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ABSTRACT
Contextual data plays an important role in modeling search en-
gine users’ behaviors on both query auto-completion (QAC) log
and normal query (click) log. User’s recent search history on each
log has been widely studied individually as the context to benefit
the modeling of users’ behaviors on that log. However, there is no
existing work that explores or incorporates both logs together for
contextual data. As QAC and click logs actually record users’ se-
quential behaviors while interacting with a search engine, the avail-
able context of a user’s current behavior based on the same type of
log can be strengthened from the user’s recent search history shown
on the other type of log. Our paper proposes to model users’ behav-
iors on both QAC and click logs simultaneously by utilizing both
logs as the contextual data of each other. The key idea is to capture
the correlation between users’ behavior patterns on both logs. We
model such correlation through a novel probabilistic model based
on the Latent Dirichlet allocation (LDA) model. The learned users’
behavior patterns on both logs are utilized to address not only the
application of query auto-completion on QAC logs, but also the
click prediction and relevance ranking of web documents on click
logs. Experiments on real-world logs demonstrate the effectiveness
of the proposed model on both applications.
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1. INTRODUCTION
Exploring and modeling user’s search behavior is very impor-

tant to improve user’s search experience for commercial search
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engines, and generally search behaviors can be collected in query
auto-completion (QAC) and click logs. A QAC log records the de-
tailed procedure while users issue queries into a search engine, with
typical signals such as how fast a user types a query, which sugges-
tion a user clicks, etc. On the other hand, a click log records how
users behave on the search engine result page (SERP) of their is-
sued queries. Typical click behaviors include which web document
a user clicks, how long he/she stays on the document, and how
many result pages a user scans. Essentially, modeling such user be-
haviors will be very useful for contextual-aware search tasks, which
means previous search behaviors on both types of logs will some-
how influence user’s following search behaviors.

Recently several studies [24, 6, 5, 27, 1] explored contextual data
to enhance Web search and query suggestion from different aspects.
However, existing context-aware approaches on either query auto-
completion or query suggestion only utilized a single type of log
alone, while a critical fact is that QAC and click logs are different
but closely correlated with each other. As shown in Figure 1, for
each issued query, a QAC session first records how a user issues
a query, which consists of the behaviors from the first keystroke
a user typed in the search box towards the final submitted query;
while a click session records how a user interacts with the SERP
page, which consists of the behaviors after submitting that query.
According to their temporal information, QAC and click logs can
be naturally combined and ordered sequentially. Each query ses-
sion refers to a combined session that starts with a QAC session
and ends with a click session. Exploring contextual data from such
query session will not only cover the same type of behaviors but
also include the other type of behaviors that a user conducts in re-
cent search history. For instance, different users may have different
behaviors, such as how fast a user typed the previous query, and
how many web pages a user clicked. Those search behaviors can
be extracted and grouped as different patterns, so as to influence
how the user submits the next query. Previously, most QAC logs
only contain the query suggestion list along with the final typed
query (last keystroke), which offers little extra information than
click logs. Nowadays, high definition QAC logs are collected by
commercial search engines [20], which contain the suggested query
list for each keystroke and the associated users’ interactions with a
QAC engine. Thus combining QAC and click logs will offer much
more complementary information for query prediction.
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Figure 1: A Toy Example of how QAC and Click Logs Align in the Timeline. Yellow tag highlights the query a user finally clicks, red tag
highlights the user’s intended query he/she doesn’t click.

Our goal is to effectively utilize the contextual data to model
users’ behaviors from both logs. The key idea is to cluster users’
behaviors on QAC and click logs into several patterns, separately,
and investigate the correlation between users’ behavior patterns on
QAC and click logs. We believe such correlation does exist, as
users’ search behaviors are usually consistent, which originate from
users’ personal search habits, preferences, interests, or instant cir-
cumstance. It is reasonable that a group of users may share similar
behavior patterns. In addition, a user’s QAC (or click) behavior
pattern will be most likely correlated with a certain click (or QAC)
behavior pattern. For instance, if a QAC log shows that a user types
a query very fast, it is very likely that the user is familiar with the
query. Then, in the following click log, the longer time the user
landed on the SERP page may indicate the more relevant results
presented to the user. One possible reason is that user likely will
click the relevant results and check the detailed information which
usually takes longer time. However, if there were no relevant re-
sults presented in the SERP page, the user might reformulate/re-
issue a new query shortly which will start a new QAC session simi-
lar to previous query. Based on the learned correlation, given an in-
ferred behavior pattern of a user on one type of log, we can leverage
such information to accurately infer the user’s following behavior
pattern on the other type of log.

To capture such correlation, we propose a novel probabilistic
model based on Latent Dirichlet allocation (LDA). Based on the
likelihood of the co-occurrences of adjacent QAC behavior pat-
terns and click behavior patterns, the model explores the condi-
tional distribution of consequential behavior patterns given a cer-
tain behavior pattern of the other type. A mean-field variational
inference algorithm is developed to estimate the membership of be-
havior patterns for two types of logs in each session. We evaluate
the proposed model on real-world logs collected from a commer-
cial search engine. We design experiments to evaluate the effec-
tiveness of the learned behavior patterns on with the application
of query auto-completion on QAC logs, and the prediction of web
document clicking on click logs as well as the relevance ranking
of web documents. Experimental results show that the proposed
model achieves remarkable improvement on both applications over
state-of-the-art approaches.

In a nutshell, our major contributions include: (1) This is the first
study to explore two types of logs, QAC and click logs, simultane-
ously to model search behaviors. We utilize users’ recent history
on one type of log as the context for the other type of log. This
new source of context data is demonstrated to mutually enhance

behavior modeling on both types of logs. (2) We proposed a novel
probabilistic model to capture the correlation between users’ be-
havior patterns on QAC and click logs. The model is designed to
study the conditional distribution of one type of behavior patterns
given a certain preceding behavior pattern of the other type.

2. PROBLEM DEFINITION
In this section, we first introduce the concept of high-resolution

QAC log, and analyze the relationship between QAC and click logs
of a search engine. Then, we come up with methods for modeling
users’ behaviors on both logs simultaneously as the contextual data
for each other.

2.1 A High-Resolution QAC Log
Traditionally, the search query log only includes the submitted

query and its associated search results, while it does not contain
the sequential keystrokes (prefixes) user typed in the search box, as
well as their corresponding QAC suggestions. In order to better an-
alyze and understand real users’ behaviors, a high-resolution QAC
log is introduced and analyzed in [20], which records users’ inter-
actions with a QAC engine at each keystroke and associated sys-
tem respond in an entire QAC process. For each submitted query,
there is only one record in a traditional search query log. However,
in the high-resolution QAC log, each submitted query is associ-
ated with a QAC session, which is defined to begin with the first
keystroke a user typed in the search box towards the final submit-
ted query. The information recorded for each QAC session includes
every keystroke a user entered, the timestamp and top-10 suggested
queries corresponding to each keystroke, the anonymous user ID,
and the final clicked query.

Let us take a toy example to briefly introduce how a user interacts
with a QAC engine and makes the final click in an entire QAC
session. As shown in the left part of Figure 1, the QAC session for
the query “clustering” contains 10 keystrokes and each keystroke
has a suggested query list of length 101. A QAC session ends at the
last keystroke when the user clicks a suggestion or hits enter/search
to submit a fully typed query. Notice that although a user’s actual
click happens on a slot in the column of the last keystroke, the user
intended query may appear in many slots in any columns. In this
work, we leverage such a QAC log data to get better understanding
of user’s sequential behavior, which can provide useful information
for predicting the user’s following behavior.

1We experiment with real-world QAC logs where D = 10.
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Table 1: User Behaviors on QAC and Click Logs
Log Type Behavior/Feature Description
QAC Log Typing Speed Average typing speed at keystrokes in a QAC session.

Type Speed Standard Deviation The standard deviation of typing speed at keystrokes in a QAC session.
Intent Position The average position of the appearance of queries satisfying users’ search intent in

a QAC session.
Typing Completion Ratio The percentage of entered keystrokes of the submitted query.
Typing Completion Whether a user finish typing the entire query or clicks some suggestions.
Time Duration The time duration of the current QAC session.
Highest Non-Click Position The highest position of the appearance of queries satisfying users’ search intent but

the user does not click in a QAC session. Here those queries with the same content
as the final clicked query are viewed as satisfying users’ intent.

Click Log Click Number The total number of clicks on the returned web documents of the current query.
Dwell Time The average time between the current click and the next click in the current click

session.
Click Position The average position of clicks in the current click session.
Time Duration The time duration of the current click session.
Click Speed The number of clicks divided by the time duration of the current click session.
Scanned Pages The number of result pages user scanned for the current query.
Time Interval The time interval between the current click session and the next QAC session.
Search Time The time interval between a user’s query submission and his/her first click of web

documents in the current click session.

2.2 Relationship between QAC and Click logs
For each query, two types of behaviors are recorded by search

engine logs. One is the above high-resolution QAC log, which in-
cludes the typed keystrokes and their suggested queries before sub-
mitting a query; the other is the click log, which includes the web
document clicks after submitting a query. Figure 1 shows a toy ex-
ample of QAC and click logs that align in the timeline. We can
observe that the QAC session of a query is followed by the click
session of that query, and that click session is followed by another
QAC session of the next query. Such sequential behaviors indicate
the promising opportunity of exploring appropriate relationship be-
tween QAC and click logs. Although the user’s behaviors on QAC
and click logs are of different types, they imply the same under-
lying relationship between the user and his/her issued query, such
as whether the issued query satisfies the user’s intent, and how fa-
miliar the user is with the issued query or the domain that query
belongs to. For instance, if a user is familiar with the issued query,
in QAC log, he/she may type the query very fast. Then in click log,
if the SERP page provides many relevant results, the user may take
long time to click and check some relevant results in more details;
however, if the SERP page does not provide relevant results, the
user may reformulate a new query shortly which will start a new
QAC session similar to previous query.

Moreover, user’s search behaviors on one type of log can be used
as the contextual data for the other type of log across different query
sessions, since users generally behave consistently in adjacent time
slots. For instance, according to the click log, if a user’s behaviors
indicate he is very familiar with the current query, then similar be-
havior likely will be observed in the QAC session of the next query;
if the issued query is under the same topic, the user will probably
type the following query fast as well.

In order to quantitatively capture user behaviors on QAC and
click logs, we propose a set of features as shown in Table 1. Among
features of QAC behaviors, we expect “Type Speed Standard De-
viation” to reflect the stability of a user’s typing speed. A user who
examines his/her intended queries from the suggestion list from
time to time may hardly maintain a stable typing speed, even if the

user has good typing skills. On the contrary, a user who plans to
type the entire query without clicking a suggestion may illustrate
a stable typing speed. “Typing Completion” is designed to show
whether a user prefers typing than clicking suggestions. Among the
features of click behaviors, “Search Time” is defined to be how fast
a user can find his/her intended web documents after submitting a
query. Notice that users’ behaviors on different types of logs are not
independent. On the QAC log, an experienced user usually spend
less time to complete a QAC session than an unexperienced user,
i.e., has a small “Time Duration”. While on the click log, he/she is
very likely to make his/her first click after only a short while, i.e., a
small feature value for “Search Time”. A user who tends to trust the
results of search engines may miss the QAC behavior feature “Typ-
ing Completion”, and owns a higher value of the click behavior
feature “Click Number”. Thus our designed QAC and click behav-
ior features are somehow related, and we will design appropriate
models to capture such relationship in the following sections.

2.3 Contextual Topic Distribution
To detect user behavior patterns from logs, we choose a widely

used graphical model, latent Dirichlet allocation (LDA) [4], which
has been proven to be effective in topic discovery by clustering
words that co-occur in the same document into topics. First we con-
sider how to use LDA to cluster user behaviors based on one single
type of log only (either QAC log or click log). One straightforward
idea is to treat each user’s query sequence as a document, and clus-
ter user behaviors that co-occur frequently in the same query se-
quence into topics, since each user maintains certain behavior pat-
terns in query submission, and different groups of users prefer dif-
ferent behavior patterns. Our LDA model assumesK behavior pat-
terns lie in the given query sequences, and each userm is associated
with a randomly drawn vector πm, where πm,k denotes the proba-
bility that the user behavior in a query session of user m belongs to
behavior pattern k. For the n-th query in the query sequence of user
m, aK-dimensional binary vector Ym,n = [ym,n,1, . . . , ym,n,K ]T

is used to denote the pattern membership of the user behavior in
that query session. One challenge we encounter in the inference of
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Table 2: Major Notations
Symbol Description
K The number of QAC behavior patterns.
K′ The number of click behavior patterns.
d Users’ click behaviors.
ω Users’ QAC behaviors.
Y Users’ click behavior pattern membership.
Z Users’ QAC behavior pattern membership.

pattern membership Y is that, user’s choice of behavior patterns in
each query session is not only decided by users’ own preferences of
behavior patterns, but also influenced by the context of the current
query session.

To model the influence of the context on user’s choice of the be-
havior pattern in the current query session, we assume user’s pref-
erence of behavior patterns depend on the context, rather than the
user alone. That is to say, a "document" in the LDA model does
not contain the user behaviors in all query sessions of a user, but
only the behaviors in those query sessions that the user conducts
under the same status, for instance, in the same mood, or sharing
the same topic. In this paper, we focus on studying how using one
type of log as context can benefit the user behavior modeling on the
other type of log. Thus, in the detection of user behavior patterns
in one type of log, we define each status mentioned above to be the
user behavior pattern in the other type of log. That is to say, instead
of building a behavior pattern distribution πm for each user m, and
accordingly draw the user’s behavior in each query session of that
user, we construct a QAC (or click) behavior pattern distribution πk
for each click (or QAC) pattern. Then after we inferred the pattern
membership of a user’s behavior on click (or QAC) log, we obtain
the corresponding QAC (or click) behavior pattern distribution, and
in the next QAC (or Click) session, draw the QAC (or click) pattern
accordingly.

2.4 Contextual-LDA Model
Let us consider a typical scenario where M users issue M cor-

responding query sequences. For each query n, we have the QAC
log records a user’s behavior ωm,n in the QAC engine before sub-
mitting the query and the click log records a user’s behavior dm,n
on returned web documents after the query is issued. We assume
that K QAC behavior patterns exist in the QAC log, and K′ click
behavior patterns exist in the click log.

Finally, we present our generative model as follows:

• For each click behavior pattern k′, draw a K dimensional
membership vector πk′ ∼ Dirichlet(α).

• For each QAC behavior pattern k, draw a K′ dimensional
membership vector π′k ∼ Dirichlet(α′).

• For each click behavior pattern k′, draw a T ′ dimensional
distribution vector θ′k′ .

• For each QAC behavior pattern k, draw a T dimensional dis-
tribution vector θk.

• For the n-th click session issued by user m,

– Draw the user’s click session behavior dm,n ∼
Gaussian(θ′Ym,n

);

– Draw the user’s next QAC behavior pattern member-
ship Zm,n+1 ∼ Multinomial(πYm,n);

Figure 2: Graphical model representation of Contextual-LDA
and the variational distribution that approximates the likeli-
hood.

• For the n+1-th QAC session issued by user m,

– Draw the user’s QAC session behavior ωm,n+1 ∼
Gaussian(θZm,n+1);

– Draw the user’s next click behavior pattern membership
Ym,n+1 ∼ Multinomial(π′Zm,n+1

);

Here T is the number of features of QAC behaviors, and T ′ is the
number of features of click behaviors. Also notice that in the gener-
ative process of the proposed model, user’s QAC behavior pattern
membership Z and click behavior pattern membership Y mutually
infer each other in an interleaved manner. In specific, for a user
m, the QAC behavior pattern membership Zm,n in the n-th QAC
session decides his/her click behavior pattern membership Ym,n in
the click session under the same query, and in the following this
click behavior pattern membership Ym,n decides his/her QAC be-
havior pattern membership Zm,n+1 in the QAC session of the next
query, i.e., the n+1-th QAC session. In the Gaussian distribution,
θ defines the mean and the covariance matrix is identity. We name
the proposed model Contextual-LDA.

Under our Contextual-LDA model, the joint probability of data
D = {Dm} = {{dm,n}Nm

n=1}, ω = {{ωm,n}Nm
n=1}, and latent

variables {Y,Z} can be written as follows:

p(D,ω, π, π′, Y, Z|α, α′, θ, θ′)

=
∏
m

∏
n

P (dm,n|Ym,n, θ′)P (ωm,n|Zm,n, θ)

×
∏
m

∏
n

P (Zm,n|Ym,n−1, π)P (Ym,n|Zm,n, π′)

×
∏
k

P (πk|α)
∏
k′

P (π′k′ |α′).

3. INFERENCE
In this section, we derive a mean-field variational Bayesian in-

ference algorithm for our proposed Contextual-LDA model.

3.1 Variational Inference
Under Contextual-LDA model, given observations of both the

high definition QAC log D = {Dm} = {{dm,n}Nm
n=1} and the

click log ω = {{ωm,n}Nm
n=1}, the log-likelihood for the complete

data is given by logP (D,ω|α, α′, θ, θ′). Since this true posterior
is hard to infer directly, we turn to variational methods [3], whose
main idea is to posit a distribution over the latent variables with
variational parameters, and find the settings of the parameters so
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as to make the distribution close to the true posterior in Kullback-
Leibler (KL) divergence. In Figure 2, the right-hand part shows
the variational distribution that approximates the data likelihood.
Our paper chooses to introduce a distribution of latent variables q
specified as the mean-field fully factorized family as follows:

q(Y,Z, π, π′|ρ, φ, γ, γ′) =
∏
m

∏
n

q1(Ym,n|ρm,n)q1(Zm,n|φm,n)∏
k′

q2(πk′ |γk′)
∏
k

q2(π′k|γ′k),

where q1 is a multinomial, q2 is a Dirichlet, and {Φ, ρ, γ, γ′} are
the set of variational parameters. We optimize those free parame-
ters to tight the following lower bound L′ for our likelihood:

log p(D,ω|α, α′, θ, θ′) ≥Eq[log p(D,ω, π, π′, Y, Z|α, α′, θ, θ′)]
−Eq[log q(Y,Z, π, π′|ρ, φ, γ, γ′)]. (1)

Under a coordinate descent framework, we optimize the lower
bound as in Eqn (1) against each variational latent variable and the
model hyper-parameter. For variational latent variables, we have
the following process

• update rules for γ’s as:
γk′,k = αk +

∑
m

∑
n φm,n+1,kρm,n,k′ ;

• update rules for γ′’s as:
γ′k,k′ = α′k′ +

∑
m

∑
n φm,n,kρm,n,k′ ;

• update rules for ρ’s as:
ρm,n,k′ ∝ exp

(
− 1

2σ2

∑
m,n(dm,n − θ′m,n,k′)2

+
∑
k φm,n+1,k[Ψ(γk,k′)−Ψ(

∑
k′ γk,k′)]

+
∑
k φm,n,k[Ψ(γ′k′,k)−Ψ(

∑
k γ
′
k′,k)]

)
,

• update rules for φ’s as:
φm,n,k ∝ exp

(
− 1

2σ2

∑
m,n(ωm,n − θm,n,k)2

+
∑
k′ ρm,n−1,k′ [Ψ(γk,k′)−Ψ(

∑
k′ γk,k′)]

+
∑
k′ ρm,n,k′ [Ψ(γ′k′,k)−Ψ(

∑
k γ
′
k′,k)]

)
,

3.2 Learning
We use a variational expectation-maximization (EM) algorithm

[9] to compute the empirical Bayes estimates of the LDA hyper-
parameters α and α′ in our Contextual-LDA model. This varia-
tional EM algorithm optimizes the lower bound as in Eqn (1) in-
stead of the real likelihood, it iteratively approximates the poste-
rior by fitting the variational distribution q and optimizes the corre-
sponding bound against the parameters.

In updating α, we use a Newton-Raphson method, since the ap-
proximate maximum likelihood estimate of α doesn’t have a closed
form solution. The Newton-Raphson method is conducted with a
gradient and Hessian as follows:
∂L′

∂αk
= K(Ψ(

∑
k αk)−Ψ(αk)) +

∑
k(Ψ(γk,k)−Ψ(

∑
k γk,k)),

∂L′

∂αk1
αk2

= N(I(k1=k2)Ψ
′(αk1)−Ψ′(

∑
k αk)).

Similar update rules can be derived for α′. Here, Ψ is the digamma
function.

On the other hand, to obtain the approximate maximum likeli-
hood estimation of parameters describing QAC and click behav-
ior patterns θ and θ′, we optimize the lower bound as in Eqn (1)
against each parameter, and update θ and θ′ independently with
closed-form solutions as follows:

θ′k′ =

∑
m,n ρm,n,k′dm,n∑
m.n ρm,n,k′

, θk =

∑
m,n φm,n,kωm,n∑

m.n φm,n,k
;

Table 3: Log Predictive Likelihood on Real-world Data
The platform "All" means the combination of data from both PC
and mobile platforms. Smaller value means better performance.

Platform Contextual-LDA HMM LDA
PC -253.69 -286.55 -295.21

Mobile -223.82 -252.30 -257.91
All -241.74 -272.85 -280.29

In our mean-field variation inference algorithm, the computa-
tional cost of inferring variational variables isO((

∑
mNm)KK′),

where Nm is the number of sessions of user m, K is the number
of QAC behavior patterns, and K′ is the number of click behavior
patterns. The computational cost of the estimation of LDA hyper-
parameters is O(KK′). The computational cost of the estimation
of behavior patterns is O(

∑
mNm(K+K′)), Thus the total com-

putational cost of our algorithm is O((
∑
mNm)KK′). Since we

can control the value of KK′ by limiting the number of QAC and
click behavior patterns, this total computational cost can be viewed
as linear to the number of queries in the entire log.

4. EXPERIMENTS
In this section, we evaluated our Contextual-LDA model on real-

world data sets, and compared the performance with various al-
ternative probabilistic models, as well as the state-of-the-art QAC
methods and click models. First, we conducted a series of experi-
ments to measure the fitness of the proposed model on real-world
query logs together with alternative probabilistic models. Then, we
1) present how the proposed model addresses the real-world ap-
plications including query auto-completion (QAC) and learning to
rank, respectively; 2) evaluate the performance on real-world data;
and 3) compare it with state-of-the-art QAC methods and click
models, separately. For all the experiments, besides measuring the
performance of the above real-world applications by correspond-
ing metrics that are widely used, we also perform significance tests
using paired t-test with 0.05 as the p-value threshold.

4.1 Real-world Data
We conducted extensive experiments on a real-world QAC log

and the corresponding click log collected from Yahoo. This data
set contains QAC and click logs collected from May 2014 to July
2014, which include a sample of 7.4 million query sessions from
about 40,000 users over a 3-month period. As defined in previ-
ous sections, each query session refers to a combined session that
starts with a QAC session and ends with a click session. We ran-
domly selected a subset of active users who submitted over 500
query sessions during this period, and collected their corresponding
search activities, including the anonymized user ID, query string,
timestamp, and the clicked URL. As a result, we collected 3,954
users with 2.6 million queries, and their activities span from 22
days to 3 months. According to the platform each query session
belongs to, we separate the entire data set into two subsets. One
is PC, which contains 1.6 million query sessions, while the other
is mobile phone, which contains 1.0 million query sessions. On
query auto-completion experiments, we evaluate the performance
on those separate subsets, since users’ behaviors on QAC engines
are significantly influenced by the platform they use.

4.2 Model Fitness
To evaluate the fitness of the proposed model on real-world QAC

and click logs, we use this series of experiments to measure the
performance of Contextual-LDA by the log predictive likelihood
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Figure 3: Performance of Query Auto-Completion. In the fig-
ure we use C-LDA to denote Contextual-LDA

on the observed query logs, and compare it with two alternative
LDA-based probabilistic models that are also capable of learning
QAC and click behavior patterns.
LDA: This model uses a normal LDA to learn users’ behavior pat-
terns on QAC and click logs, separately. No contextual data is uti-
lized in the process of pattern learning.
HMM: This is a hidden Markov model that builds a hidden state
for each QAC and click session, and takes the users’ behaviors in
each QAC and click session as observation. The transition matrix
between hidden states learned by the HMM model is expected to
capture the effect of using one type of log as the contextual data of
modeling the other type of log.

Table 3 shows the log predictive likelihood on query sessions
falling in the final 10% of the total number of the observed query
sequences. The same split of training and test data will be used
in all following series of experiments. To avoid overfitting issues,
we adopt a k-fold cross validation strategy, and select the optimal
number of QAC behavior patterns K and the optimal number of
click behavior patterns K′ that maximize the log likelihood on
the validation data. According to Table 3, Contextual-LDA out-
performs the two alternative probabilistic models on all data sets.
Contextual-LDA and HMM fits real-world data better than LDA.
This illustrates the effectiveness of using one type of log as the
contextual data for modeling the behaviors on the other type of
log. Contextual-LDA performs better than HMM, which shows
that the proposed model can better utilize the contextual data to
help the behavior modeling through appropriate usages of relation-
ship between QAC and click logs. Moreover, the advantage of the
proposed model on mobile data over those two alternative proba-
bilistic models, especially LDA, is more significant than that on PC
data. Such phenomenon implies that search engine users’ QAC and
click behaviors on mobile phones are more closely correlated than
on PCs, and Contextual-LDA can better capture such correlation.

4.3 Query Auto-Completion
In this series of experiments, we show how to utilize the pat-

tern membership inferred by the proposed model to enhance the
performance of query auto-completion. We design a new QAC
method based on a two-dimensional click model (TDCM) [20],
which is known to be the first model proposed for solving the QAC
task using high definition QAC logs. Instead of learning a TDCM
model on the entire QAC log, our new method separates the log
according to the behavior pattern membership in each QAC ses-
sion, and learns separate TDCM models on each subset, under the
same experimental setting (same features, etc) as in [20]. To jus-
tify how effective appropriate search patterns benefit solving the

QAC task, we compare the performance of the above method with
those methods adopting a similar strategy using the QAC behavior
patterns learned by LDA and HMM. We compare the performance
with several state-of-the-art QAC algorithms, where two of them
are context-aware QAC algorithms:
MPC [1, 25]: This method, named MostPopularCompletion, is a
widely used baseline in Query Auto-Completion, and employed as
one main feature in many QAC engines.
BSS [28]: This Bayesian Sequential State model uses a probabilis-
tic graphical model to characterize the document content and de-
pendencies among the sequential click events within a query with
a set of descriptive features. This is a content-aware model, which
is able to predict unobserved prefix-query pairs.
TDCM [20]: This is a two-dimensional click model which em-
phasizes two kinds of user behaviors. It consists of a horizontal
model which explains the skipping behavior, and a vertical model
that depicts the vertical examination behavior. It is the first work
that utilizes high definition QAC logs.
Hybrid [11]: This is a context-sensitive query auto completion al-
gorithm, which outputs the completions of the user’s input that are
most similar to the context queries. The similarity is measured
by representing queries and contexts as high-dimensional term-
weighted vectors and resorting to cosine similarity.

We employ the Mean Reciprocal Rank (MRR) as the relevance
measurement, which is a widely used evaluation metric in mea-
suring QAC performance [1, 25, 20], MRR = 1

|Q|
∑
q∈Q

1
rankq

,
where Q is the set of queries a user finally submitted, and rankq
denotes the rank of the query q in the suggested query list. Since
our experiments are conducted on high-resolution QAC data, we
report both the average MRR score of all keystrokes (denoted as
MRR@ALL), and the average MRR of the last keystroke only (de-
noted as MRR@Last), since this is the keystroke where the user’s
click occurs. Notice that existing works which didn’t make use
of high-resolution QAC logs usually used the MRR of the last
keystroke to measure their performance.

Figure 3 compares Contextual-LDA with alternative probabilis-
tic models, and state-of-the-art QAC algorithms on real-world data
sets. We can find that Contextual-LDA outperforms all compared
approaches. It improves over the second best method by up to
5%. And the differences between the proposed model and those
baselines are statistically significant. TDCM performs the best
among all state-of-the-art QAC methods, which demonstrates that
high definition QAC logs provide rich additional information for
the modeling of users’ interactions with QAC engines than nor-
mal QAC logs. Contextual-LDA performs better than HMM and
LDA, which shows the importance of appropriate modeling of user
behaviors, and appropriate behavior patterns play a very positive
effect in solving QAC tasks. HMM performs better than TDCM
and LDA, since HMM utilizes the contextual relationship between
QAC and click logs, while LDA models user behaviors on each
log separately, and similarly TDCM only focuses on users’ be-
haviors on high definition QAC logs alone in solving the query
auto-completion tasks. BSS and Hybrid generally perform better
than MPC, which demonstrates the effectiveness of using contex-
tual data for user behavior modeling and the prediction of sugges-
tions in query auto-completion. Meanwhile, we find that when
measured by MRR@All the advantage of the proposed model
over those baselines are very obvious and statistically significant.
Comparing with the performance using all the keystrokes and last
keystroke only, the advantages of the proposed model when mea-
sured by MRR@All are ever more significant than that measured by
MRR@Last. It indicates that the proposed model can recommend
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Figure 4: Performance Comparison of Prediction of Clicks in Web Documents. In the figure we use C-LDA to denote Contextual-
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Figure 5: Performance Comparison of Learning to Rank based on RankSVM with Different Training Signals. In the figure we use
C-LDA to denote Contextual-LDA.

user intended queries higher when only a few keystrokes have been
typed, which may due to rich information provided by the context
from the other type of log in the preceding click session.

4.4 Click Prediction and Learning to Rank
In this part of experiments, we show how to utilize the pattern

membership inferred by the proposed model to enhance the pre-
diction of click/relevance on SERP page. Meanwhile, we provide
an appropriate ranking of those candidate documents that satisfy
users’ intent. We design a new click model based on BSS, which
is known to be an efficient click model. Rather than learning a
BSS model on the entire click log, this proposed method separates
the log according to the behavior pattern membership in each click
session, and learns separate BSS models on each subset, under the
same experimental setting (same features, etc) as in [28]. To justify
how effectively appropriate search patterns improve the click pre-
diction, we rank the candidate documents based on the estimated
relevance given by a click model, and compare the ranking result
against the recorded user clicks to see whether we can rank those
candidate documents that satisfy users’ intent higher than other
candidate documents. We compare the performance of the above
method with existing approaches using a similar strategy, i.e., par-
titioning click logs based on the click behavior patterns learned by
LDA and HMM. We evaluate the performance with several state-
of-the-art click models as follows, including a context-aware click
model:

UBM [11]: This User Browsing Model proposes a number of as-
sumptions on user browsing behavior that allows the estimation of
the probability of observing a document. It depends on statistical
counting of query-document pairs, thus unable to predict unseen
query-document pairs.
DBN [7]: This Dynamic Bayesian Network model provides unbi-
ased estimation of the relevance from the click logs. This model
also relies on the counting of query-document pairs.
BSS [28]: This Bayesian Sequential State model uses a probabilis-
tic graphical model to characterize the document content and de-
pendencies among the sequential click events within a query with
a set of descriptive features. This is a content-aware model which
is able to predict unobserved query-document pairs.

Figure 4 compares the proposed model with alternative proba-
bilistic models and state-of-the-art click models. We find that the
proposed model performs the best among all compared approaches,
and the differences are all statistically significant. The advantage
of the proposed model over BSS provides a clear evidence that
the proposed model can appropriately model the click behaviors
of search engine users, which contributes to an more accurate click
prediction. Contextual-LDA’s advantage over HMM and LDA il-
lustrates the importance of appropriate click behavior patterns in
predicting the clicks of web documents. Both Contextual-LDA and
HMM outperforms BSS, which may due to the fact that BSS only
utilizes the contextual information from the click log, while the first
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Figure 7: Case Study: How a Contextual-LDA based TDCM
model performs better in a QAC session than a normal TDCM
model.

two methods also utilize the QAC log as the context of click behav-
ioral modeling, which not only contains rich information, but also
occurs in more recent timestamps. Meanwhile, BSS performs bet-
ter than UBM, DBN, and LDA, which shows the effectiveness of
using contextual data for click modeling.

In addition, we conduct another series of experiments to justify
how the proposed model benefit a learning to rank task. Here we
use the estimated relevance given by a click model as labels to
extract ranking-preference pairs of candidate documents for train-
ing a learning-to-rank algorithm, which we select the pairwise
RankSVM [16]. In particular, we rank the documents returned
when given a certain query based on their predicted relevance from
a click model, and categorize the top ranked document as posi-
tive and others as negative. We extract the preference pairs ac-
cording to those relevance labels under each query and train them
by a RankSVM model. Figure 5 compares the performance of
RankSVM models trained by different relevance signals provided
by the proposed model and above baselines. From the figure, we
can find that the training signals extracted from the Contextual-
LDA based click model result in better ranking performance of
RankSVM than those extracted from the rest click models. More-
over, we notice that the advantage of the proposed model over those
baselines measured by MAP and MRR is much greater than that
measured by P@1. The main reason can be that the proposed model
is more flexible in learning the relative order of candidate docu-
ments, since it takes contextual information into consideration.
Correlation between Behavior Patterns in QAC and Click Logs.
In this part, we analyze the correlation between behavior patterns
in QAC and click logs based on the inferred conditional pattern
membership distribution, and then try to show a few examples of
highly correlated QAC behavior patterns and click behavior pat-
terns. First, we estimate the degree of correlation between QAC
and click behavior patterns based on the inferred conditional pat-
tern membership distributions {πk′} and {π′k}. Here we take πk′,k
and π′k,k′ as the directed partial correlations of the k-th QAC be-
havior pattern and the k′-th click behavior pattern. Then, we sta-
tistically count the number of pattern pairs whose degree of corre-
lation falls in the range of [0, 0.2], [0.2, 0,4], [0.4, 0.6], [0.6, 0.8],
[0.8, 1.0], separately. Finally, we show the percentage of pattern
pairs in each bin in Figure 6(a). From the figure, we can find that
between most pairs of behavior patterns, the degree of correlation
is very small. And among the rest pattern pairs with significant
correlations, between most of them the corresponding degrees of
correlation are larger than 0.8, i.e., there is a one to one mapping
between those pattern pairs. (Notice that since the inference of π
and π′ ensures that the degrees of correlations of one pattern with
others sum to 1, if the degree of correlation between a QAC pat-
tern and a certain click pattern is larger than 0.8, the QAC pattern’s
correlation with all other click patterns will be very small (<0.2).)

Such phenomenon shows that a lot of users retain the same behav-
ior mode for quite a while.

Figure 6(b) and (c) show an example pair of QAC and click be-
havior patterns between which the degree of correlation is larger
than 0.8. From the QAC behavior pattern shown in (b), we find
that 1) the user’s typing speed is very fast; 2) the time cost of com-
pleting a QAC session is very small; 3) the user does not like to
click suggested queries even if they satisfy his/her search intent and
ranked at top positions; 4) the user types keystrokes in a consistent
speed; and 5) most of the time, the user types his/her intended query
completely instead of stopping to click the suggestions returned by
QAC engines. Based on the above behaviors, we can conclude that
this is probably a user who is proficient in searching or his/her in-
tended topic. From the click behavior pattern shown in (c), we find
that 1) the user clicks a lot of web documents returned by the search
engine; 2) the user spends a lot of time in viewing the clicked web
documents, 3) the user scans several pages of results, and 4) it does
not take a lot of time for the user to find his/her intended web doc-
uments after submitting the query. Those behaviors also illustrate
that this is a proficient user. Thus the correlation captured by the
proposed model from real-world QAC and click logs is appropriate
and meaningful. Based on such correlation, the proposed model
can more accurately infer the behavior patterns on one type of log
according to those on the other type of log in preceding sessions.

Figure 7 shows an example that illustrates how a Contextual-
LDA based TDCM model recommends a user queries that better
satisfy user intent in a QAC session than a normal TDCM model.
Before this QAC session, which the user finally clicks "game of
thrones", he just searched "imdb" within 10 minutes. Based on
the behavior pattern in the previous click session, the proposed
Contextual-LDA model infers that the QAC behavior pattern is
"Proficient" as shown in Figure 6(b). When the user type a prefix
"g", since the TDCM model trained under "Proficient" pattern gives
contextual features large weights, it consequently ranks "google"
to a lower position, and ranks "game of thrones" a higher position.
While a normal TDCM model trained on the entire log just gives
contextual features normal weights, and still ranks "google" at the
top position. Our Contextual-LDA model enables the usage of ap-
propriate TDCM models under various contextual scenarios, which
consequently better satisfy user intent than a generalized TDCM
model in QAC tasks.

5. RELATED WORK
Contextual Search. Contextual search is heavily researched in

literature and is explored from different angles. A large portion of a
recent comprehensive survey on contextual search is devoted to the
study of personal interest from interaction, content, social, and ge-
ographical variables [22]. Traditional personalization approaches
usually build a profile of interests for each user from her/his search
or browsing history. Contextual information is useful in identify-
ing users’ search needs. Shen et al. [24] presented context-aware
language models by assuming that documents are not only similar
to the current query but also similar to the previous queries and the
summaries of the documents clicked on. Sun and Lou [27] focus
on right-click query that is submitted to a search engine by making
a text string in a Web page, and extract the contextual information
from the source document to improve search results. Cao et al. [6,
5] extracted context information in Web search sessions by model-
ing search sessions as sequences of user queries and clicks. They
learned sequential prediction models such Hidden Markov Model
[29, 30] from search log data. Different from our study here, their
models [6, 12] either fail to leveraging both QAC and clickthrough
logs, or do not fully explore the relationship inbetween.
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Figure 6: Correlation between QAC Behavior Patterns and Click Behavior Patterns. The left figure shows the percentage of the number of pattern
pairs with the degrees of correlation in different ranges. The middle and right figures together show a pair of highly correlated QAC and click behavior patterns. The
middle figure shows the scaled value of some selected features in the QAC behavior pattern. Indices of selected features of QAC behaviors are: 1-‘Typing Speed’, 2-‘Time
Duration’, 3-‘Highest Non-Click Position’, 4-‘Type Speed Standard Deviation’, 5-‘Typing Completion’, The right figure shows the scaled value of some selected features
in the click behavior pattern. Indices of selected features of click behavior patterns are: 1-‘Click Number’, 2-‘Dwell Time’, 3-‘Click Speed’, 4-‘Scanned Pages’, 5-‘Search
Time’.

Query Auto-Completion (QAC). The main objective of QAC
[19, 18] is to predict users’ intended queries and assist them formu-
late a query while typing. The most popular QAC algorithm is to
suggest completions according to their past popularity. Generally,
a popularity score is assigned to each query based on the frequency
of the query in the query log from which the query database was
built. This simple QAC algorithm is called MostPopularComple-
tion (MPC), which can be regarded as an approximate maximum
likelihood estimator [1].

Several QAC methods [1, 26, 25, 31] were proposed to extend
MPC from various aspects. Bar-Yossef and Kraus [1] introduced
the context-sensitive QAC method by treating users’ recent queries
as context and taking into account the similarity of QAC candi-
dates with this context for ranking. But there is no consensus of
how to optimally train the relevance model. Shokouhi [25] em-
ployed learning-based strategy to incorporate several global and
personal features into the QAC model. However, these methods
only exploit the final submitted query or simulate the prefixes of
the clicked query, which do not investigate the users’ interactions
with the QAC engine. In addition the above models, there are sev-
eral studies addressing different aspects of QAC. For example, [26,
31] focused on the time-sensitive aspect of QAC. Other methods
studied the space efficiency of index for QAC [2, 14]. Duan and
Hsu [10] addressed the problem of suggesting query completions
when the prefix is mis-spelled. Kharitonov et al. [17] proposed two
new metrics for offline QAC evaluation, and [15] investigated user
reformation behavior for QAC.

The QAC is a complex process where a user goes through a series
of interactions with the QAC engine before clicking on a sugges-
tion. As seen from the related work, little attention has been paid to
understand the interactions with the QAC engine. Until recently, Li
et al. [20] created a two-dimensional click model to combine users’
behaviors with the existing learning-based QAC model. The study
assumed users’ behaviors at different keystrokes, even for the con-
secutive two keystrokes, are independent in order to simplify the
model estimation, which results in information lose. In this paper,
we attempt to directly model and leverage the relationship between
users’ behaviors, so as to improve the performance of QAC.

Click Models. This work is also related to click models. In the
field of document retrieval, the main purpose for modeling users’

clicks is to infer the intrinsic relevance between the query and doc-
ument by explaining the positional bias. The position bias assump-
tion was first introduced by Granka et al. [13], stating that a doc-
ument on higher rank tends to attract more clicks. Richardson et
al. [23] attempted to model the true relevance of documents by im-
posing a multiplicative factor. Later examination hypothesis is for-
malized in [8], with a key assumption (Cascade Assumption) that
a user will click on a document if and only if that document has
been examined and it is relevant to the query. In addition, sev-
eral extensions were proposed, such as the User Browsing Model
(UBM) [11], the Bayesian Browsing Model [21], the General Click
Model [33], and the Dynamic Bayesian Network model (DBN) [7].
Despite the abundance of click models, these existing click models
cannot be directly applied to QAC without considerable modifica-
tion. The click model most similar to our work is [32], which mod-
els users’ clicks on a series of queries in a session. However be-
cause of the main difference between QAC and document retrieval,
our model is very different from [32].

6. CONCLUSION AND FUTURE WORK
In this paper, we presented a LDA-based probabilistic model to

study users’ behaviors on both QAC and click logs simultaneously
by using both logs as the contextual data for each other. The model
is designed to capture the correlation between users’ behavior pat-
terns on a QAC log and those on a click log. The learned users’
behavior patterns on both QAC and click logs are utilized to benefit
the query auto-completion task and the prediction of users’ clicks
on web documents as well as the relevance ranking of them. We
have applied the proposed Context-LDA model to study users’ be-
haviors on both real-world QAC and click logs collected from a
commercial search engine, and compare with several alternative
approaches. Experimental results show that our proposed model
offers a better context-aware solution to both applications of query
auto-completion and learning to rank. In future work, it would be
interesting to consider the usage of additional user behavior fea-
tures in the proposed model. Meanwhile, we plan to investigate
alternative models, such as point process models, that can effec-
tively capture the relationship between user behaviors on QAC and
click logs.
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