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ABSTRACT
In many Web search engines, a ranking function is selected
for deployment mainly by comparing the relevance measure-
ments over candidates. Due to the dynamical nature of the
Web, the ranking features and the query and URL distribu-
tion on which the ranking functions are built, may change
dramatically over time. The actual relevance of the function
may degrade, and thus the previous function selection con-
clusions become invalid. In this work we suggest to select
Web ranking functions according to both their relevance and
robustness to the changes that may lead to relevance degra-
dation over time. We argue that the ranking robustness can
be effectively measured by taking into account the ranking
score distribution across search results. We then propose
two alternatives to the NDCG metric that both incorporate
ranking robustness into ranking function evaluation and se-
lection. A machine learning approach is developed to learn
the parameters that control the metric sensitivity to score
turbulence, from human-judged preference data.
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1. INTRODUCTION
In Web search, a ranking function usually ranks the search

result pages for a query, by first assigning a score that mea-
sures the relevance of each page to the query, and then
ranking pages in the descendent order of the score. Many
popular learning-to-rank algorithms, such as RankSVM [5],
RankNet [3], GBrank [7], and SoftRank [6], belong to this
category. For function selection purpose, metrics such as
Mean Average Precision (MAP) and NDCG [4] have been
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developed and are commonly used to measure the search re-
sult relevance. The underlying assumption for this strategy
is that the relevance of the selected function will be con-
sistently better over time after deployment, compared with
other candidates.

However, this assumption usually does not hold for Web
search. As the Web size expands, Web content updates, Web
link structure evolves, and user search behaviors change, the
rank features that the function was trained may get updated,
and the query and search result page distribution it is ap-
plied to may drift too. This brings practical issues to the
ranking quality in this dynamical Web search environment.
On one hand, a deployed ranking function may not be so ro-
bust in the sense that its relevance may degrade with these
changes. On the other hand, the ranking function itself, can
not always be retrained so timely to capture the changes.
Consequently, the relevance comparison previously done for
function selection may not be valid any longer.

In this paper we claim that, selecting web ranking func-
tions purely based on relevance is inadequate, and ranking
robustness should also be measured and taken into account
in ranking function evaluation. Rather than functions with
only higher static relevance measurement, those whose rel-
evance measurement are more robust to potential changes,
should be considered for deployment. One observation we
made is: the impact from potential change in rank fea-
tures and the distribution of user queries and search result
pages on a ranking function, is mostly reflected to the rank-
ing scores assigned by the function. Consider two score
lists with the same ranking order: (1) {2.1, 2.0, 1.0} and (2)
{2.1, 1.5, 1.0}. The human-judged relevance grades of the
three pages are {“Excellent”, “Bad”, “Bad”}. Although the
two lists have identical NDCG values, apparently (2) is bet-
ter than (1) in terms of ranking robustness with regard to
potential turbulence in scores. As rank features update, the
first two pages in (1) can be easily swaped, and the corre-
sponding NDCG measurement can drop dramatically. This
indicates the inadequacy of NDCG as the only criteria in
function selection when score turbulence can happen.

Therefore in this work, we propose two alternatives to
NDCG, that measure both relevance and ranking robustness
for ranking function selection. We design the first robust-
ness metric, namely rNDCG, to add in the probability that
neighboring pairs of search results in the original ranking
order may switch positions when ranking score turbulence
happens. The second metric is SoftNDCG, first proposed in
[6]. SoftNDCG calculates the expected NDCG of a ranked
list according to a probability distribution that a result page
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takes each rank, which is also defined over the ranking scores
across pages. Both of the proposed metrics are sensitive
to the possible ranking score turbulence as we will demon-
strate in this paper. In addition to these two manually de-
fined metrics, we also develop a machine learning approach
to automatically learn a robustness metric that maximizes
its consistency with user preference data. For doing that,
we first parameterize the SoftNDCG metric with parame-
ters that control the sensitiveness of the measurement to
ranking scores. Then we collect training data by providing
randomly permutated search results to human editors and
collect their preference over the ranked lists. A maximum
likelihood optimization is then applied for the purpose of
parameter learning.

How to evaluate the proposed metrics with respect to their
measurements of robustness is a key issue in this study. In
the empirical study, we compare different metrics with re-
gard to their reliability in function selection, according to
three criterions. A metric that can better measure the rank-
ing robustness should be 1) more stable (i.e. having less
variance) to the noise that causes ranking score turbulence;
2) more reliable in their function selection across different
data samplings, better measuring the robustness to the pos-
sible drifting in the distribution of queries and result pages;
and 3) more stable in their function selection when the eval-
uation data is updated over time. Our experimental results
indeed demonstrate the superiority of the proposed metrics
over the standard NDCG metric, based on these criterions.

There are some related works that attempt to address
the ranking robustness problem from different angles. Some
works [1, 2] address the problem from the perspective of
spamming, and attempt to improve the ranking relevance
in a noisy environment by actively adding noise to train-
ing data. [9] defines a ranking robustness metric to predict
query search performance, which applies a noise model to
perturbable documents and then measure the search result
similarity before and after perturbation. The calculation
of designed metric highly relies on a specific retrieval func-
tion. SoftRank [6] defines SoftNDCG as some optimiza-
tion loss function and applies it directly to function training.
We first apply it directly as a ranking evaluation metric in
function selection. From the perspective of learning ranking
metrics, [8] has conducted similar experiments in automat-
ically learning the gain value and rank discounting factors
for NDCG. The learned metric is a static relevance measure-
ment, and does not measure robustness to changes.
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Figure 1: Evolutions of NDCG and SoftNDCG for one

query as the intensity of additive noise increases.

2. WEB RANKING ROBUSTNESS
In the real Web search environment, changes are happen-

ing all the time, and these changes may cause the quality
of a ranking function to degrade over time. For example:

1) Page content update — the web pages are not static and
may get updated frequently; 2) Web scale expansion — more
pages, more link structures and more users, may lead to
drifting of the feature distribution; 3) User search behavior
change – evolution in search query distribution may cause
the data distribution used for evaluation to drift. The basic
assumption for ranking robustness is that, the less relevance
degradation a ranking function may suffer, the higher ro-
bustness the function has. Therefore we focus on measuring
the expected relevance of a ranking function over possible
changes, and predict its potential relevance over time.

Can the future relevance of a ranking function be pre-
dicted with existing data ? Our answer is yes, at least par-
tially. We notice that the dynamical changes are reflected
on the value and distribution of the ranking scores assigned
by a function. If we take into account the ranking scores
in the relevance evaluation, the ranking robustness can be
at least partially measured. Let’s use a real Web query and
its search results as an example to demonstrate the relation-
ship between the ranking scores and the potential relevance
change. The relevance scores for Web pages in a ranked list
and the relevance label for each page (Perfect, Excellent,
Good, Fair and Bad) are known and used to compute the
NDCG value. We incrementally add larger Gaussian white
noise to the scores. Figure 1 presents the evolution of the
NDCG values as the intensity of the additive noise increases.
As seen, the NDCG curve is unstable with respect to the
additive noise: at some points NDCG is insensitive to the
additive noise, while at some points a small increase in the
noise results in a dramatic change in the NDCG value. This
is because the NDCG computation only relies on the order of
a ranked list, but is regardless to the ranking scores. As one
of the advocated metrics for robust ranking function selec-
tion, the SoftNDCG curve (to be discussed next) is smooth
in response to the additive noise.

3. RANKING ROBUSTNESS METRICS
In order to select ranking function according to both rel-

evance and robustness, two metrics, namely rNDCG and
SoftNDCG, are proposed in this section as alternatives to
NDCG. Both of the metrics go beyond NDCG which only
considers the absolute ranks, and take into account the prob-
ability that a search result page belongs to a rank position.
The probability, although calculated differently, is defined
over the normalized relevance scores of the pages.

3.1 rNDCG
The first metric rNDCG (namely robust NDCG) consid-

ers the potential ranking order changes in the neighbor-
ing positions of a ranked list. Consider a ranked list of N
Web pages in the decreasing order of their relevance score:
L = {< g1, s1 >, < g2, s2 >, . . . , < gN , sN >}. < gr, sr >
(r = 1, 2, . . . , N) represents the human-judged grade and
the relevance score of the document at rank r. Without loss
of generality, we assume s1 > s2 > · · · > sN . When we
compute the relevance gain from each ranking position r,
three neighboring result pages at rank r − 1, r and r + 1 in
the original order, may contribute their relevance gain with
probabilities pr−1, 1 − pr−1 − pr, and pr, respectively. The
rNDCG of the ranked list is then defined as follows:

G(L) = G−1
max

N∑

r=1

D(r)[pr−1g(r−1)+prg(r+1)+(1−pr−1−pr)g(r)]

(1)
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where pr is the probability that the page at rank r may take
rank r + 1, due to score turbulence. D(r) is the same rank-
discounting function as in NDCG that is often chosen in the
form of D(r) = 1/ log(2 + r), and Gmax is the maximum

possible value of
∑N

r=1 D(r)[pr−1 g(r−1)+prg(r+1)+(1−
pr−1 − pr)g(r)] achieved when pages are optimally ordered.
The probability pr is defined as pr = 1

2+e
s(r+1)−s(r)

σ

if r =

1, 2, . . . , N−1; 0 otherwise. As noted, the difference between
the relevance scores of two neighboring pages decides the
probability: the closer the two relevance scores are, the more
likely the two pages may switch ranks in the future. Here
σ is a positive normalizer that controls sensitive of the rank
probability to the score difference.

3.2 SoftNDCG
The second metric that considers the ranking score distri-

bution across documents is SoftNDCG, introduced in [6].
SoftNDCG calculates the expected NDCG with regard to a
distribution that defines the probability of a result page tak-
ing each specific rank. Consider the same ranked list of Web
result pages: L = {< g1, s1 >, < g2, s2 >, . . . , < gN , sN >}:

G(L) = G−1
max

N∑

j=1

g(j)

N−1∑

r=0

D(r)pj(r), (2)

where pj(r) is the probability of document j ranked at po-
sition r, given a score list {s1, s2, · · · , sN}. In SoftNDCG, a
ranking form of a Binomial distribution is used to approxi-
mate the distribution of ranks. In order to estimate the rank
distribution of document j, it first directly estimates πij , the
probability that document i out-ranks documents j, for ev-
ery other document i �= j. It then computes the probability
pj(r) that document j has rank r based on them.

In the computation of SoftNDCG, one parameter σ is re-
quired to be pre-determined. This parameter controls how
to measure the closeness among ranking scores. As σ → ∞,
the rank distribution pj(r) becomes a uniform distribution,
i.e., no score differences are differentiated, while as σ → 0,
SoftNDCG degenerates to the normal NDCG.

Our approach to determining σ is to learn from preference
pair, e.g., L1 � L2, that signifies the ranking generated by
score list L1 is preferred to that generated by L2. We model
this pairwise preference in a probability model:

p(G(L1) > G(L2)) =
1

1 + exp(G(L2) − G(L1))
. (3)

By adjusting parameter σ, we attempt to maximize the like-
lihood to favor users’ and/or human editors’ preferences.

Assume we have preference lists L = {Li
1 � Li

2}M
i=1. An

optimal σ∗ can be sought by maximizing the following log-
likelihood function:

F(σ) =
1

M

M∑

i=1

log p(G(Li
1) > G(Li

2)). (4)

In this study, a simple gradient descent procedure is applied
to searching for the optimal σ∗, with the gradient computed
as follows:

∂F(σ)

∂σ
=

1

M

M∑

i=1

∂G(Li
1)

∂σ
− ∂G(Li

2)

∂σ

1 + exp(G(Li
1) − G(Li

2))
(5)

We executed the experiment of learning σ using M = 2183
Web queries. The queries are randomly sampled from the

query log of a commercial search engine, and the top five
search results are also scraped from the same search engine.
For each query, we randomly permutate the search results

to get two different ranked lists L
(i)
1 and L

(i)
2 for each query.

Then we ask human editors to give their preference over the

two lists: L
(i)
1 � L

(i)
2 or L

(i)
1 ≺ L

(i)
2 , for i = 1, 2, · · · , M . The

optimal σ∗ that maximizes the log-likelihood as in Equa-
tion 4 converges to around 0.2.
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Figure 2: Evolutions of NDCG and SoftNDCG as the

intensity of additive noise increases. Results are aver-

aged over ten runs, with mean and error-bars reported.

4. EMPIRICAL EVALUATION
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Figure 3: The value and the variance of the Binomial

distributions, with different test sizes.

In this section, we compare the three metrics: NDCG,
rNDCG, SoftNDCG1 in three experiments: 1) Study how
the relevance of a ranking function evaluated in those met-
rics degrade with artificial noise added to the ranking scores.
2) Study how function selection results evaluated by different
metrics are affected by the size of the test data. This exper-
iment simulates the situation when the distribution of eval-
uation data could change over time. 3) Study how function
selection results are affected over time. For this purpose, we
train two ranking functions with data from an earlier time,

1All metrics are calculated only for top 5 rank positions.
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and then evaluate the variance of function comparison re-
sults with data sampled data from different time points. The
ranking functions for all these experiments are trained with
GBrank [7] a state-of-art ranking algorithm. The features
used for training can be roughly divided into four categories:
link-based features, content-based features, click-based fea-
tures and others. The calculation of the rank probability
in rNDCG and SoftNDCG both exploit function-dependent
ranking scores. We normalize raw scores into their percentile
positions in a large score sampling for each function, making
them comparable across functions.

4.1 Stability to Ranking Score Turbulence
The data set used for evaluating the three metrics contains

4, 000 queries, sampled from a large commercial web search
engine. All the query and result page pairs have human
labels, with five relevance levels (Perfect, Excellent, Good,
Fair and Bad). We compute NDCG and SoftNDCG over
the ranking scores given by a ranking function, but under
additive noise from a Gaussian noise model, while the NDCG
and the SoftNDCG values here are averaged over all the
4, 000 queries. To demonstrate the instability of NDCG,
we implement the experiment ten times with the additive
noise generated by ten different random seeds. The results
reported in Figure 2, show that the SoftNDCG measurement
has smaller variances. It indicates that compared with the
standard NDCG, SoftNDCG is more stable with regard to
potential score turbulence, because it has already considered
the impact of score turbulence in the measurement.

4.2 Reliability over Different Data Samplings
This experiment is to study whether rNDCG and Soft-

NDCG are more reliable than NDCG in ranking function
selection, with respect to different data samplings. For this
purpose, We first train two ranking functions (named as f1

and f2) using GBRank [7] with different learning parameters
and feature sets. For SoftNDCG, we learned its parameter
using the methods described in Section 3.2. The σ in rDCG
is simply set to 0.5. We randomly sample 1, 000 subsets
(each contains K queries, we also study the impact of dif-
ferent K) from our test data (which is different from our
holdout set), and calculate the average NDCG, rNDCG and
SoftNDCG over each subset. After that, we construct a Bi-
nomial distribution for each metric, using the following rule:
For each subset, a binary random variable is assigned 1 if the
metric shows a higher and equal value (tied values are very
rare) for f1 than f2 averaged over the queries in the subset,
and 0 otherwise. This way, we have a Binomial distribution
for each metric over the 1, 000 subsets.

Figure 3 plots the value and variance curve for the evolu-
tions of the three Binomial distributions as the subset size
K increases. The Binomial distribution with K = 4, 000
is treated our ground truth result, where all three met-
rics agree that f1 is better than f2. As seen in the graph,
the value curves of three Binomial distributions converge
to the ground truth as the subset size increases, while the
variances converge to zero. However, as test sets become
smaller, rNDCG and SoftNDCG outperform NDCG in the
sense they are more consistent with ground truth results,
and with much smaller variances.

4.3 Reliability over Data Samplings over Time
In this experiment, we sample latest news queries and

Web pages (including the rank features) from nine individ-
ual days over three months after training, 300 queries each
day. The two ranking functions f ′

1 and f ′
2 were also trained

at an earlier time. As we did in the Section 4.2, for each
test set, we randomly sample 1, 000 subsets, with 50 queries
each, and construct a similar Binomial distribution for each
metric. Figure 4.3 plots the value and variance curves of
three Binomial distributions across different dates. As seen,
the NDCG metric cannot distinguish f ′

1 and f ′
2 very well. In

contrast, based on rNDCG and SoftNDCG, it is clear that
f ′
1 outperforms f ′

2 constantly across time.
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Figure 4: The value and variance of Binomial distribu-

tions over test sets sampled from multiple time points.

5. CONCLUSION
In this work, we argue that not only relevance, but also

ranking robustness should be considered in Web ranking
function selection. We further model the ranking robust-
ness as the expected relevance of a ranking function with
regard to potential ranking score turbulence.

6. REFERENCES
[1] R. Bhattacharjee and A. Goel. Algorithms and incentives for

robust ranking. In SODA, 2007.

[2] J. Bian, Y. Liu, E. Agichtein, and H. Zha. A few bad votes too
many?: towards robust ranking in social media. In AIRWEB,
2008.

[3] C. J. C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds,
N. Hamilton, and G. N. Hullender. Learning to rank using
gradient descent. In ICML, 2005.

[4] K. Järvelin and J. Kekäläinen. Cumulated gain-based evaluation
of ir techniques. ACM Transactions on Information Systems,
20(4), 2002.

[5] T. Joachims. Optimizing search engines using clickthrough data.
In KDD, 2002.

[6] M. Taylor, J. Guiver, S. Robertson, and T. Minka. Softrank:
optimizing non-smooth rank metrics. In WSDM, 2008.

[7] Z. Zheng, K. Chen, G. Sun, and H. Zha. A regression framework
for learning ranking functions using relative relevance
judgments. In SIGIR, 2007.

[8] K. Zhou, H. Zha, G.-R. Xue, and Y. Yu. Learning the gain
values and discount factors of dcg. In SIGIR Workshop, 2008.

[9] Y. Zhou and B. Croft. Ranking robustness: a novel framework to
predict query performance. In CIKM, 2006.

2010


