
Multi-Task Learning for Learning to Rank in Web Search

Jing Bai
Yahoo! Labs

701 First Avenue, Sunnyvale, CA
jingbai@yahoo-inc.com

Ke Zhou, Guirong Xue
Dept. of Computer Science and Engineering

Shanghai Jiao-Tong University
zhouke, grxue@apex.sjtu.edu.cn

Hongyuan Zha
College of Computing

Georgia Institute of Technology
Atlanta, GA

zha@cc.gatech.edu

Gordon Sun, Belle Tseng, Zhaohui
Zheng, Yi Chang

Yahoo! Labs
701 First Avenue, Sunnyvale, CA

gzsun, belle, zhaohui,
yichang@yahoo-inc.com

ABSTRACT
Both the quality and quantity of training data have sig-
nificant impact on the performance of ranking functions in
the context of learning to rank for web search. Due to re-
source constraints, training data for smaller search engine
markets are scarce and we need to leverage existing training
data from large markets to enhance the learning of ranking
function for smaller markets. In this paper, we present a
boosting framework for learning to rank in the multi-task
learning context for this purpose. In particular, we propose
to learn non-parametric common structures adaptively from
multiple tasks in a stage-wise way. An algorithm is devel-
oped to iteratively discover super-features that are effective
for all the tasks. The estimation of the functions for each
task is then learned as a linear combination of those super-
features. We evaluate the performance of this multi-task
learning method for web search ranking using data from
a search engine. Our results demonstrate that multi-task
learning methods bring significant relevance improvements
over existing baseline methods.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Search and Re-
trieval—Retrieval functions; H.4.m [Information Systems]:
Miscellaneous—Machine learning

General Terms
Algorithms, Experimentation, Theory

1. INTRODUCTION
Ranking functions are at the core of search engines and

they directly influence the relevance of search results and
user search experience. Machine learning approaches for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’09, November 2–6, 2009, Hong Kong, China.
Copyright 2009 ACM 978-1-60558-512-3/09/11 ...$10.00.

learning ranking functions, entails the collection of train-
ing data, in the form of labeled data constructed from rel-
evance assessment by human editors. This approach has
proven to be effective for large search markets for which we
have a large amount of training data. However, there are a
number of small markets for which it is difficult to acquire
large quantities of relevance judgments. One idea to alle-
viate this problem is to leverage the existing training data
that have been collected for source markets, and use them to
help training the ranking function for a target market with
insufficient training data. Multi-task learning and transfer
learning, which have been well studied in machine learning
community, can be used to deal with this problem. However,
to our knowledge, these approaches have not been used and
tested on large datasets from search engines. In this pa-
per, we investigate the possibility of using these approaches
to train ranking functions for search markets where human
labeled training data are limited.

A prerequisite for multi-task learning to be advantageous
is that the tasks share some common characteristics. This
is the case for search engine markets (i.e. with different
languages and regions). While each search engine market
has specific characteristics regarding the language, region,
etc, different markets have much in common. For example,
search engines rely on features such as term occurrences and
co-occurrences in text and anchor texts, for learning ranking
functions. These features are common across markets and
they are often used in similar ways across markets. There-
fore, the ranking functions for different markets also have
much to share, and this provides the basis to take advantage
of training data from multiple search engine markets. Why
can multi-task learning be a good solution? On one hand,
compared to separate learning for each task, by grouping
the training data of several tasks, we have a larger amount
of training data. If the underlying characteristics among the
training data are similar, the resulting ranking functions can
be better. On the other hand, in separate learning, the re-
sulting ranking function for a task can be easily over-fitted
when the training data is limited. By grouping several tasks
in multi-task learning, we try to extract the features that
are important for all the tasks, thereby reducing the risk of
over-fitting to a particular task.

In this paper, we use multi-task learning framework to
learn ranking functions for several markets. Each market

1549

is considered as a separate task. In particular, we pro-
pose a boosting framework that adaptively learns trans-
ferable representations called super-features from multiple
tasks. We develop an algorithm that adaptively learns the
super-features among multiple tasks in a stage-wise manner
similar to that used in gradient boosting [5]. At each iter-
ation, a super-feature is constructed based on the training
data from all the tasks and the corresponding coefficients
are then learned with respect to each task independently,
allowing us to account for differences between tasks. Our
experiments show general improvements in search relevance
using multi-task learning, not only when we combine mar-
kets in the same language or region, but also when we com-
bine markets in different languages and regions.

In the next sections, we will first describe previous stud-
ies on learning to rank and multi-task learning. Then our
method and experimental results will be presented in detail.
Finally, conclusions and future work will be summarized.

2. PRIOR WORK

2.1 Learning to Rank
In recent years, ranking problem is frequently formulated

as a supervised machine learning problem. These learning-
to-rank approaches are capable of combining different fea-
tures to train ranking functions. For example, RankSVM
[10] uses support vector machines to learn a ranking function
from preference data. RankNet [3] applies neural network
and gradient descent to obtain a ranking function. Rank-
Boost [11] applies the idea of boosting to construct an effi-
cient ranking function from a set of weak learners. The stud-
ies reported in [12] proposed a framework called GBRank
using gradient descent in function spaces, which is able to
learn relative preference data in web search. However, the
above approaches are all proposed to learn a single ranking
function for a market. In the case where the training data
is limited, they cannot produce a good ranking function.

2.2 Multi-Task Learning
Multi-Task learning has been shown to be able to improve

the generalization performance through exploring the com-
mon structures among multiple tasks and transfer knowledge
between related tasks [4, 7]. This method can be generally
classified into two groups, which target two types of com-
mon structure. The first family of approaches assumes that
all functions to be learned for the tasks are similar to each
other with respect to some norm [2,7]. In these methods, the
common structures are specified through selecting a proper
norm to measure the similarity of the functions. The second
family of approaches assume that common structures can
also be represented by super-features shared among multiple
tasks [1,4]. Super-features can be in the form of units in the
hidden layers of neural networks [9] or linear combinations
of the original features [1]. However, all these studies are
based on the assumption that these common structures have
particular parametric forms. This assumption makes these
methods less flexible to deal with the case where the com-
mon structures shared by tasks have more complex forms.
In the case of search engines, we do not know what forms
should be used for ranking functions. Therefore, a more flex-
ible learning method without such assumption is desired, so
that the proper feature structures can be discovered during
the learning process.

3. MULTI-TASK LEARNING FOR RANK-
ING FUNCTIONS

3.1 Problem Formulation
We consider T learning tasks with common input-output

space X × Y, where X is a feature space and the output
space Y is the real line R. Suppose that the t-th task has
Nt labeled training data:

St = {(xt1, yt1), . . . , (xtNt , ytNt)}
that are i.i.d. samples from a distribution Pt over X × Y.
The goal is to obtain a function ht : X → Y for each task t
that can predict the label y of unseen x. In the context of
web ranking, the training set S1 for Task 1 may contain the
labeled training data for a English search engine market and
the training set S2 for Task 2 contains the labeled training
data for a Chinese market and so on.

We assume that there is a loss function Lt(y, ht(x)) for
each task t. For this task, the empirical riskRt(ht) is defined
as the sum of loss over the training set of this task:

Rt(ht) =

Nt∑
i=1

Lt(y, ht(x))

The empirical risk of different tasks is then combined into
one unified objective function in order to learn them simul-
taneously:

R(h1, h2, . . . , hT) =

T∑
t=1

Rt(ht) =

T∑
t=1

Nt∑
i=1

Lt(yti, ht(xti))

In multi-task learning the distributions Pt can be different
for different tasks, so it is important to transfer knowledge
among different tasks. Therefore, the connections among
different tasks should be properly modeled. In our approach,
we assume that tasks share some common internal represen-
tations. Specifically, we assume that all ht’s linearly depend
on a common set of super-features:

g(x) = (g(1)(x), g(2)(x), . . . , g(M)(x))

However, these super-features cannot be predetermined, and
they depend on the original feature set in a more complex
way. We will define later an algorithm, which tries to deter-
mine them automatically.

Formally, a ranking function is defined as follows:

ht(x) =
∑
m

w
(m)
t g(m)(x) = wT

t g(x), t = 1, 2, . . . , T

where wt = [w
(1)
t , . . . , w

(M)
t] are the linear coefficients of the

super-features for task t. Super-features g(m) : X → R are
shared among all tasks. Therefore, our goal is to learn all the
tasks simultaneously via minimizing this objective function:

argmin
w1,...,wT ,g

T∑
t=1

Nt∑
i=1

Lt(yti,
∑
m

w
(m)
t g(m)(xti))) (1)

In the above optimization problem, we combine estimating
the function ht(x) for each task with learning the super-

features g(1)(x), g(2), . . . , g(M) that are shared among tasks.
In this paper, we use gradient boosting trees [6] to represent
the super-features.

1550

3.2 A Multi-task Learning Algorithm
Our goal is to construct a function:

ht(x) =

M∑
m=1

w
(m)
t g(m)(x)

for each task t such that the objective function defined in
Eqn (1) is minimized. Generally, it is difficult to optimize
the problem in Eqn (1) directly. Therefore, we propose to

learn the super-features g(m)(x) and their coefficients w
(m)
t

in a stage-wise manner, i.e. we first try to determine a super-
feature according to all the training data, and then estimate
the coefficient of the super-feature for each task. The two
stages are performed iteratively until convergence.

More specifically, the super-feature g(m) and its coefficient

w
(m)
t at each iteration m are determined such that:

(g(m), {w(m)
i }) = argmin

∑
t

Rt(h
(m)
t + w

(m)
t g(m)) (2)

where h
(m)
t is the estimation from the previous iteration.

The problem in Eqn (2) can be solved through alternating
optimization. The algorithm optimizes Eqn (2) by alterna-
tively performing the following two steps. We first optimize

Eqn (2) with respect to g(m) with w
(m)
i fixed. Formally, we

solve the following problem (step 1):

g(m) = argmin
g∈C

∑
t

Rt(h
(m)
t + w

(m)
t g) (3)

Then w
(m)
1 , . . . , w

(m)
T is obtained by optimizing Eqn (2) with

g(m) fixed. Since coefficient w
(m)
t depends on Rt(ht), we can

solve w
(m)
t with respect to each task respectively (step 2):

w
(m)
t = argmin

w
Rt(h

(m)
t + wg(m)) (4)

In our case of learning to rank for a search engine, we use
the squared loss Lt(y, ŷ) = (y− ŷ)2. Substitute Lt(y, ŷ) into
Eqn (1), we have the following Eqn:

argmin
w1,...,wT ,g

T∑
t=1

Nt∑
i=1

(yti − wT
t g(xti))

2 (5)

Then the problem of Eqn (3) becomes:

argming∈C
∑T

t=1

∑Nt
i=1

(
yti − h

(m)
t (xti)− w

(m)
t g(xti)

)2

= argming∈C
∑T

t=1

∑Nt
i=1(w

(m)
t)2

(
yti−h

(m)
t (xti)

w
(m)
t

− g(xti)

)2

From the above equation, we can see that g(m) is obtained
by solving a weighted regression problem: g(m) should fit
the training data:
{(

xti,
yti − h

(m)
t (xti)

w
(m)
t

, (w
(m)
t)2

)
|t = 1, . . . , T, i = 1, . . . , Nt

}

in which the three elements are respectively the feature vec-
tor, the target value and the weight of training examples.

Once g(m) has been estimated, the linear coefficients w
(m)
t

can be determined by solving:

w
(m)
t = argmin

w

Nt∑
i=1

(
yti − h

(m)
t (xti)− wg

(m)
t (xti)

)2

In this case, we have a closed form solution for w
(m)
t :

w
(m)
t =

∑Nt
i=1 g

(m)
t (xti)(yti − h

(m)
t (xti))∑Nt

i=1(g
(m)
t (xti))2

In principle, any weighted regression algorithm can be ap-
plied to fit g(m). In this paper, we use gradient boosting
trees as the base learner.

4. EXPERIMENTS
In the following series of experiments, we will examine the

following questions: 1) We have several small search engine
markets with limited training data. By exploring the train-
ing data within multi-task learning framework, can each
market benefit from the common super-features extracted?
2) Can the transfer learning methodology be applied in the
same manner to markets in the same language as well as in
different languages?

4.1 Experimental setting
In order to test the approach on realistic data, we use

data from a search engine in our experiments. Document
relevance is judged by human editors. Human judgments
are organized into sets: each set contains the judgments
for around 1000 queries and their associated documents us-
ing corresponding relevance scores. Each query-document
pair is represented by a feature vector, and features can be
generalized into 3 types: 1) Query-based feature, which de-
pends on the query only; 2) Document-based feature, which
depends on the document only; 3) Query-document-based
feature, which depends on the relations between the query
and the document.

In our experiments, we consider 3 markets in two lan-
guages. For each task, we will use up to 4 sets of judgments
as training data and another 2 sets of judgments as testing
data. These sets are determined randomly. Here we use
these data to test different scenarios by varying the number
of training data sets: smaller tasks are simulated by using
less training data and larger tasks are simulated by using
more training data. A number of parameters, such as the
number of trees and the number of nodes in each tree, are
fixed according to our previous experience. In our experi-
ments, we use DCG-5 [8] as our evaluation metric, t-test is
also performed for statistical significance.

4.2 Combining different tasks
One of our goals of using multi-task learning is to create

better ranking functions for multiple tasks when they have
very limited training data. It is expected that the super-
features learnt from the data of both tasks can better reflect
the desired ranking functions than the features learnt for
each task separately. In this series of tests, we use multi-
task learning on two groups of tasks: Task1 & Task2 in the
same language, Task2 & Task3 in two different languages.
In each run, we will use the same amount of training data
from each task, from 1 to 4 sets of human judgments. Our
goal is to see if the resulting ranking functions are better
than the models trained separately on each task, and how
the size of training data and the language differences impact
on the learned ranking functions.

In Table 1 and 2, we show the results obtained by using
the following models: Dedicated models (Ded): the mod-
els trained on data from the target task only; Combined

1551

Table 1: Combining different tasks in same language
(DCG5, “*” statistical significance p<0.05)

T1+ T1 T2
T2 Ded Comb MT Ded Comb MT
1 7.264 7.338 7.378 10.113 10.606* 10.695*
2 7.145 7.315 7.561* 10.437 10.526 10.641*
3 7.438 7.555 7.587 10.573 10.626 10.803*
4 7.378 7.535 7.720* 10.639 10.705 10.862*

models (Comb): the models trained on combined training
data by grouping different tasks together; Multi-task learn-
ing models (MT): the models trained by multi-task learning
technology. The models on combined training data aim to
simulate the simple combination approaches.

First, on dedicated models, we observe that in general,
when the amount of training data increases, the performance
of dedicated models usually increases. This is consistent
with the observations from other studies that the quality of
the learnt model strongly depends on the amount of train-
ing data. However, we also observe that when the amount
of training data increases, the dedicated models are not al-
ways improved. For example, when set 2 or 4 is added for
Task1, DCG is decreased slightly. This shows that the final
effectiveness depends on not only the quantity, but also the
quality of training data.

For models trained on combined data, we can also see
that when more data are used, the models usually become
better. However, as for dedicated models, the quality of
the training data can strongly influence the performance of
combined models. For example, when data set 2 is added
to Task1, the resulting Comb model using combined data
performs worse on Task1 than with data set 1 alone. In
addition, the same combined model also performed worse
on Task2 test data. This observation confirms that simple
combination of training data will not necessarily produce
training data of better quality.

In contrast, MT models are more resistant to the variation
of quality of a particular set of training data. For example,
in the cases mentioned above, while the DCG of both dedi-
cated and combined models decreased, the DCG of the MT
models increased. This comparison indicates that multi-task
learning is more capable of capturing the true common fea-
tures from different tasks than the simple data-combination
approach. This makes it less subject to the particular prob-
lems in some training data from a particular market. In
addition, we also observe that several improvements using
MT models are statistically significant, in particular, in the
case of T1+T2 for the same language.

Our experiments also show that transfer learning can be
done between tasks in the same language (see Table 1) as
well as in different languages (see Table 2). In the first case,
the improvements are generally larger than in the second
case. This can be explained by the fact that the character-
istics of relevant documents in two different languages have
larger differences. While our multi-task learning is able to
account for some differences between tasks, the tasks them-
selves can be more different in nature, thus less common
features can be extracted by our approach. Nevertheless,
in any case, we still notice that MT models are always bet-
ter than combined models as well as the dedicated models.
This shows that multi-task learning can also be used to take
advantage of training data from other source markets in dif-
ferent languages.

Table 2: Combining different tasks in different lan-
guages (DCG5, “*” statistical significance p<0.05)

T3+ T3 T2
T2 Ded Comb MT Ded Comb MT
1 10.084 10.368* 10.369* 10.113 10.367 10.395*
2 10.474 10.499 10.569 10.437 10.464 10.618
3 10.571 10.499 10.625 10.573 10.498 10.638
4 10.575 10.552 10.681 10.639 10.678 10.733

5. CONCLUSIONS
In this paper, we adapted a multi-task learning method to

ranking problem in order to take advantage of the training
data from different markets. The principle is to extract the
common super-features from data of different markets, and
then to learn appropriate coefficients of them for different
markets. This allows us to recognize the common character-
istics across markets, while taking into account the possible
differences between them. To solve the underlying general
optimization problem, we proposed a stage-wise approach,
which tries to optimize first a super-feature and then its
corresponding coefficients iteratively. We have tested the
proposed approach on several sets of research data from a
search engine. Our results showed that multi-task learning
can produce models that are significantly better than the
dedicated models as well as the data combined model. To
our knowledge, this is the first study that shows the high
potential benefits of multi-task learning method for search
engines on multiple markets.

6. REFERENCES
[1] A. Argyriou, T. Evgeniou and M. Pontil. Multi-task feature

learning. Advances in Neural Information Processing
Systems 19, pages 41-48. MIT Press, Cambridge, 2007.

[2] B. Bakker and T. Heskes. Task clustering and gating for
bayesian multitask learning. Journal of Machine Learning
Research, 4:83-99, 2003.

[3] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds,
N. Hamilton and G. Hullender. Learning to rank using
gradient descent. In Proceedings of the 22nd International
Conference on Machine learning, 2005.

[4] J. Baxter. A bayesian/information theoretic model of
learning to learn via multiple task sampling. Machine
Learning, 28(1):7-39, 1997.

[5] J. H. Friedman. Greedy function approximation: A
gradient boosting machine. The Annals of Statistics,
29(5):1189–1232, 2001.

[6] J. H. Friedman. Stochastic gradient boosting.
Computational Statistics and Data Analysis, 38, 2002.

[7] K. Yu, V. Tresp and A. Schwaighofer. Learning gaussian
processes from multiple tasks. ICML, volume 119 of ACM
International Conference Proceeding Series, pages
1012-1019, 2005.

[8] K. Järvelin and J. Kekäläinen. Cumulated gain-based
evaluation of IR techniques. ACM Transactions on
Information Systems, 20, 422-446. 2002

[9] R. Caruana. Multitask learning. Machine Learning,
28(1):41-75, 1997.

[10] T. Joachims. Optimizing search engines using clickthrough
data. In Proceedings of ACM SIGKDD, 2002.

[11] Y. Freund, R. D. Iyer, R. E. Schapire, and Y. Singer. An
efficient boosting algorithm for combining preferences. In
Proceedings of the Fifteenth International Conference on
Machine Learning, 1998.

[12] Z. Zheng, K. Chen, G. Sun and H. Zha. A regression
framework for learning ranking functions using relative
relevance judgments. In Proceedings of the 30th ACM
SIGIR conference, 2007.

1552

