.

[4] V. Truong, M. R. Amini, and P. Gallinari. A

self-training method for learning to rank with unlabeled

data. In 11th European Symposium on Artificial Neural

Networks, Bruges, Avril 2009.

