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Figure 1: A Toy Example of how QAC and Click Logs Align in the Timeline. Yellow tag highlights the query a user finally clicks, red tag
highlights the user’s intended query he/she doesn’t click.

Our goal is to effectively utilize the contextual data to model
users’ behaviors from both logs. The key idea is to cluster users’
behaviors on QAC and click logs into several patterns, separately,
and investigate the correlation between users’ behavior patterns on
QAC and click logs. We believe such correlation does exist, as
users’ search behaviors are usually consistent, which originate from
users’ personal search habits, preferences, interests, or instant cir-
cumstance. It is reasonable that a group of users may share similar
behavior patterns. In addition, a user’s QAC (or click) behavior
pattern will be most likely correlated with a certain click (or QAC)
behavior pattern. For instance, if a QAC log shows that a user types
a query very fast, it is very likely that the user is familiar with the
query. Then, in the following click log, the longer time the user
landed on the SERP page may indicate the more relevant results
presented to the user. One possible reason is that user likely will
click the relevant results and check the detailed information which
usually takes longer time. However, if there were no relevant re-
sults presented in the SERP page, the user might reformulate/re-
issue a new query shortly which will start a new QAC session simi-
lar to previous query. Based on the learned correlation, given an in-
ferred behavior pattern of a user on one type of log, we can leverage
such information to accurately infer the user’s following behavior
pattern on the other type of log.

To capture such correlation, we propose a novel probabilistic
model based on Latent Dirichlet allocation (LDA). Based on the
likelihood of the co-occurrences of adjacent QAC behavior pat-
terns and click behavior patterns, the model explores the condi-
tional distribution of consequential behavior patterns given a cer-
tain behavior pattern of the other type. A mean-field variational
inference algorithm is developed to estimate the membership of be-
havior patterns for two types of logs in each session. We evaluate
the proposed model on real-world logs collected from a commer-
cial search engine. We design experiments to evaluate the effec-
tiveness of the learned behavior patterns on with the application
of query auto-completion on QAC logs, and the prediction of web
document clicking on click logs as well as the relevance ranking
of web documents. Experimental results show that the proposed
model achieves remarkable improvement on both applications over
state-of-the-art approaches.

In a nutshell, our major contributions include: (1) This is the first
study to explore two types of logs, QAC and click logs, simultane-
ously to model search behaviors. We utilize users’ recent history
on one type of log as the context for the other type of log. This
new source of context data is demonstrated to mutually enhance

behavior modeling on both types of logs. (2) We proposed a novel
probabilistic model to capture the correlation between users’ be-
havior patterns on QAC and click logs. The model is designed to
study the conditional distribution of one type of behavior patterns
given a certain preceding behavior pattern of the other type.

2. PROBLEM DEFINITION
In this section, we first introduce the concept of high-resolution

QAC log, and analyze the relationship between QAC and click logs
of a search engine. Then, we come up with methods for modeling
users’ behaviors on both logs simultaneously as the contextual data
for each other.

2.1 A High-Resolution QAC Log
Traditionally, the search query log only includes the submitted

query and its associated search results, while it does not contain
the sequential keystrokes (prefixes) user typed in the search box, as
well as their corresponding QAC suggestions. In order to better an-
alyze and understand real users’ behaviors, a high-resolution QAC
log is introduced and analyzed in [20], which records users’ inter-
actions with a QAC engine at each keystroke and associated sys-
tem respond in an entire QAC process. For each submitted query,
there is only one record in a traditional search query log. However,
in the high-resolution QAC log, each submitted query is associ-
ated with a QAC session, which is defined to begin with the first
keystroke a user typed in the search box towards the final submit-
ted query. The information recorded for each QAC session includes
every keystroke a user entered, the timestamp and top-10 suggested
queries corresponding to each keystroke, the anonymous user ID,
and the final clicked query.

Let us take a toy example to briefly introduce how a user interacts
with a QAC engine and makes the final click in an entire QAC
session. As shown in the left part of Figure 1, the QAC session for
the query “clustering” contains 10 keystrokes and each keystroke
has a suggested query list of length 101. A QAC session ends at the
last keystroke when the user clicks a suggestion or hits enter/search
to submit a fully typed query. Notice that although a user’s actual
click happens on a slot in the column of the last keystroke, the user
intended query may appear in many slots in any columns. In this
work, we leverage such a QAC log data to get better understanding
of user’s sequential behavior, which can provide useful information
for predicting the user’s following behavior.

1We experiment with real-world QAC logs where D = 10.
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