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ABSTRACT

Discounted cumulative gain (DCG) is widely used for eval-
uating ranking functions. It is therefore natural to learn
a ranking function that directly optimizes DCG. However,
DCG is non-smooth, rendering gradient-based optimization
algorithms inapplicable. To remedy this, smoothed versions
of DCG have been proposed but with only partial success.
In this paper, we first present analysis that shows it is inef-
fective using the gradient of the smoothed DCG to drive the
optimization algorithm. We then propose a novel approach,
SHF-SDCG, for smoothing DCG by using smoothed hinge
functions (SHF). It has the advantage of seamlessly transi-
tion from driving the optimization mimicking pairwise learn-
ing when the ranking function does not fit the data well, to
driving the optimization using DCG when the ranking func-
tion becomes more accurate. SHF-SDCG is then extended
to REG-SHF-SDCG, an algorithm which gradually transits
from pointwise and pairwise to listwise learning. Finally ex-
perimental results are provided to validate the effectiveness
of SHF-SDCG and REG-SHF-SDCG.
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1. INTRODUCTION

Search engines are widely used tools for effectively explor-
ing the information on the web. The core of a search engine
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is its ranking function: When a search engine receives a user
query, this function assigns a real valued score to each of a
given set of documents (or web URLs). The search engine
then returns the list of documents according to the decreas-
ing order of scores, which means the the larger the score of
a document, the more relevant this document is to the user
query.

Many approaches have been proposed for constructing the
ranking function due to its important role in search en-
gines. In particular, adopting the machine learning meth-
ods to learn the ranking function, or learning to rank, has
recently attracted more and more efforts. In these meth-
ods, the training data contains a set of queries, a set of
documents for each query and a label or grade for each doc-
ument indicating the degree of relevance of this document
to its corresponding query. For example, each grade can be
one element in the ordinal set:

{perfect, excellent, good, fair, bad}

(1)
which is generally assigned by human editors.

The Discounted Cumulative Gain (DCG) has been widely
used as a main measurement to assess relevance in the con-
text of search engines [2]. Therefore, when constructing a
learning to rank approach, it is important to consider how to
optimize model parameters with respect to the DCG value.
Many machine learning algorithms apply the gradient based
techniques for parameter optimization. Unfortunately, the
DCG metric is not smooth. This makes it difficult to directly
optimize it with gradient based approaches. Consequently
many current ranking algorithms turn to optimize other ob-
jectives, such as regression error and pairwise preferences.

To solve this problem, recently the SoftRank approach [4]
treats the deterministic output values of a ranking function
as Gaussian random variables, based on which a smooth
approximation of DCG is derived.

In this paper, we also start from the idea of constructing
a smooth DCG objective function. Similar as SoftRank, it
is a smooth approximation of DCG. However, our approx-
imation is deterministic and random distributions are not
involved. More importantly, our main contribution is to
show the problems of this approach and elucidate that di-
rectly optimizing this approximation of DCG is still not a
good way to learn the ranking function, even it is smooth.
We then provide solutions to overcome these problems to
construct our algorithms for the learning to rank problem.
Specifically, we propose a SHF-SDCG algorithm, which uses
smooth hinge functions (SHF). This algorithm has the ad-



vantage of seamlessly transition from driving the optimiza-
tion mimicking pairwise learning when the ranking function
does not fit the data well, to driving the optimization us-
ing DCG when the ranking function becomes more accu-
rate. Then SHF-SDCG is further improved and extended
to REG-SHF-SDCG, which firstly reaches a reasonably well
solution by regression.

The remaining of this paper is organized as follows. In
section 2, we formulate a smooth DCG objective, which
is the start of our approach. Section 3 is the main part,
which explains the problems of learning a ranking function
by directly optimizing this approximation of DCG, even it
is smooth. And we provide our solutions to these problems
which lead to two ranking algorithms SHF-SDCG and REG-
SHF-SDCG. Experimental results are provided in section 4
and we conclude the paper in the last section.

2. SMOOTHING DCG
2.1 DCG Metrics

For one query, and a list of n documents, suppose the
relevance grade of the i-th document with respect to this
query is y;, then the DCG is defined as

ﬂWk(”) (2)

S |
DCG@k =
i:zl log,

In equation (2), r; is the rank of the 4-th document, k is a
positive integer, while the weight function Wy(r;) equals 1 if
r; < k, and 0 otherwise. Another widely used DCG metric
is the Normalized DCG (NDCGQG) [2], which is defined as

NDCG@k = DCG@k/Z (3)

where Z is the normalization factor such that the perfect
ranking of the list gives an NDCG value of 1.
In the following, we will focus on DCG@k metric to derive

our ranking algorithm. But our approach can be straight-
forwardly applied to NDCG@k.

2.2 A Basic Smooth DCG Objective

In (2), the rank value r; can be approximated as r;
1+>2,.; H(oi — 0j), where o; and o; are the output values
for document 4 and j of the ranking function, and H(-) is
the step function,

~
~

1 ifx <0
H(z)=< 0.5 ifrx=0 (4)
0 otherwise

The sigmoid function G4(-) can be adopted as a smooth
approximation of the step function H(-):

1

Galw) = 1+ exp(ax)

(®)

where o > 0 is a parameter. Based on G4(-), we can build
smooth approximations for r; and Wj(-):

T = 1+ZGQ(05—OJ')
JAi
Wk(m) Ga(xz — k)

Now we can define a smooth approximation of DCG@Qk:

(6)

(7)

SDCG@k = f: logsﬂm () (8)

2(1+74)
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where #; and W, are defined in (6) and (7) respectively.
Clearly SDCG@k is smooth and can be readily optimized
by gradient based algorithms. In particular, we adopt the
Gradient Boosting Tree [1] GBT approach to optimize it.

3. SHF-SDCG AND REG-SHF-SDCG

In this section, We will carry out a careful analysis of
the gradient of the SDCG objective to pinpoint some of its
problems, which result in our proposed ranking algorithms.

3.1 SHF-SDCG

To facilitate the discussion, we consider a simple situation
where there are only two documents x; and x2 for a query,
with relevance grades y1 and y» respectively.

Let o0; denote the output value of the ranking function for
document x; (¢ = 1,2). First we investigate the gradient of
the SDCG objective with respect to o0;:

0SDCG@k  9SDCG@k 07y n 0SDCGQk 974 )
801' o 8721 80,- 6722 801'
where % is calculated as
a’fj 6Ga(?7(01 — 02)) ..
= = < <
0, o, , 1<i,5<2 (10)

where n = 1if j = 1, and -1 otherwise.

From Figure 1, we can see that the curve of G4 () is flat,
i.e. the gradient value of close to 0, when the absolute value
of z is large, and it has relatively larger values when z is close
to 0. Suppose y2 < y1 and at a certain Gradient Descent
GD iteration, the ranking function gives the wrong order for
this two documents, i.e. 02 > 01. Based on (10) and Figure
1, we can see that the a larger value of 02 — 01 can lead

to gradient values g% close to 0. Therefore correcting the
order of these two docLuments is difficult since 02 — 01 will be
changed very little by the current GD iteration. This is not
desirable since we hope in each iteration we can focus more
on those incorrectly ranked pairs and correct them quickly.

Even worse, from (10) we can see that,
or1 0O

807; - 807;7 (11)

Therefore the two terms on the right hand side of (9) give op-
posite updating directions for o;, i = 1,2, which means that
the optimization procedure is quite inefficient. By investi-
gating the above simple case, we can see that even though the
SDCG objective is smooth, directly optimizing this objective
is not effective since correcting wrongly ranked pairs requires
many optimization iterations. To overcome this problem, we
propose to modify the calculation of 71 and 72 as follows:

1,2

f1 = 14 As(o1 —02) (12)
fo = 14 Ba(o2 —o01) (13)
where
Aa() = { 05+ (%Ix othemrise (14)
and
Ba(z) =14 Aa(—2) (15)

It is interesting to note that A, (x) and Bs(z) can be con-
sidered as a smoothed version of the hinge functions.
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Figure 1: G.(z), Ax(z) and Ba(z)

The figure of the three functions Gu(-) with A,(-) and
B, (-) are displayed in Figure 1. Based on (14) and (15), we
can see that when o2 > 01, we have:

or; Of1 _ Ofy
0o; do;  0o;

where 1 < 4,5 < 2. This way, whenever the ranking order
of these two documents is wrong, the GD iterations can
effectively update them towards the right direction.

Thus, by replacing Go(-) with Ay (-) and Bq(-) for 71 in
(12) and 72 in (13), we can overcome the problems described
above. By replacing the sigmoid function with SHFs, we
obtain anthoer objective, which will be called SHF-SDCG
in the following.

3.2  Weight Function

In (8), there is a weight function Wy(-) calculated as (7).
Suppose at a certain GD iteration, a perfectly relevant doc-
ument for a query is not well ranked at position, say, k + n.
The weight value of this document is Gg(n), which decreases
very fast as n increases. This means this wrongly ranked
documents tend to be ignored and hence improving their
ranks is difficult. Let s, denote the largest rank value of
the top k£ documents, i.e. the k& most relevant documents,
for a query at the m-th GD iteration, we modify the weight
function in (7) as,

«

1 and

(16)

Win(2) = Gl — s1n)

This way, we can make sure that all the top k& documents of
each query can get enough weights. The width s,, becomes
smaller and smaller as GD iterations keep improving the
ranking result. When s, is close to k, Wi, () is also close to
the original weight function Wi (-) in DCG metric (2). This
is similar as the idea of the Deterministic Annealing (DA)
algorithm. In order to solve a difficult optimization problem,
DA optimizes a series of objective functions, which are easier
to optimize and gradually approach the original objective.

3.3 REG-SHF-SDCG

Our objective function is not convex. Therefore a good
starting point is helpful for obtaining a good result. We pro-
pose to smoothly mix SHF-SDCG with regression by mini-
mizing the following objective function:

R X 7, — SHF-SDCG X (1 — )

(17)

(18)

where R is the regression error, 0 < 7,,, < 1 decreases when
the number of iterations m increases, giving SHF-SDCG
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more and more weights. In our algorithm, 7, is calculated
as:

_ 1

= T+ e (m — M/2))

where M is the total number of the iterations, and ~ is
chosen such that 71 = 0.999999. According to (19), 7, = 0.5
when m = M/2. Namely, regression error and SHF-SDCG
have the same weight when half of the iterations have been
finished. This is just a heuristic choice, and in practice we
found it usually leads to good results.

In the following, we use REG-SHF-SDCG to denote ob-
jective defined based on (18) and (19).

(19)

Tm

3.4 Transition from Pointwise and Pairwise to
Listwise Learning

In REG-SHF-SDCG, at the beginning, minimizing the re-
gression error, which is pointwise, is the focus of optimiza-
tion such that a reasonably good ranking solution can be
reached. As the number of iterations increases, the second
term in (18), i.e. SHF-SDCG has more and more impor-
tance. At this time, for a query, when there are many in-
correctly ranked pairs, SHF-SDCG is not an accurate ap-
proximation of the true DCG value. For this query, the
optimization procedure is mainly to correct those wrongly
ranked pairs, which is more like a pairwise approach. As the
number of iterations increases more and the ranking result is
further improved, for the queries whose most documents are
correctly ranked, and SHF-SDCG is a good smooth approxi-
mation of DCG metric, optimizing SHF-SDCG can lead to a
good DCG value. Namely, at this stage, a listwise objective
is being optimized. Hence we can see that in REG-SHF-
SDCG and SHF-SDCG, we actually transit from pointwise
and pairwise to listwise learning.

4. EXPERIMENTAL RESULTS

4.1 Experiments on a Commercial Search En-
gine Data Collection

For this search engine data set, we extracted about 400
features. The queries are sampled from the search engine
query logs and a certain number of query-document pairs
are labeled according to their relevance judged by human
editors. The five levels of grades shown in (1) is adopted.
For experiment, we used a training, a validation and a test
set, which contain 8179, 3755 and 916 queries respectively.
The number of query-url pairs constrained in these three
data sets are 322763, 111561 and 32008.

In [5], a pairwise ranking algorithm called GBRank, is pre-
sented which shows the state of art ranking results. It also
adopts the GBT framework for training and optimization.
We will include GBRank for comparison. As a baseline, we
also show the results of a simple regression approach, de-
noted by Regression in the following, which uses the GBT
method to train a regression model.

In the experiment, 600 trees were used for all these five
algorithms. Figure 2 gives the results. It can be seen that
REG-SHF-SDCG compares favorably to all the other algo-
rithms. In particular, REG-SHF-SDCG outperforms SHF-
SDCG, which indicates that the mixture with regression (18)
can improve the ranking results, since a better staring point
can be reached. And it can be observed that both REG-
SHF-SDCG and SHF-SDCG can beat the SDCG algorithm.
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Figure 2: NDCG@1 and NDCG@5 of REG-SHF-SDCG, SHF-SDCG, SDCG, GBRank, and Regression.

Table 1: NDCG, MAP and Precision at position k on OHSUMED data (average over 5 folds)

Algorithms NDCG@1l | NDCG@2 | NDCG@3 | NDCG@4 | NDCG@5 pPal Pa@2 pPa3 pPa4 Pas MAP
RankBoost 0.4632 0.4504 0.4555 0.4543 0.4494 0.5576 | 0.5481 | 0.5609 | 0.5580 | 0.5447 || 0.4411
RankSVM 0.4958 0.4331 0.4207 0.4240 0.4164 0.5974 | 0.5494 | 0.5427 | 0.5443 | 0.5319 0.4334
FRank 0.5300 0.5008 0.4812 0.4694 0.4588 0.6429 | 0.6195 | 0.5925 | 0.5840 | 0.5638 0.4439
ListNet 0.5326 0.4810 0.4732 0.4561 0.4432 0.6524 | 0.6093 | 0.6016 | 0.5745 | 0.5502 0.4457
AdaRank.MAP 0.5388 0.4789 0.4682 0.4721 0.4613 0.6338 | 0.5959 | 0.5895 | 0.5887 | 0.5674 0.4487
AdaRank.NDCG 0.5330 0.4922 0.4790 0.4688 0.4673 0.6719 | 0.6236 | 0.5984 | 0.5838 | 0.5767 || 0.4498
SDCG 0.5012 0.4750 0.4714 0.4533 0.4420 0.6152 | 0.5816 | 0.5802 | 0.5461 | 0.5313 0.4501
SHF-SDCG 0.5409 0.5022 0.4743 0.4701 0.4598 0.6333 | 0.6141 | 0.5922 | 0.5790 | 0.5593 0.4503
REG-SHF-SDCG 0.5517 0.5110 0.4802 0.4716 0.4634 0.6333 | 0.6152 | 0.5893 | 0.5716 | 0.5574 0.4506

In fact, SDCG has even lower NDCG values than Regres-
sion. All these support our analysis in section 3.

4.2 Experiments on OHSUMED data

The OHSUMED data set we used is contained in the
LETOR 3.0 package [3], which is derived from the exist-
ing data sets widely used in IR. The OHSUMED data set is
a subset of the MEDLINE database, which is popular in IR
community. This data set contains 106 queries. The doc-
uments are manually labeled with three levels of relevance
grades: definitely relevant, possibly relevant and not rele-
vant. Three metrics are adopted here: NDCG, Precision
and Mean Average Precision (MAP), which have been used
in literature of ranking.

For OHSUMED, 250 trees were used for SDCG, SHF-
SDCG and REG-SHF-SDCG. These three algorithms are
compared with other six state of art learning to rank al-
gorithms reported in the LETOR package. The results are
listed in Table 2.

It can be observed that REG-SHF-SDCG has the high-
est NDCG@1, NDCG@2 values, and it has the second best
NDCG@3, NDCG@4 and NDCG@5 values. This indicates
that REG-SHF-SDCG is an effective algorithm for optimiz-
ing the DCG metric. The precision values of REG-SHF-
SDCG are not strong compared with other algorithms, since
it aims to optimize DCG metric. However, it is interest-
ing to see that it has the highest MAP value, also SDCG
and SHF-SDCG have better MAP values than the six al-
gorithms. Also, comparing REG-SHF-SDCG, SHF-SDCG
and SDCG, we can see the similar results as in the last sub-
section. All these again support our proposed approaches.

5. CONCLUSIONS
We have proposed a smooth DCG approach for learning
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ranking functions for web search. Starting from a “faithful”
smooth approximation of the DCG metric, we have eluci-
dated some of its problems and pointed out that optimizing
an accurate approximation of DCG metric is not effective.
Then we have provided solutions to these problems and for-
mulated REG-SHF-SDCG and SHF-SDCG, which can be
readily optimized by the gradient descent. The proposed
approaches illustrate properties of pointwise, pairwise and
listwise ranking approaches in different optimization stages,
and the objective functions being optimized gradually ap-
proach an accurate smooth approximation of the true DCG
metric. Experimental results on both a commercial search
engine data set and a publicly available benchmark data set
have shown encouraging results.
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