
Learning to Blend Rankings: a Monotonic Transformation
to Blend Rankings from Heterogeneous Domains
Zhenzhen Kou

Yahoo! Labs
Sunnyvale, CA

zzkou@yahoo-inc.com

Yi Chang, Zhaohui Zheng
Yahoo! Labs

Sunnyvale, CA
{yichang,zhaohui}@yahoo-

inc.com

Hongyuan Zha
College of Computing

Georgia Institute of Technology
Atlanta, GA

zha@cc.gatech.edu

ABSTRACT
There have been great needs to develop effective methods for
combining multiple rankings from heterogeneous domains into
one single rank list arising from many recent web search
applications, such as integrating web search results from multiple
engines, facets, or verticals. We define this problem as Learning
to blend rankings from multiple domains. We propose a class of
learning-to-blend methods that learn a monotonically increasing
transformation for each ranking so that the rank order in each
domain is preserved and the transformed values are comparable
across multiple rankings. The transformation learning can be
tackled by solving a quadratic programming problem. The novel
machine learning method for blending multiple ranking lists is
evaluated with queries sampled from a commercial search engine
and a promising improvement of Discounted Cumulative Gain has
been observed.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Search and Retrieval
– Retrieval models; H.4.m [Information Systems]:
Miscellaneous – Machine Learning

General Terms
Algorithms, Experimentation, Theory

Keywords
Blending, ranking, monotonic transformation, quadratic
programming

1. INTRODUCTION
Given a set of items , a ranking of is a
permutation of . There have been tremendous
amount of studies in the field of learning to rank [1, 2, 5, 8, 12].
However in many applications, we need to integrate the rankings
of items from heterogeneous domains into a single ranking of all
the items in all the sets, given the emergence of various vertical

search engines such as video search, image search, blog search,
etc. For example, one set of items can be the set of documents
from the Web, and the other can be the set of documents from a
vertical search engine such as Blog or News search. Merging the
rank lists from heterogeneous domains is a non-trivial topic,
because: 1) these heterogeneous sets can share some documents,
but most likely they also have many documents that are not in
common; 2) Heterogeneous domains usually have different
features and feature-to-relevance correlations. Take question-
answering websites (e.g. Yahoo! Answer) for one example.
Although the text matching and click features developed for
general web can be used in the ranking of this domain, features
developed with their unique page structures and user feedback,
e.g., thumbs up ratings and the total number of feedbacks in
Yahoo! Answers, greatly benefit the ranking in its own domain.
Even features shared by Yahoo! Answers and general web
documents could have very different correlations with the
relevance in the two domains. Therefore, using one universal
ranking function across domains does not solve the problem well.
Dedicated functions are needed in order to better rank documents
within each individual domain, and new technologies that blend
documents from heterogeneous domains into a single ranking list
are greatly needed.

We want to emphasize that this problem is generally different
from the rank aggregation [4, 9] problem where one needs to
merge the different rankings on the homogeneous set of items.

We define the integration of rank lists from heterogeneous
domains as a blending problem and formulate the problem of
learning to blend rankings as follows:

a) We have items of heterogeneous types. The items of
each type have a rank order in the corresponding
domain.

b) The training data for blending is in the form of pairs of
items sets and their associated rankings, the first in the
pair belongs to one type of items, and the second
belongs to another type of items.

For each pair of item sets, we have a combined ranking of all the
items in both of the item sets, presumably indicating the correct
blending of the two given rankings.

The optimal combined rankings are ground truth for learning to
blend and could be generated in the following two steps: 1) assign
relevance labels, e.g. Perfect, Excellent, Good, Fair and Bad
(abbreviated to P/E/G/F/B) to each item in both rankings; 2)
merge sort the ranking lists according to those labels. Blending in
this way will maximize Discounted Cumulative Gain (DCG) [7]
while preserving the ordering for both rankings.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CIKM’10, October 26 - 30, 2010, Toronto, Ontario, Canada.
Copyright 2010 ACM 978-1-4503-0099-5/10/10…10.00.

Given the training data – the combined ranking and the rankings
in the individual domain, we want to learn a monotonic increasing
transformation (on the ranking score in the individual domain) so
that when presented with a new pair of item sets and their
associated rankings, we can use the transformed ranking scores to
generate a combined ranking.

In this paper, we formulate the problem as a quadratic
programming problem and learn a linear monotonic
transformation so that the rank order in each domain is kept and
the transformed scores are comparable.

The rest of the paper is organized as follows: Section 2 describes
the notations and the formal formulation of the blending problem.
Section 3 develops the main algorithm, where the transformation
learning is formulated as a quadratic programming problem.
Section 4 shows the promising experimental result, evaluated with
real-world data sampled from a commercial search engine. In
section 5, we make conclusions and point out directions for future
research.

2. PROBLEM FORMULATION
To design a blending transformation, we assume that the training
data consist of a set of pairs . In this work, we focus on
the scenario where the order for each individual ranking is
preserved after blending1. Blending with this constraint is very
like merge sorting.

For simplicity, let us assume we have two rankings. Considering
, we will have

where and are the numbers of items in the first and second
set, respectively, and and are the items.

For the rank order in each domain and , we consider two
situations regarding the format of the rankings: 1) for a set of
items, we just have the ranking of the items; and 2) for a set of
items, we have a score for each of the item, and the ranking of the
items are induced by the scores of the items, i.e., the ranking is
obtained by sorting the scores of the items.

Given a pair of item sets and their associated rankings, we can
distinguish three cases:

• Both sets are in situation 1). We need to learn a
transformation that can relate the ranks in one set to
those of another set.

• One set in situation 1) and the other in situation 2). We
need to learn a transformation that can relate the ranks
in one set to the scores of another set.

• Both sets are in situation 2). We need to learn a
transformation that can calibrate the scores in the two
sets.

1 But our method is still applicable even this assumption is not

satisfied.

For a ranking in situation 1) or is just the negative of its
rank, and in situation 2) it is the corresponding score. Therefore,
the tree cases can be addressed with one formulation.

For and , we would have

Correspondingly to and , we also have the combined
ranking with totally items2:

As required, the order of items from either list is preserved in .

Accordingly, we define two subsets of
: corresponds to cases where is ranked

above , and corresponds to cases where is ranked
below , and define

 .

The key question is how to automatically learn a blending
transformation from the training data. We propose to apply a
monotonically increasing function to

€

r2n
i

€

, n =1,...,N in
so that the blending would be based on and . By doing
so, the order of items from each individual ranking list are
automatically preserved. is learned to be maximally
conformed to the editorial blending ranking3.

3. ALGORITHMS
3.1 Our algorithm
We formulate the transformation learning problem as a quadratic
programming problem.

subject to

 where is the total number of items from both and
.

2 For simplicity, we assume no overlapping items between the

two lists.
3 Suppose we have rankings, . One will be picked as the

reference point and requires no transformation while the
remaining transformations should be learned.

If one simply assume that is linear and in the form of
, the above problem would become

 (1)

subject to

By solving the above QP problem, we will obtain a for the
linear transformation (the same will be applied to all the
queries).

We could also learn a for each query length, or each type
of queries if query classification information is available. The
constraints in Equation (1) are given the same weight, which can
be adjusted to give higher weights to more important constraints.
Other non-linear monotonic transformation should also be
explored in future work.

Equation (1) demonstrates the idea with two domains. The
algorithm can be easily extended to blend more than two rankings.
Given ranking lists from domains, one will be picked as the
reference point and there will be transformations

. The constraints to the QP problem will
involve all pairs of item sets from any two domains, i.e., the
problem becomes

subject to

4. EXPERIMENTS

4.1 Data
We evaluated the proposed algorithm with the problem of
blending web search results with vertical search results in the
domain of Yahoo! Answers. 1300 queries were sampled from the
query logs of a commercial search engine, and 800 queries were
used for training and 500 for validation. For each query, we have
two sets of documents: general web documents and Yahoo!
Answers documents. Each document is labeled with one of five
grades Perfect, Excellent, Good, Fair and Bad, in decreasing order
of relevance. We have pre-generated ranking functions in each

domain and the rank score or can be generated by
applying the ranking function in each domain to the document in
the corresponding domain. Given and , constrains for the
QP problem can be constructed by applying merge-sort to the two
rank lists and keeping the paired score preference between web
documents and Answers documents.

4.2 Experiments
To evaluate the proposed algorithm we focus on the simple case
where is a linear transformation, i.e., . 800
queries were used to learn the transformation and 500 queries
were used for validation.

BASELINE APPROACH. The baseline we compare to is the Naïve
blending method, where the scores of and are compared
directly.

EVALUATION METRICS. We report the widely used relevance
metric Discounted Cumulative Gain (DCG) [7]. For a ranked list
of N documents (N is set to be 10 or 1 in our experiments), we use
the following variation of DCG,

,

where represents the weights assigned to the label of the
document at position i, e.g., 10 for Perfect match, 7 for Excellent
match, 3 for Good match, etc. Higher degree of relevance
corresponds to higher value of the DCG. We use DCG to indicate
the average of DCG values over a set of testing queries.

In our application, the goal is to blend the documents from
Yahoo! Answers to web rank list. We reported the DCG1 and
DCG10, of web rank list and the blended list in Table 1. 1.18%
DCG10 gain and 0.9% DCG1 gain were observed from our
approach. Both improvements were statistically significant and
highlighted with bond font in Table 1. In our application, the
choice of

€

λ1,λ2 does not affect the performance significantly and
our experiments used

€

λ1 =1,λ2 =10. The Naïve blending method
did not achieve any improvement of DCG. This suggests that the
rank scores from heterogeneous domains are not directly
comparable and a blending algorithm is needed.

Table 1. Performance of linear transformation blending

 Web
rank list

Blended list,
via Naïve
blending

Blended list, via
linear

transformation
DCG10 6.78 6.77 6.86

DCG1 2.31 2.31 2.33

Table 2. Pair-wise error of different blending methods

Blended list,

via Naïve
blending

Blended list, via
linear

transformation
Error rate 46% 35%

The pair-wise error rate, i.e., the percentage of pairs of item sets
that are not ranked correctly, is also calculated. In other words,
this error rate measures how many constraints in the QP problem
can not be satisfied. The error rate is reported in Table 2. Even the

learned linear transformation gives an error rate of 35%.
Therefore we study the optimal DCG that can be obtained by the –
merge-sort strategy.
UPPER BOUND FOR BLENDING. The ideal merge-sort of the
two ranking lists can be considered as the best DCG10 that can be
obtained via blending, i.e., the upper bound a blending algorithm
could achieve. The best DCG10 of our test data is 7.06. Therefore
there is room to improve for the blending algorithm. Section 5
will discuss the future research directions.

5. RELATED WORK
In recent years, the ranking problem is frequently formulated as a
supervised machine learning problem [3, 6, 11]. These learning-
to-rank approaches are capable of combining different kinds of
features to train ranking functions. The problem of ranking can be
formulated as that of learning a ranking function from pair-wise
preference data. The idea is to minimize the number of
contradicting pairs in training data. For example, RankSVM [8]
uses support vector machines to learn a ranking function from
preference data. RankNet [1] applies neural network and gradient
descent to obtain a ranking function. RankBoost [5] applies the
idea of boosting to construct an efficient ranking function from a
set of weak ranking functions. The studies reported in [12]
proposed a framework called GBRank using gradient descent in
function spaces, and the weak leaner is a decision tree. Cao et al.
[2] proposed the listwise approach to handle the ranking problem.
Furthermore, Rank aggregation [4, 9] targets the problem of
merging the different rankings on the homogeneous set of items,
where items belong to the same domain.

Our algorithm of formulating a pairwise ranking problem as a
quadratic programming problem was inspired by the method
described in [10].

6. CONCLUSIONS AND FUTURE WORK
Emergence of various vertical search engines such as video
search, image search, and blog search, motivates the development
of algorithms to blend rank lists from multiple domains. Unlike
the traditional learning to rank or rank aggregation problem within
one domain, in this paper we study the problem of combining rank
lists from heterogeneous domains to obtain one single rank list.
The task of learning to blend rankings is defined.

The blending problem is a challenging task. There are few
documents/features in common among heterogeneous domains.
Therefore the ranking function for each type of documents needs
to be learned within the domain. However the rank scores of
ranking functions in heterogeneous domains are not directly
comparable, which brings difficulty for blending. To determine
the optimal combined list, we consider a merge-sort-like strategy
to combine ranking lists based on relevance, to maximize the
DCG and preserve the ranking order in each domain. To achieve
such a combined ranking list with the ranking lists from multiple
domains, a monotonic transformation is applied to the rank scores
in each domain, such that the transformed scores become
comparable.

Learning the monotonic transformation that could achieve the
optimal blended list, is formulated as a quadratic programming

problem. In the paper, we focus on the simple case where a linear
transformation is considered.

We evaluated the novel learning-to-blend approach with real-
world data sampled from a commercial search and observed
promising results of 1.18% DCG10 gain.

We focused on one single linear transformation for all queries in
this paper. Adapting query-type dependent monotonic
transformation is a direction to explore in future work. Advanced
monotonic non-linear transformation can also be explored in
future work. Also exploring the application to more than two
domains is of great interests.

7. REFERENCES
[1] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier,Matt

Deeds, Nicole Hamilton, and Greg Hullender. Learning to
rank using gradient descent. In ICML '05:Proceedings of the
22nd international conference on Machine learning, pages
89–96, 2005.

[2] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang
Li. Learning to rank: from pairwise approach to listwise
approach. In ICML, pages 129–136, 2007.

[3] C. Cortes, M. Mohri, and A. Rastogi. Magnitude-preserving
ranking algorithms. In Proceedings of the 24th ICML, 2007.

[4] Cynthia Dwork , Ravi Kumar , Moni Naor , D. Sivakuma.
Rank Aggregation Methods for the Web , In the Proceedings
of the 10th international conference on World Wide Web,
pages 613-622, 2001.

[5] Y. Freund, R. Iyer, R. Schapire, and Y. Singer. An efficient
boosting algorithm for combining preferences. In
Proceedings of the Fifteenth International Conference on
Machine Learning, 1998.

[6] J. Guiver and E. Snelson. Learning to rank with SoftRank
and Gaussian processes. In Proceedings of the 31st annual
international ACM SIGIR conference on Research and
development in information retrieval, 2008.

[7] K. J �arvelin and J. Kek �al �ainen. Cumulated gain‐based
evaluation of IR techniques. ACM Transactions on
Information Systems, 20:422‐446, 2002.

[8] T. Joachims. Optimizing search engines using clickthrough
data. In Proceedings of ACM SIGKDD, 2002.

[9] Yu-Ting Liu, Tie-Yan Liu, Tao Qin, Zhi-Ming Ma, Hang Li.
Supervised rank aggregation, In Proceedings of the 16th
international conference on World Wide Web, pages: 481 -
490 , 2007.

[10] Taesup Moon, Alex Smola, Yi Chang and Zhaohui Zheng.
IntervalRank - Isotonic Regression with Listwise and
Pairwise Constraints. In WSDM, pages 151 - 160, 2010

[11] J. Xu and H. Li. Adarank: a boosting algorithm for
information retrieval. In Proceedings of the 30th ACM
SIGIR, 2007.

[12] Zhaohui Zheng, Hongyuan Zha, and Gordon Sun. Query-
level learning to rank using isotonic regression. In the 46th
Annual Allerton Conference on Communication, Control and
Computing, 2008.

