
Online Learning for Recency Search Ranking
Using Real-time User Feedback

Taesup Moon, Lihong Li,
Wei Chu

Yahoo! Labs
701 First Ave, Sunnyvale, CA

94089
{taesup, lihong,

chuwei}@yahoo-inc.com

Ciya Liao
Microsoft

One Microsoft way, Redmond,
WA 98052

cliao@microsoft.com

Zhaohui Zheng, Yi Chang
Yahoo! Labs

701 First Ave, Sunnyvale, CA
94089

{zhaohui,
yichang}@yahoo-inc.com

ABSTRACT
Traditional machine-learned ranking algorithms for web
search are trained in batch mode, which assume static rel-
evance of documents for a given query. Although such a
batch-learning framework has been tremendously successful
in commercial search engines, in scenarios where relevance of
documents to a query changes over time, such as ranking re-
cent documents for a breaking news query, the batch-learned
ranking functions do have limitations. Users’ real-time click
feedback becomes a better and timely proxy for the varying
relevance of documents rather than the editorial judgments
provided by human editors. In this paper, we propose an
online learning algorithm that can quickly learn the best re-
ranking of the top portion of the original ranked list based
on real-time users’ click feedback. In order to devise our al-
gorithm and evaluate it accurately, we collected exploration
bucket data that removes positional biases on clicks on the
documents for recency-classified queries. Our initial exper-
imental result shows that our scheme is more capable of
quickly adjusting the ranking to track the varying relevance
of documents reflected in the click feedback, compared to
batch-trained ranking functions.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Algorithms

Keywords
Online learning, Recency ranking, User feedback

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’10, October 26–30, 2010, Toronto, Ontario, Canada.
Copyright 2010 ACM 978-1-4503-0099-5/10/10 ...$10.00.

Ranking a list of documents with respect to relevance to a
given query is the central problem in various search applica-
tions of the Internet. The scale and dynamics of the Web re-
quires the machineries for such ranking problems go beyond
the traditional information retrieval methods, and many of
the recent developments on the ranking problems are based
on various techniques in machine learning. Machine-learned
ranking algorithms have been shown very effective in gen-
eralizing to unseen data from the labeled training data and
have been successful particularly in commercial web search
engines. One of the main premise of such machine-learned
ranking algorithms is to learn a ranking function in a batch
mode. That is, based on collected labelled training data, a
machine learning algorithm is trained once (and periodically
retrained), then applied to unseen examples to predict rele-
vance and do the ranking based on that predicted relevance
scores. The main assumption of the batch approach is that
the relevance of documents for a given query are more or
less static over time, and thus, once the coverage of training
set is wide enough, learning the ranking function single time
from the training set would be sufficient to generalize to the
unseen data in the future.

Although the static assumption on the relevance of doc-
uments holds for many cases, there is also an important
category of applications where the relevance of documents
to a query may change over time as well. One such exam-
ple is the recency ranking in web search [3]. That is, when
breaking news emerges, a document that would have been
very relevant to a certain query may become less relevant
than the recent documents that have the most recent news
stories about the query. This kind of relevance drift can usu-
ally be well reflected in users’ behavior, especially in click
feedback in the temporal dimension. The key challenge of
such problems is how to reflect such drift quickly to produce
better ranking.

Recently in [3], a solid attempt, which also works in the
batch mode, has been taken to address the above challenge
by devising time-varying features and recency demoted la-
bels provided by human editors. However, their batch ap-
proach still is limited in quickly tracking the varying rele-
vance of documents in a timely manner since obtaining good
quality of batch training data can be very hard and tracking
unseen temporal dynamics in the actual serving stage would
be still challenging even when the training data is obtained.

Instead of adhering to the batch learning paradigm to im-
prove the quality of recency ranking, this paper devises an

online learning approach that can quickly refine the results
of an existing ranking function based on users’ click feed-
back. Our rationale is that, particularly for recency queries,
instantaneous click trends on the top portion of the list seem
to be more important and direct indicators of document rel-
evance than human editors’ judgment labels. That is, based
on the relevance and freshness features, although we can get
a decent idea about the relevance of documents to a recency
sensitive query, it is apparent that it is only when the ac-
tual users provide with feedback in the form of clicks can we
can accurately figure out the right ranking of the documents
to the query. Moreover, it is almost impossible for human
editors to predict this kind of subtle differences beforehand
when they are making relevance and recency judgments.

Based on the above reasoning, we carry out the follow-
ing: once the editorial judgment based, batch-learned re-
cency ranking function generates the ranked list of highly
relevant documents for a recency query, we devise a linear
re-ranking function, which is a function of query-document
features and the score of the batch-trained ranking func-
tion, and sequentially update the linear coefficients based
on the observed users click feedback on the documents be-
ing explored in the top portion of the list. Moreover, we
work in the feature space because there are a lot of tail
queries and documents that do not have enough click feed-
back to learn separate models for them, and thus, we need
to generalize from the feedback on other queries. In order
to devise our algorithm and carry out technically sound ex-
periments, we collected exploration data, which randomly
shuffles top 4 documents for every recency-classified queries’
search results, from a small portion of live traffic on the com-
mercial search engine. This data is used for both designing
and evaluating our online learning algorithms, since we can
collect click data without positional impression biases and
simulate the actual users’ experience for various re-ranking
strategies. Our initial experiments show that our online-
learned re-ranking algorithm increases various click metrics
on recency queries not only over the editorial-based recency
ranking function of [3], but also over the batch-trained re-
ranking function which is trained on hold-out part of the
exploration bucket data. These results show the necessity
of an online-learned ranking function to appropriately track
time-varying relevance for recency queries.

The rest of the paper is organized as follows. Section 2 re-
views previous work that is related to our work and describes
the differences with ours. Section 3 outlines our algorithm
and evaluation methodology. Section 4 summarizes our pre-
liminary empirical results. Finally, concluding remarks are
given in Section 5. Due to space limitation, we leave a de-
tailed description of our method and results to an extended
version of the paper.

2. RELATED WORK
As mentioned in Section 1, an extension of this framework

on the recency ranking problem in web search was first pro-
posed in [3], which remains in the batch training framework.
Using users’ click feedback to improve the ranking quality
of search engines is not new and many previous research
work has visited it. [4, 2] and many others, for example,
developed user behavior models based on users’ click log
data and used the model output as input features to the
batch training algorithms. Most of those features, however,
were computed in an average sense and are hard to reflect

the temporal variations of relevance of documents. [9] had
more similar flavor as our work in that they used click data
to directly modify the ranking based on the inference on
the users’ relative preferences on rankings. Taking temporal
variation of relevance into account to produce better rank-
ings has also been considered in the recommender systems
literature. [5] devised a scheme to capture temporal dynam-
ics of user ratings on items in a conventional collaborative
filtering problem. Personalized recommendation of articles
on the Web [1, 6] is another closely related problem.

3. OUR METHOD
Ranking problem for recency-classified queries has three

main challenges: relevance drifting, dynamic content pool,
and data sparsity. We use online learning, explore-exploit
techniques, and feature-based scoring to address these is-
sues, respectively. Moreover, we try to maximize CTR@1 of
our algorithm, which we believe is a reasonable metric for
recency-query ranking.

3.1 Exploration/Permutation Bucket
As described in Section 1, we first setup a bucket to col-

lect exploration data for a small portion of live traffic from a
commercial search engine between Jan 29, 2010 and Feb 4,
2010. Throughout these days, we collected 652, 637 search
sessions that contained 82, 590 recency-classified queries.
The ranked list for those queries were generated by the re-
cency ranking function trained as described in [3] and the
ranking score for each query-document was recorded. For
each session, we randomly shuffled the top 4 results and
logged the permutation id of each shuffled permutation and
user clicks on the corresponding permuted ranking results.
By doing the random shuffling, we are able to collect user
click feedback on each document without positional bias,
and such feedback can be thought of as a reliable proxy of
document relevance.

Moreover, our session data set is very sparse and long-
tailed, in which 91.1% of queries were issued no more than
10 times. The reason for this sparsity is because the recency
query classifier utilizes some language model to determine
the queries that are related to each other, which causes some
recency-related idiosyncratic, less popular queries, such as
different word orderings, also classified as recency queries.

3.2 Notation
The online-learning-to-rerank problem is naturally mod-

eled as a round-by-round process: at round t,
• A user arrives and types in a query qt;
• The default recency ranking function generates an or-

dered list of s documents with highest relevance scores.
Then, our re-ranking function re-orders these docu-
ments and present to the user the re-ordered ranked
list {ut,1, . . . , ut,s}. In our exploration bucket, s = 4.
• The user provides feedback rt = {ct,1, . . . , ct,s} on our

re-ranking result. Here, we define ct,i = 1 if a user
clicked on the document at potision i, and 0 otherwise.
• Finally, based on user feedback, we then update our

re-ranking function.
In order to efficiently implement and update our re-

ranking function, we construct a common feature vector for
every query-document pair, (q, u), and denote it as xqu. Our
online algorithm then maintains a re-ranking function that
predicts the CTR@1 of each (q, u) as a function of xqu and

possibly of some latent features, and the function gets up-
dated based on observing users’ click feedback. Before de-
scribing our algorithm in detail, we first cover how we eval-
uate different algorithms.

3.3 Evaluation Methodology
A tricky part of our problem is that, unlike supervised

learning, it is hard to evaluate and compare performance
of algorithms using a static set of log data, since the click
feedback in the log depends on the ranking results that the
user observed when the log was collected. We follow the
methodology established in [6] for online recommendation
problems. First, we hold out the sessions for the latter three
days in the exploration bucket data and use it as a test set.
We then sort the test sessions in the order of time stamps.
Let the number of clicks on the first position be C, which is
initialized to 0. For t = 1, 2, . . .,

1. We retrieve the t-th session in the test set, present the
top s documents together with their features to the
re-ranking function.

2. The re-ranking algorithm then proposes to display one
of the documents in the first position by its re-ranking
score. We call it a “match” if this proposed document
is the same as the one displayed in the first position in
the retrieved test session.

3. If a match happens, we reveal the user feedback rt and
update C ← C + ct,1.

4. Otherwise, rt is not revealed, and the value of C re-
mains unchanged. Effectively, this session is ignored.

Finally, the overall CTR@1 of the algorithm in the eval-
uation process above is C/M , where M is the number of
matched sessions. For each session in the test set, the prob-
ability that a match happens is 1/s for any ranking algo-
rithm, since the top s documents are randomly shuffled in
our exploration bucket data. Therefore, for a test set of L
sessions, M equals L/s on average. In our experiments, since
L is large, M is almost constant across different runs. The
following key property justifies the soundness of the evalu-
ation method above: it can be proved that the estimated
CTR@1, C/M , of an online algorithm is an unbiased esti-
mate of its true CTR if we ran it to serve live user traffic [6].
Therefore, algorithms that have higher CTR estimates using
this evaluation method will have higher CTRs in live buckets
as well. This crucial fact allows us to compare and evalu-
ate various algorithms offline without the costs and risks of
actually testing them with live users.

3.4 Online Algorithm
Given our goal of maximizing CTR@1 in the re-ranking re-

sults, it is tempting for an online algorithm to follow a greedy
strategy: that is, it always picks (for the present query at
hand) the document with the highest CTR estimate for the
first position, and updates the function parameters solely
based on user feedback rt for the algorithm’s re-ranked list.
While this greedy approach is intuitively desirable, it can
be detrimental in practice since when an algorithm mistak-
enly underrates a document, a greedy re-ranking strategy
can prevent it from collecting user feedback for this docu-
ment to correct this mistake. Consequently, the algorithm
has to balance two conflicting goals: (a) “exploitation” — to
display in the first position most relevant documents to max-
imize re-ranking quality (in our case, to maximize CTR@1),
and (b) “exploration” — to display documents for the pur-

pose of collecting data to further improvement. The ex-
ploration/exploitation tradeoff described above is a defining
characteristic of a class of problems known as bandit prob-
lems [8], which has received considerable attention recently
for Internet-related applications [7, 9].

Although many alternatives exist, we choose our re-
ranking function to be linear in the feature vector xqu

and combine ε-greedy strategy to resolve the above explore-
exploit tradeoff and implement our online algorithm. A total
of 51 features were used, i.e., xqu ∈ R51, where those features
include regular query-specific, document-specific, and query-
document-specific features used in ordinary machine-learned
ranking functions, and, more importantly, the ranking score
generated by the default recency ranking function [3]. Since
we try to maximize CTR@1, it is natural to find a function
that estimates CTR@1 of a (q, u) pair for re-ranking.

Once the feature vector is given, we define the following
hybrid model for CTR@1 of (q, u) pair:

CTR@1(q, u) = βββ>xqu + bqu, (1)

where βββ is the common coefficient vector for all (q, u) pairs
as before, but bqu is a real-valued latent feature associated
with the (q, u) pair. We also call bqu a bias term for (q, u).
One might wonder the necessity of using a linear model if
we simultaneously allow a bias term for every (q, u) pair in
the hybrid model (1). The reason is as follows: if the fea-
tures in xqu are reasonably good in predicting CTR@1(q, u),
the linear model part βββ>xqu will be able to capture much
information of CTR@1(q, u). Consequently, the shared co-
efficients βββ makes it possible to generalize CTR from one
query-document pair to others, and therefore makes learn-
ing faster. At the same time, the bias terms bqu can make the
hybrid model more powerful since for popular (q, u) pairs,
we will have enough training data so that bqu can correct the
estimate of βββ>xqu. As usually, we need to put regularization
penalty on both βββ and bqu to prevent overfitting.

Our online re-ranking algorithm uses (1), which sequen-
tially updates βββ and bqu based on observed click feedback,
to re-rank top 4 documents generated by the default recency
ranking function. The target click feedback for updating is
obtained by the ε-greedy strategy with ε = 1, and we use
the standard ridge regression for learning; for each time t,
we compute the optimal model parameters (βββt, {bqu,t}) to
minimize

ft(βββ, {bqu}) ,
tX

i=1

“
ci − βββ>xi − bqiui

”2

+λ1

‚‚βββ − βββ(0)
‚‚2

2
+ λ2

X
(q,u)

‚‚bqu − b(0)
‚‚2

2
, (2)

where λ1 and λ2 are regularization parameters, βββ(0) and b(0)

are the prior values, and ‖ · ‖2 is the ordinary `2-norm. The
efficient sequential update formula for (βββt, {bqu,t}) can be
obtained by matrix inversion lemma.

4. EXPERIMENTAL RESULTS
In this section, we report preliminary empirical evidence

for the usefulness of the proposed online ra-ranking method
for recency queries. We first describe the models we com-
pared, and then show the performance of each model in our
test set.

0 2 4 6 8 10 12 14
0.65

0.7

0.75

0.8

0.85

0.9

Time

R
el

at
iv

e
C

T
R

frmsc
batch (b)
online (b)
online (b, ws)
batch (nb)
online (nb)
online (nb, ws)

Figure 1: Cumulative (normalized) CTR@1 of the
four models on the test data. Each point was mea-
sured for an approximately six-hour period.

4.1 Models
In order to demonstrate the effectiveness of our click-

based, online learning method, we have to compare our
scheme not only with the editorial judgment-based, batch-
trained recency ranking function, but also with the click-
based batch-trained re-ranking model. For such comparison,
we partitioned our exploration bucket data into training and
test set as described in Section 3.3, and following four mod-
els were compared on the test set.
• frmsc: This is the baseline scheme using a deployed

recency ranking function [3].
• batch(b): This is the linear model obtained by mini-

mizing (1) on the training set.
• online(b): This is the model described in Section 3,

where βββ(0) and b(0) are initialized to zero.
• online(b,ws): This is the same as online(b) except

that βββ(0) and b(0) are initialized to the solution ob-
tained by batch(b), thus the name “warm start” (ws).

For each of the last three models, we also try a variant that
does not use the bias terms bqu in (1). The corresponding
models are batch(nb), online(nb), and online(nb,ws).

4.2 Result Analysis
We focus on CTR@1 in empirical evaluation. Figure 1

plots cumulative CTR@1 on the test data set for seven dif-
ferent models described in the previous subsection. The unit
length on the x-axis corresponds roughly to 6 hours. A few
interesting observations are in order. First, it is apparent
that using user feedback, either in batch or online models,
helps improve CTR@1 metrics, yielding significant improve-
ment over the frmsc baseline. The improvement also im-
plies a noticeable discrepancy between editorial judgments
and users’ click feedback on recency queries. Second, on-
line(b,ws) dominates all other models almost during all
three days, verifying the importance of online learning with
warm start and bias terms. Finally, it is clear that using the
bias terms in (1) helps improve CTR@1, confirming our con-
jecture that they are useful to correct the linear model’s pre-

diction error of CTR@1 for popular queries. In other words,
the bias term serves as a latent feature for each query-url,
which turns out to be a strong signal.

5. DISCUSSION AND CONCLUSION
In this work, we proposed a novel framework for using on-

line learning algorithms to do Web search re-ranking based
on real-time user feedback. Our contributions are three-fold.
First, we demonstrate the need for using online learning as
a flexible machine learning paradigm to adapt a ranking
system to non-stationary document relevance. Second, our
evaluation method is novel—a random exploration bucket
was used to collect user feedback, which not only removed
positional bias but also allowed one to reliably evaluate on-
line learning algorithm offline. Third, we proposed a novel
and principled algorithm for doing online re-ranking. This
algorithm can be efficiently implemented and easily incorpo-
rated into existing ranking engines. Empirical results sug-
gest effectiveness of our proposed solutions, and we plan
to report more detailed evaluation results of our re-ranking
method in a full version of this paper.

6. REFERENCES
[1] D. Agarwal, B. Chen, and P. Elango. Explore/exploit

schemes for web content optimization. Proceedings of
the International Conference on Data Mining (ICDM),
2009 .

[2] O. Chapelle and Y. Zhang. A dynamic bayesian
network click model for web search ranking. In WWW
’09: Proceedings of the 18th international conference on
World wide web, pages 1–10, New York, NY, USA,
2009. ACM.

[3] A. Dong, Y. Chang, Z. Z, G. Mishne, J. Bai, R. Zhang,
K. Buchner, C. Liao, and F. Diaz. Towards recency
ranking in web search. Proceedings of the third
International ACM Conference on Web Search and
Data Mining (WSDM), 2010.

[4] G. Dupret and C. Liao. Cumulated relevance: A model
to estimate document relevance from the clickthrough
logs of a web search engine. In Proceedings of the third
International ACM Conference on Web Search and
Data Mining (WSDM), 2010.

[5] Y. Koren. Collaborative filtering with temporal
dynamics. ACM SIGKDD International Conference On
Knowledge Discovery and Data Mining (KDD), 2009.

[6] L. Li, W. Chu, J. Langford, and R. Schapire. A
contextual bandit approach to personalized news article
recommendation. Proceedings of 19th World Wide Web
(WWW) Conference, 2010.

[7] F. Radlinski and T. Joachims. Active exploration for
learning rankings from clickthrough data. ACM
SIGKDD International Conference On Knowledge
Discovery and Data Mining (KDD), 2007.

[8] H. Robbins. Some aspects of the sequential design of
experiments. Bulletin of the American Mathematical
Society, 58(5):527–535, 1952.

[9] Y. Yue and T. Joachims. Interactively optimizing
information retrieval systems as a dueling bandits
problem. Proceedings of the 26 th International
Conference on Machine Learning, Montreal (ICML),
Canada, 2009.

