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ABSTRACT 
There have been great needs to develop effective methods for 
combining multiple rankings from heterogeneous domains into 
one single rank list arising from many recent web search 
applications, such as integrating web search results from multiple 
engines, facets, or verticals. We define this problem as Learning 
to blend rankings from multiple domains. We propose a class of 
learning-to-blend methods that learn a monotonically increasing 
transformation for each ranking so that the rank order in each 
domain is preserved and the transformed values are comparable 
across multiple rankings. The transformation learning can be 
tackled by solving a quadratic programming problem. The novel 
machine learning method for blending multiple ranking lists is 
evaluated with queries sampled from a commercial search engine 
and a promising improvement of Discounted Cumulative Gain has 
been observed.   

Categories and Subject Descriptors 
H.3.3 [Information Systems]: Information Search and Retrieval 
– Retrieval models; H.4.m [Information Systems]: 
Miscellaneous – Machine Learning 

General Terms 
Algorithms, Experimentation, Theory 

Keywords 
Blending, ranking, monotonic transformation, quadratic 
programming 

1. INTRODUCTION 
Given a set of items , a ranking of  is a 
permutation of . There have been tremendous 
amount of studies in the field of learning to rank [1, 2, 5, 8, 12]. 
However in many applications, we need to integrate the rankings 
of items from heterogeneous domains into a single ranking of all 
the items in all the sets, given the emergence of various vertical 

search engines such as video search, image search, blog search, 
etc. For example, one set of items can be the set of documents 
from the Web, and the other can be the set of documents from a 
vertical search engine such as Blog or News search. Merging the 
rank lists from heterogeneous domains is a non-trivial topic, 
because: 1) these heterogeneous sets can share some documents, 
but most likely they also have many documents that are not in 
common; 2) Heterogeneous domains usually have different 
features and feature-to-relevance correlations. Take question-
answering websites (e.g. Yahoo! Answer) for one example. 
Although the text matching and click features developed for 
general web can be used in the ranking of this domain, features 
developed with their unique page structures and user feedback, 
e.g., thumbs up ratings and the total number of feedbacks in 
Yahoo! Answers, greatly benefit the ranking in its own domain. 
Even features shared by Yahoo! Answers and general web 
documents could have very different correlations with the 
relevance in the two domains. Therefore, using one universal 
ranking function across domains does not solve the problem well. 
Dedicated functions are needed in order to better rank documents 
within each individual domain, and new technologies that blend 
documents from heterogeneous domains into a single ranking list 
are greatly needed. 

We want to emphasize that this problem is generally different 
from the rank aggregation [4, 9] problem where one needs to 
merge the different rankings on the homogeneous set of items. 

We define the integration of rank lists from heterogeneous 
domains as a blending problem and formulate the problem of 
learning to blend rankings as follows:  

a) We have items of heterogeneous types. The items of 
each type have a rank order in the corresponding 
domain.  

b) The training data for blending is in the form of pairs of 
items sets and their associated rankings, the first in the 
pair belongs to one type of items, and the second 
belongs to another type of items.  

For each pair of item sets, we have a combined ranking of all the 
items in both of the item sets, presumably indicating the correct 
blending of the two given rankings. 

The optimal combined rankings are ground truth for learning to 
blend and could be generated in the following two steps: 1) assign 
relevance labels, e.g. Perfect, Excellent, Good, Fair and Bad 
(abbreviated to P/E/G/F/B) to each item in both rankings; 2) 
merge sort the ranking lists according to those labels. Blending in 
this way will maximize Discounted Cumulative Gain (DCG) [7] 
while preserving the ordering for both rankings.  
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Given the training data – the combined ranking and the rankings 
in the individual domain, we want to learn a monotonic increasing 
transformation (on the ranking score in the individual domain) so 
that when presented with a new pair of item sets and their 
associated rankings, we can use the transformed ranking scores to 
generate a combined ranking.  

In this paper, we formulate the problem as a quadratic 
programming problem and learn a linear monotonic 
transformation so that the rank order in each domain is kept and 
the transformed scores are comparable. 

The rest of the paper is organized as follows: Section 2 describes 
the notations and the formal formulation of the blending problem. 
Section 3 develops the main algorithm, where the transformation 
learning is formulated as a quadratic programming problem. 
Section 4 shows the promising experimental result, evaluated with 
real-world data sampled from a commercial search engine.  In 
section 5, we make conclusions and point out directions for future 
research. 

2. PROBLEM FORMULATION 
To design a blending transformation, we assume that the training 
data consist of a set of pairs . In this work, we focus on 
the scenario where the order for each individual ranking is 
preserved after blending1. Blending with this constraint is very 
like merge sorting.  

For simplicity, let us assume we have two rankings. Considering 
, we will have 

 

where  and  are the numbers of items in the first and second 
set, respectively, and  and  are the items.  

For the rank order in each domain  and , we consider two 
situations regarding the format of the rankings: 1) for a set of 
items, we just have the ranking of the items; and 2) for a set of 
items, we have a score for each of the item, and the ranking of the 
items are induced by the scores of the items, i.e., the ranking is 
obtained by sorting the scores of the items.  

Given a pair of item sets and their associated rankings, we can 
distinguish three cases: 

• Both sets are in situation 1). We need to learn a 
transformation that can relate the ranks in one set to 
those of another set. 

• One set in situation 1) and the other in situation 2). We 
need to learn a transformation that can relate the ranks 
in one set to the scores of another set. 

• Both sets are in situation 2). We need to learn a 
transformation that can calibrate the scores in the two 
sets. 

                                                                 
1 But our method is still applicable even this assumption is not 

satisfied. 

For a ranking in situation 1)  or  is just the negative of its 
rank, and in situation 2) it is the corresponding score. Therefore, 
the tree cases can be addressed with one formulation. 

For  and , we would have 

 

Correspondingly to  and , we also have the combined 
ranking with totally  items2: 

 

As required, the order of items from either list is preserved in . 

Accordingly, we define two subsets of   
:  corresponds to cases where  is ranked 

above , and  corresponds to cases where  is ranked 
below , and define 

 . 

The key question is how to automatically learn a blending 
transformation from the training data. We propose to apply a 
monotonically increasing function  to 
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,  n =1,...,N  in  
so that the blending would be based on  and . By doing 
so, the order of items from each individual ranking list are 
automatically preserved.  is learned to be maximally 
conformed to the editorial blending ranking3. 

3. ALGORITHMS 
3.1 Our algorithm 
We formulate the transformation learning problem as a quadratic 
programming problem. 

 

subject to 

 

 

 where  is the total number of items from both  and  
. 

                                                                 
2 For simplicity, we assume no overlapping items between the 

two lists. 
3 Suppose we have  rankings, . One will be picked as the 

reference point and requires no transformation while the 
remaining  transformations should be learned. 



If one simply assume that  is linear and in the form of 
, the above problem would become 

                   (1) 

subject to 

 

 

By solving the above QP problem, we will obtain a  for the 
linear transformation (the same  will be applied to all the 
queries).  

We could also learn a  for each query length, or each type 
of queries if query classification information is available. The 
constraints in Equation (1) are given the same weight, which can 
be adjusted to give higher weights to more important constraints. 
Other non-linear monotonic transformation should also be 
explored in future work.  

Equation (1) demonstrates the idea with two domains. The 
algorithm can be easily extended to blend more than two rankings. 
Given ranking lists from  domains, one will be picked as the 
reference point and there will be  transformations  

. The constraints to the QP problem will 
involve all pairs of item sets from any two domains, i.e., the 
problem becomes 

 

subject to 

 

                

4. EXPERIMENTS 

4.1 Data 
We evaluated the proposed algorithm with the problem of 
blending web search results with vertical search results in the 
domain of Yahoo! Answers. 1300 queries were sampled from the 
query logs of a commercial search engine, and 800 queries were 
used for training and 500 for validation. For each query, we have 
two sets of documents: general web documents and Yahoo! 
Answers documents. Each document is labeled with one of five 
grades Perfect, Excellent, Good, Fair and Bad, in decreasing order 
of relevance. We have pre-generated ranking functions in each 

domain and the rank score  or  can be generated by 
applying the ranking function in each domain to the document in 
the corresponding domain. Given   and , constrains for the 
QP problem can be constructed by applying merge-sort to the two 
rank lists and keeping the paired score preference between web 
documents and Answers documents. 

4.2 Experiments 
To evaluate the proposed algorithm we focus on the simple case 
where  is a linear transformation, i.e., . 800 
queries were used to learn the transformation and 500 queries 
were used for validation.  

BASELINE  APPROACH. The baseline we compare to is the Naïve 
blending method, where the scores of  and  are compared 
directly. 

EVALUATION METRICS. We report the widely used relevance 
metric Discounted Cumulative Gain (DCG) [7]. For a ranked list 
of N documents (N is set to be 10 or 1 in our experiments), we use 
the following variation of DCG, 

, 

where  represents the weights assigned to the label of the 
document at position i, e.g., 10 for Perfect match, 7 for Excellent 
match, 3 for Good match, etc. Higher degree of relevance 
corresponds to higher value of the DCG. We use DCG to indicate 
the average of DCG values over a set of testing queries. 

In our application, the goal is to blend the documents from 
Yahoo! Answers to web rank list. We reported the DCG1 and 
DCG10, of web rank list and the blended list in Table 1. 1.18% 
DCG10 gain and 0.9% DCG1 gain were observed from our 
approach. Both improvements were statistically significant and 
highlighted with bond font in Table 1. In our application, the 
choice of 

€ 

λ1,λ2 does not affect the performance significantly and 
our experiments used 

€ 

λ1 =1,λ2 =10. The Naïve blending method 
did not achieve any improvement of DCG. This suggests that the 
rank scores from heterogeneous domains are not directly 
comparable and a blending algorithm is needed.  

Table 1. Performance of linear transformation blending 

 Web 
rank list 

Blended list, 
via Naïve 
blending 

Blended list, via 
linear 

transformation 
DCG10 6.78 6.77 6.86 

DCG1 2.31 2.31 2.33 
 

Table 2. Pair-wise error of different blending methods 

 
Blended list, 

via Naïve 
blending 

Blended list, via 
linear 

transformation 
Error rate 46% 35% 

 
The pair-wise error rate, i.e., the percentage of pairs of item sets 
that are not ranked correctly, is also calculated. In other words, 
this error rate measures how many constraints in the QP problem 
can not be satisfied. The error rate is reported in Table 2. Even the 



learned linear transformation gives an error rate of 35%. 
Therefore we study the optimal DCG that can be obtained by the –
merge-sort strategy. 
UPPER BOUND FOR BLENDING. The ideal merge-sort of the 
two ranking lists can be considered as the best DCG10 that can be 
obtained via blending, i.e., the upper bound a blending algorithm 
could achieve. The best DCG10 of our test data is 7.06. Therefore 
there is room to improve for the blending algorithm.  Section 5 
will discuss the future research directions. 
 

5. RELATED WORK 
In recent years, the ranking problem is frequently formulated as a 
supervised machine learning problem [3, 6, 11]. These learning-
to-rank approaches are capable of combining different kinds of 
features to train ranking functions. The problem of ranking can be 
formulated as that of learning a ranking function from pair-wise 
preference data. The idea is to minimize the number of 
contradicting pairs in training data. For example, RankSVM [8] 
uses support vector machines to learn a ranking function from 
preference data. RankNet [1] applies neural network and gradient 
descent to obtain a ranking function. RankBoost [5] applies the 
idea of boosting to construct an efficient ranking function from a 
set of weak ranking functions. The studies reported in [12] 
proposed a framework called GBRank using gradient descent in 
function spaces, and the weak leaner is a decision tree. Cao et al. 
[2] proposed the listwise approach to handle the ranking problem.  
Furthermore, Rank aggregation [4, 9] targets the problem of 
merging the different rankings on the homogeneous set of items, 
where items belong to the same domain.  

Our algorithm of formulating a pairwise ranking problem as a 
quadratic programming problem was inspired by the method 
described in [10]. 

6. CONCLUSIONS AND FUTURE WORK 
Emergence of various vertical search engines such as video 
search, image search, and blog search, motivates the development 
of algorithms to blend rank lists from multiple domains. Unlike 
the traditional learning to rank or rank aggregation problem within 
one domain, in this paper we study the problem of combining rank 
lists from heterogeneous domains to obtain one single rank list. 
The task of learning to blend rankings is defined.  

The blending problem is a challenging task. There are few 
documents/features in common among heterogeneous domains. 
Therefore the ranking function for each type of documents needs 
to be learned within the domain. However the rank scores of 
ranking functions in heterogeneous domains are not directly 
comparable, which brings difficulty for blending. To determine 
the optimal combined list, we consider a merge-sort-like strategy 
to combine ranking lists based on relevance, to maximize the 
DCG and preserve the ranking order in each domain. To achieve 
such a combined ranking list with the ranking lists from multiple 
domains, a monotonic transformation is applied to the rank scores 
in each domain, such that the transformed scores become 
comparable.  

Learning the monotonic transformation that could achieve the 
optimal blended list, is formulated as a quadratic programming 

problem. In the paper, we focus on the simple case where a linear 
transformation is considered.  

We evaluated the novel learning-to-blend approach with real-
world data sampled from a commercial search and observed 
promising results of 1.18% DCG10 gain.  

We focused on one single linear transformation for all queries in 
this paper. Adapting query-type dependent monotonic 
transformation is a direction to explore in future work. Advanced 
monotonic non-linear transformation can also be explored in 
future work. Also exploring the application to more than two 
domains is of great interests. 
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