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ABSTRACT
Query auto completion (QAC) is a prominent feature in modern
search engines. High quality QAC substantially improves search
experiences by helping users in typing less while submitting the
queries. Many studies have been proposed to improve quality and
relevance of the QAC methods from different perspectives, includ-
ing leveraging contexts in long term and short term query histories,
investigating the temporal information for time-sensitive QAC, and
analyzing user behaviors. Although these studies have shown the
context, temporal, and user behavior data carry valuable informa-
tion, most existing QAC approaches do not fully exploit or even
completely ignore these information. We propose a novel Hawkes
process based QAC algorithm, comprehensively taking into ac-
count the context, temporal, and position of the clicked recom-
mended query completions (a type of user behavior data), for re-
liable query completion prediction. Our understanding of ranking
query completions is consistent with the mathematical rationale of
Hawke process; such a coincidence in turn validates our motivation
of using Hawkes process for QAC. We also develop an efficient in-
ference algorithm to compute the optimal solutions of the proposed
QAC algorithm. The proposed method is evaluated on two real-
world benchmark data in comparison with state-of-art methods, and
the obtained experiments clearly demonstrate their effectiveness.
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1. INTRODUCTION
Query auto completion (QAC) [3] is one of the most important

features in modern search engines; it helps users in a wide range of
information pursuing activities, precisely, getting desirable infor-
mation quickly but with as little typing effort as humanly possible.
Upon receiving a user’s input entered into a search engine’s search
box, QAC engine instantly displays to the user a list of recom-
mended query completions, each of which usually starts with the
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user’s input as its prefix. Following each character subsequently
entered into the search box by a user, QAC engine updates the rec-
ommended query completions with a presumptively better reflec-
tion on the user’s underlying search intentions. Signaled by a click
on one of the recommended query completions, the user’s infor-
mation need is satisfied and his interactive process with the QAC
engine is ended. The most basic QAC algorithm is the approach
of mining wisdom of the crowds by suggesting the completions that
are most popular among users in the past, generally referred to as
MostPopularCompletion (MPC) [2]. Although providing satisfac-
tory query completion candidates on average, MPC’s prediction
quality is far from optimal to satisfy different information needs
from different users. Suppose a user is submitting a query and
has already typed “sig” into the search box. Based on MPC, the
top-ranked query completions include “signature” and “sigma”,
as both queries have very high frequency of occurrence. However,
if the user has recently submitted ”acm conferences” as a query,
some other query completion candidates, for example, “sigkdd”,
“sigir” and “sigmod”, could better reflect this user’s real search
intent. This illustrative example demonstrates that simply relying
on the popularity of the queries does not guarantee reliable QAC
prediction performance. Intuitivelly it makes more sense to lever-
age certain contextual and other relevant information for a potential
boosting in the quality of query completion prediction.

Many studies have been proposed to improve quality and rele-
vance of the QAC methods from different perspectives, including
leveraging contexts in long term and short term query histories [2],
investigating the temporal information for time-sensitive QAC [32,
34], learning to combine more personalized signals [31], analyz-
ing user behaviors [21, 37, 18], etc. Although certain progress has
been made in previous studies, most of them focus on recommend-
ing query completion candidates according to the similarity scores
between the candidates and the rich representations of the contex-
tual data. Moreover, these existing methods usually build predictive
models which use only a single type of contextual information, for
example, time sensitive model, or query history sensitive model.
Apparently these type of methods could not attain the best pre-
diction performance, as they do not fully exploit the valuable yet
imperceptible information carried in the rich contextual, temporal,
and position of the recommended query completions (position in
short), which results in an ambiguous guess why a user clicks a
certain suggestion among all candidates.

We consider to appropriately model the influence between users’
click choices across different QAC sessions, which arise from three
representative factors: context, temporal and position information.
Basically, recent queries, recently visited web pages, and recent
check-in locations are examples of online activities that may be
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Figure 1: Illustration of how different factors contribute to the influence between Click Events in different QAC sessions. Yellow tag
highlights the query finally clicked by the user, while red tag highlights the user’s intended query which however was not clicked. Black dot
line represents the context influence between query pairs, orange dot line denotes the temporal influence based on timestamp, and blue dot
line indicates the position influence.

viewed as different possible user contexts [2]. In this paper, our
focus is on the user’s recent queries in his/her search history. As
shown in Figure 1, for each issued query, there is a correspond-
ing QAC session along with its timestamp in the timeline, where
a QAC session consists of the behaviors from the first keystroke
a user typed in the search box towards the final submitted query.
Yellow tag highlights the query a user finally clicks at a certain po-
sition and timestamp, while red tag highlights the user’s intended
query he/she does not click at that position and timestamp. In Fig-
ure 1, two consecutive queries “clustering” and “graph” are issued
by user u, then the previous query “clustering” can be viewed as the
context of query “graph”. Generally, two consecutive queries is-
sued many times by different users are more likely to have a strong
correlation between each other. It makes more sense to take into
account the explicit temporal information of query sequences ex-
hibited by many different users in the whole query logs. The basic
intuition is that if two consecutive or temporally-close queries are
issued many times by the same user or many other users, it is more
likely these two queries are semantically related to each other. We
define query influence as the occurrence of one query raises the
probability that the other query will be issued in the near future.
Such influence will be very useful for predicting the next issued
query. The co-occurrence of sequential queries, e.g., “clustering”
and “graph”, will influence the later QAC prediction given related
context, which is referred as context influence in this paper. In ad-
dition, temporal influence exists and will be used to measure the
degree of the influence between two queries from the temporal as-
pect. Roughly speaking, temporally-close queries are more likely
to have higher influence between each other. Furthermore, it is
very important to model the position of the intended query shown
in the suggestion list. As we can see in Figure 1, although some
intended queries (highlighted with red tag) were shown in a rela-
tive lower position for short prefixes, most users tend to click them
when showing in higher position. Thus, there is a type of position
influence regardless of the query itself.

To model the influence between users’ click behaviors across dif-
ferent QAC sessions, we resort to the Hawkes process [15]. Hawkes
process is a temporal point process, which has been widely used for
solving various data mining and machine learning research prob-
lems [22]. A typical Hawkes process is characterized by a stochas-
tic (conditional) intensity function, precisely describing how likely
an event of interest will happen at each time point; specifically
this intensity function consists of a base intensity term as well as

a self-exciting term; the former describes the background rate of
this point process, independent from any past history of the event
occurrences; the latter origins from the well-known self-exciting
property of the Hawkes process, implying the existence of a posi-
tive influence of the past event on the current one, which other pop-
ular machine learning algorithms do not naturally possess. Such
self-exciting property are expected to naturally capture the influ-
ence between the events that search engine users make clicks in
each QAC session. However, existing Hawkes models are gener-
ally designed to model the influence between events based on their
temporal distance. To comprehensively utilizing content, temporal,
and position information in modeling the influence between click
events in QAC sessions, a novel Hawkes model is desirable for in-
tegrating all above three factors in influence modeling.

In this paper we proposes a novel Hawkes model which contains
two parts: 1) the base intensity: it implies how likely a search en-
gine user clicks a suggestion based on its own property, such as
the general popularity in the query log, how frequent this user sub-
mits the query, etc.; this type of information is generally indepen-
dent from this user’s previous search history. 2) the self-exciting
influence: it is jointly measured by the context, temporal, and po-
sition difference between the historical QAC sessions and the cur-
rent QAC session. Like time-decay kernels that are widely used
in existing Hawkes models in capturing the self-exciting property
from the temporal aspect, we design a space-decay kernel to cap-
ture the influence from the spatial aspect. Furthermore, we pro-
pose a set of contextual features based on the co-occurrence of
query submissions in certain range of histories. Such features are
designed to illustrate the influence between user clicks from the
contextual aspect. We evaluate our method on two real-world high-
resolution QAC logs collected from Yahoo on both PCs and mobile
phones. We compare the performance of our model with state-of-
the-art QAC algorithms. Experimental results show that the pro-
posed method can predict queries that better satisfy users’ search
intent. Moreover, the learned model provides us insights into how
different factors contribute to the influence between search engine
users’ click behaviors across different QAC sessions.

2. PROBLEM DEFINITION
Consider a typical scenario with M users, where each user is-

sues a query sequence. For the specific m-th user, the QAC log
records Nm QAC sessions; the n-th QAC session contains Sm,n
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keystrokes, and each keystroke contains D suggested queries; the
n-th QAC session has Sm,n ×D potential slots, and each slot cor-
responds to one suggested query. Denote zm,n,s,d = 1 if the user
clicks the d-th slot from the s-th keystroke, and zm,n,s,d = 0 oth-
erwise. Denote by xm,n,s,d the relevance feature of a prefix-query
pair, where the prefix is the one at the s-th keystroke and the query
is from the d-slot at the s-th keystroke. Given the weights ω of
those relevance features, we expect ωxm,n,s,d to reveal the rele-
vance score of each suggested query.

2.1 A High-Resolution QAC Log
Traditionally the search query logs only include the submitted

queries and their associated search results; they do not log the se-
quential keystrokes (prefixes) entered into the search box, nor do
they log the corresponding QAC suggestions. To better analyze
and understand users’ real behaviors, a high-resolution QAC log
is recently introduced and discussed [23]; it records users’ inter-
actions with a QAC engine at each keystroke and associated sys-
tem response in an entire QAC process. In the high-resolution
QAC log, each submitted query is associated with a QAC session,
which corresponds to the set of search results obtained from the
first keystroke entered into the search box towards the final sub-
mitted query. Specifically, the recorded information in each QAC
session includes each keystroke the user has entered, the timestamp
of every keystroke, the corresponding top 10 suggested queries to
a prefix, the anonymous user ID, and the final clicked query.

Let us use a toy example to briefly introduce how a user interacts
with a QAC engine and makes the final click in an entire QAC ses-
sion. As shown in Figure 1, a QAC session contains S keystrokes
and each keystroke has a suggested query list of lengthD.1 A QAC
session ends at the keystroke where the user clicks a query in the
suggested query list, or when the prefix at that keystroke is exactly
the query the user enters into the search engine. Among the S ×D
slots in each QAC session, where each slot qij is indexed by the i-
th position at the j-th keystroke, a user clicks at most one of them,
although the user intended query may appear in many slots. Since
users’ clicked queries are usually their intended queries, appropri-
ate modeling of users’ click actions can be a good solution of the
QAC problem. The ideal QAC engine should be able to rank the
user intended query higher with less keystrokes or short prefixes.
Our algorithm aims at leveraging such a QAC log data to get a bet-
ter understanding of user’s sequential behavior in the QAC process.

2.2 Hawkes Process
One powerful tool in statistics for modeling event sequence data

is Hawkes process, which is a class of self- or mutually-exciting
point process models [15]. A univariate Hawkes process {N(t)} is
defined by its intensity function

λ∗(t) = µ(t) +

∫ t

−∞
κ(t− s)dN(s),

where µ > 0 is a base intensity, κ is a kernel function capturing the
positive influence of past events on the current value of the inten-
sity process, which is the process’s self-exciting property that the
occurrence of one event in the past will trigger events happening in
the future. Such self-exciting property exists either between every
pair of events as assumed in a normal univariate Hawkes process,
or only between limited pair of events.

In the context of query auto-completion, the event we are inter-
ested in modeling is how likely a user m will click a suggested
query located at the d-th position and the s-th keystroke in a QAC

1We experiment with real-world QAC logs where D = 10.

Table 1: Patterns in Constructing Contextual Features
Pattern p Description
q′ → q query q is submitted just after the submis-

sion of query q′.
q ←→ q′ query q and q′ are submitted in adjacent.

q′
(v)−−→ q query q is submitted after the submission of

query q′, and v queries have been submitted
in between.

q
(v)←→ q′ v queries are submitted between the sub-

mission of query q and q′.

session. The key idea behind this modeling is to capture the influ-
ence between those click events, i.e., what motivates a user to make
a click choice, and borrow some knowledge from previous click
events for better prediction quality in current time stamp. Since
a user makes only one click in every QAC session, the n-th click
event in the entire click event sequence of the same user is the click
event occurring at the n-th QAC session.

We identify three factors which play key roles in characterizing
how a user makes the click choices; they are summarized below.
Slot The spacial slot information, i.e., the displayed position of
the suggested query, is a factor which obviously affects the influ-
ence between click events. To quantify the degree of the influence
between the click events from the spacial slot aspect, we use the
following formula:

κ(|pl − p|)

where p is slot where a user makes the current click, and pl is the
slot where the user makes l-th historical click event, i.e., the click
occurs at the l-th QAC session, and κ(|pl −p|) represents a decay
effect from the slot discrepancy. Notice that p = (i, j) is a vector
of length 2; its entries i and j respectively denote the position and
the keystroke.
Timestamp Analogously, the timestamp information, i.e., the tem-
poral stamp whether the click event occurs, is another important
factor. To quantify the degree of the influence between click events
from the temporal aspect, we use the following formula:

κ(tl − t)

where t is timestamp when a user makes the current click, tl is
timestamp when the l-th historical click event occurs, and κ(tl− t)
represents a time decay effect.
Context As explained in previous sections, rich contextual data
carries value information for the query suggestion prediction. To
quantify the degree of the influence between click events from the
context aspect, we design a set of contextual features that describe
the relationship between the content of a historical query q′ and a
current suggested query q. These features count the number of ap-
pearances of a certain pattern involving both the historical query q′

and the current suggestion q in a certain time range formulated as:

x(p)(t,∆t) = #{p ∈ [t−∆t, t)},

where p represents a certain defined pattern, [t−∆t, t) is the time
interval from some ancient timestamp to the current timestamp. Ta-
ble 1 shows several patterns we adopt in this paper. Our feature
design is inspired by the features proposed in [27]. The novelty
of our design is that we propose features in more general forms,
and also explore brand-new patterns under the scenario of query
auto-completion, thus produce far more features.

133



As shown in Table 1, our features generally originate from the
co-occurrence of two queries in the query sequence submitted by
search engine users, and reflect pairwise relationship. We form
a feature vector xq′,q(t) for each query-pair (q′, q) at any given
timestamp t as

xq′,q(t) = {x(p)(t,∆t)|p ∈ Pq′,q,∆t > 0},

wherePq′,q refers to the set of patterns involving the pair of queries
{q′, q}. Thus for each timestamp t, a unique set of feature vectors
{xq′,q(t)} imply how a historical click event (on query q′) influ-
ence the current click event (on query q) from the context aspect.

2.3 Factorial Hawkes
Recall that we have identified three key factors which contribute

to the influence between historical click events and the current click
in Section 2.2. To simultaneously leveraging these factors and
make them capture the actual influence exists between click events
across QAC sesssion, we build a univariate Hawkes process on each
user’s issued query sequence inspired by [22]. Specifically consider
a click by userm in the n-th QAC session issued at timestamp tm,n

on a suggestion qm,n,s,d located at the slot pm,n = (d, s), its in-
tensity function can be mathematically expressed as

λ(t,p) = µ+
∑
t′<t

βxq′,q(t)(κ(t− t′) + ακ(|p− p′|). (1)

The formulated intensity function in Eqn (1) consists of two com-
ponents; the first component corresponds to the baseline intensity
µ, which captures how often a user make a click spontaneously2,
i.e., not triggered by any other click event. Conventionally the base-
line intensity µ is set as a constant, which can be computed from
the historical data. This approach however may not accurately rep-
resent the value of µ. In our approach, we parametrize µ as a func-
tional of a set of widely used features x′ used in existing QAC
methods. For similarity, given a specific feature vector x′, we de-
note µ as a linear function as

µ = ωx′,

where the weight vector ω indicates the importance of the each
feature entry and its value will be computed adaptively.

The second component in Eqn (1) is designed to reflect the in-
fluence between historical click events to the current click event. It
systematically takes into account the spacial, temporal, and context
information, where xq′,q(t), κ(t − t′)3, and κ(|p′ − p|), corre-
spond to the context, temporal, and spacial information, respec-
tively. β > 0 is a balance parameter, indicating the relative impor-
tance of the baseline intensity and the contextual information.

From the proposed Hawkes model with the intensity function in
Eqn (1), given a set of observed click event sequences described
by temporal data T = {Nm(·)} = {{tm,n}Nm

n=1}, spacial data
P = {pm,n}, and query content Q = {qm,n}, we can denote its
likelihood as

L =

M∑
m=1

N∑
n=1

log λm(tn,pn)−
M∑

m=1

D∑
d=1

S∑
s=1

∫ T

0

λ(t,p)dt. (2)

2For simplicity, we assume this cascade-birth process is a homoge-
neous Poission process with µ(t) = µ.
3Our paper uses the exponential kernel in experiments, i.e.,
κ(∆t) = ω′e−ω′∆t if ∆t ≥ 0 or 0 otherwise. However, the
model development and inference is independent of kernel choice
and extensions to other kernels such as power-law, Rayleigh, non-
parametric kernels are straightforward.

3. INFERENCE
To elucidate the maximization of the log-likelihood in Eq. (2),

we denote

M∑
m=1

D∑
d=1

S∑
s=1

∫ T

0

Eq(λ(t,p))dt =

K∑
k=1

βk(bk + αb′k) +

K′∑
k′=1

ωk′ck′ ,

where

ck′ =T

M∑
m=1

Nm∑
n=1

D∑
d=1

S∑
s=1

ωx′k(qm,n,s,d),

bk =

M∑
m=1

Nm∑
n=1

D∑
d=1

S∑
s=1

n−1∑
l=1

(xql(p′),qn(tn))k((K(tm,n − tm,l)

−K(tm,n−1 − tm,l)),

b′k =

M∑
m=1

Nm∑
n=1

D∑
d=1

S∑
s=1

n−1∑
l=1

(xql(p′),qn(tn))kκ(|p′ − pn|)).

Note that K(t) =
∫ t

0
κ(s)ds and p′ = (d, s). It is worth noting

that to maximize the log-likelihood in Eqn (2), we need to itera-
tively update only the model parameters ω, β, and α. Therefore for
computation efficiency, we precompute the likelihood according to
the dimension of our utilized basic features and our proposed con-
textual features, and use the precomputed likelihood in the iterative
procedure for model parameter optimization.

The optimization of ω and β are coupled due to the complex
structure in log λ(t,p), which is usually computationally very ex-
pensive. To alleviate this limitation, we optimize a surrogate func-
tion (illustrated in Eqn 3), instead of the original log λ(t,p). Math-
ematically the employed surrogate function can be expressed as

g(ω, β, α|ω(j), β(j), α(j)) = ηm,n,k′ log(ωk′x′k′) (3)

+

K∑
k=1

ηm,n,K′+k log(β

n−1∑
l=1

xql,qn(tn)κ(tm,n − tm,l))

+

K∑
k=1

ηm,n,K′+K+k log(αβ

n−1∑
l=1

xql,qn(tn)κ(|pm.n − pm,l|))

−
K′∑

k′=1

ηm,n,k′ log(ηm,n,k′)−
K∑

k=1

ηm,n,K′+k log(ηm,n,K′+k)

−
K∑

k=1

ηm,n,K′+K+k log(ηm,n,K′+K+k)

−
K∑

k=1

βk(bk + αb′k) +

K′∑
k′=1

ωk′ck′ .

Note that {η} is a set of branching variables formulated as

ηm,n,k′ =
ωk′x′k′

g
,

ηm,n,K′+k =
βk

∑n−1
l=1 xql,qn(tn)κ(tm,n − tm,l)

g
,

ηm,n,K′+K+k =
βk

∑n−1
l=1 xql,qn(tn)ακ(|pm.n − pm,l|)

g
.

where

g = ωx′ + β

n−1∑
l=1

xql,qn (tn)(κ(tm,n − tm,l) + ακ(|pm.n − pm,l|))
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The surrogate function in Eqn 3 is derived based on the Jensen’s in-
equality; it bounds −L(µ, β, α) from above and has a clear advan-
tage of decoupling the optimization on ω and β. Moreover, by op-
timizing this surrogate function using the Majorize-Minimization
(MM) algorithm [17], we can attain a global optimum (minimum)
of −L.

Interestingly we can interpret ηm,n,k′ as the probability that the
n-th click event occurs due to the k′-th basic feature, ηm,n,K′+k as
the infectivity of all historical click events on the n-th click event
of user m with regard to the k-th contextual feature and the tempo-
ral distance, while ηm,n,K′ is the infectivity of all historical click
events on the n-th click event of user m with regard to the k′-th
basic feature and the position distance.

3.1 Learning
We use a variational expectation-maximization (EM) algorithm

[9] to compute the empirical Bayes estimates of the Hawkes hyper-
parameters ω, β, and α in our Hawkes model. As proved in [22],
optimizing the surrogate function g as in Eqn (3) ensures that L
decreases monotonically, thus guarantees that L will converge to a
global optimum. Then by optimizing g, we are able to update ω, β,
and α independently with closed-form solutions. Thus we propose
to optimize the surrogate function as in Eqn (3) instead of the real
likelihood, it iteratively approximates the posterior by fitting the
variational distribution q, and optimizes the corresponding bound
against the parameters ω, β and α independently with closed-form
solutions as follows:

βk =
1

bk

M∑
m=1

Nm∑
n=1

(ηm,n,K′+k + ηm,n,K′+K+k),

ωk′ =
1

c′k

Nm∑
n=1

ηm,n,k′ ,

α =
1∑
k b
′
k

M∑
m=1

Nm∑
n=1

ηm,n,K′+K+k.

Complexity Analysis. The majority of our computation lies in
the estimation of ω, β and α, where we need to calculate a vec-
tor of η for each event/QAC session n. Since feature-related com-
putations such as β

∑n−1
l=1 xql,qn(tn)κ(tm,n − tm,l)), ck′ , bk, b′k,

and αβk
∑n−1

l=1 xql,qn(tn)κ(|pm.n − pm,l|) can be done ahead,
the calculation of η in each iteration has a computational cost of
O(N ∗ (2 ∗K +K′)) only. Based on calculated η, the estimation
procedure for ω, β and α also cost O(N ∗ (2 ∗ K + K′)). No-
tice that N =

∑M
m=1 Nm is the total number of QAC sessions, K

is the size of our proposed contextual features, and K′ is the size
of the basic features employed in this paper. Thus, our algorithm
costs O(N ∗ (K +K′)) in total per iteration, where K � N and
K′ � N can be ensured by controlling by the number of features
we use. Since N is the total number of events/QAC sessions, we
can view the computational cost as linear in the number of QAC
sessions.

4. EXPERIMENTS
In this section, we evaluated our Hawkes model on real-world

data sets, and compared its performance with the following repre-
sentative baselines:
MPC [2, 31]: This MostPopularCompletion method, is a widely
used baseline in Query Auto-Completion, and frequently adopted
as one main feature in many QAC engines. This models utilized
temporal information.

Table 2: Log Predictive Likelihood on Real-world Data
Data set Platform/Model Hawkes RBCM TDCM
OldQAC PC -167.21 -185.37 -208.65
OldQAC Mobile -150.58 -177.95 -195.04
NewQAC PC -137.64 -161.98 -179.72
NewQAC Mobile -122.97 -148.26 -162.40

UBM [11]: This User Browsing Model proposes a number of as-
sumptions on user browsing behaviors, from which the probability
of observing a document can be estimated. It depends on statis-
tical counting of prefix-query pairs, thus unable to predict unseen
prefix-query pairs. This model utilized the spacial information.
BSS [14]: This Bayesian Sequential State model uses a probabilis-
tic graphical model to characterize the document content and de-
pendencies among the sequential click events within a query with
a set of descriptive features. This is a content-aware model, which
can predict unobserved prefix-query pairs. This model utilized both
spacial and temporal information.
TDCM [23]: This is a two-dimensional click model which em-
phasizes two kinds of user behaviors. It consists of two models,
that is, a horizontal model which explains the skipping behavior,
and a vertical model that depicts the vertical examination behavior.
This model takes both the spacial and temporal information of user
clicks into consideration.
RBCM [21]: This is a probabilistic model that solves the query
auto-completion task by capturing three types of relationship be-
tween users’ behaviors at different keystrokes in high-resolution
QAC logs. This model considered both temporal and spacial infor-
mation in user intent understanding.

4.1 Real-world Data
We conducted extensive experiments on two real-world high-

resolution QAC logs that collected from the widely used Yahoo’s
search engine. The first data set, named OldQAC, contains high-
resolution QAC logs from May 2014 to July 2014. The collection
consists of a sample of 7.4 million QAC sessions from about 40,000
users over a 3-month period. The QAC sessions of each user span
from 22 days to 3 months. According to the platform that each
QAC session belongs to, we split the entire dataset into two sub-
sets; one of them is collected from PC users, and it contains 4.6
million QAC sessions, while the other is collected from mobile de-
vice users, and it contains 2.8 million QAC sessions.

The second data set, named NewQAC, is also collected from Ya-
hoo’s search engine. It contains randomly sampled high-resolution
QAC logs from Dec 2014 to Feb 2015. This QAC log contains
8.2 million QAC sessions, where 4.9 million sessions are from PC
users, and the rest 3.3 million QAC sessions are from mobile users.

4.2 Experimental Results
We present the experimental results in the following subsections.

4.2.1 Model Fitness.
We evaluate the fitness of our proposed model on real-world

data, and compare our model with probabilistic approach based
methods, including RBCM and TDCM. All three competing mod-
els are designed to optimize the likelihood that search engine users
click suggestions located at certain slots in each QAC session, which
makes the comparison fair and meaningful. We split the data based
on the time information: the QAC sessions occurred in the first
90% of the time period are used as the training data, while the
remaining 10% are used as the test data. Table 2 shows the log
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Table 3: Performance Comparison of QAC Methods. Boldfaced
results indicate p-value<0.05 compared to MPC. MB stands for the
platform of Mobile.

Data/Platform Hawkes TDCM RBCM MPC UBM BSS
Measured by MRR@Last

OldQAC/PC 0.694 0.592 0.608 0.543 0.441 0.545
OldQAC/MB 0.770 0.685 0.708 0.649 0.431 0.650
NewQAC/PC 0.732 0.602 0.642 0.567 0.501 0.552
NewQAC/MB 0.811 0.691 0.749 0.631 0.482 0.654

Measured by MRR@All
OldQAC/PC 0.612 0.538 0.554 0.464 0.467 0.531
OldQAC/MB 0.671 0.611 0.629 0.564 0.471 0.524
NewQAC/PC 0.664 0.578 0.602 0.522 0.508 0.572
NewQAC/MB 0.754 0.628 0.676 0.592 0.521 0.554

predictive likelihood on sessions falling in the final 10% of the
total time of QAC log data. According to Table 2, Hawkes fits
the real-world data much better than the competing probabilistic
model based QAC methods, including both RBCM and TDCM.
The results show that appropriate modeling of the influence across
different QAC sessions is more important than capturing the rela-
tionship between users’ behaviors within the same QAC session.
RBCM fits the data better than TDCM; this observation shows that
the relationship between users’ behaviors is also useful for the pre-
diction of search engine users’ click choices among all suggestions
under certain prefixes.

4.2.2 Query Auto-Completion.
To evaluate the effectiveness of the proposed model in suggest-

ing users intended queries in each QAC session, we compare the
proposed model with the state-of-the-art QAC algorithms. All com-
pared methods re-rank the suggested queries at each keystroke and
compete to rank the intended query as high as possible. Notice
that among three probabilistic model based QAC methods, our pro-
posed model and TDCM utilize the predicted probability that a
search engine user clicks a suggestion located at a certain slot straight-
forwardly to rank the suggestions with a given prefix, while RBCM
utilizes the relevance model (linear regression) part to rank the sug-
gestion based on employed features, instead of using click proba-
bilities directly. We employ the Mean Reciprocal Rank (MRR), a
widely used measure for evaluating the QAC engine’s performance
[2, 31, 23], as the relevance metric. MRR can be denoted as

MRR =
1

|Q|
∑
q∈Q

1

rankq
,

where Q is the set of queries a user finally submitted, and rankq

denotes the rank of the query q in the suggested query list. Besides
measuring the performance of QAC by MRR, we also perform sig-
nificance tests using paired t-test with 0.05 as the p-value threshold.

Notice that among the suggested query lists of all keystrokes,
those lists that do not contain users’ finally submitted queries are
removed from our experimental analysis. Since our experiments
are conducted on high-resolution QAC data, we report both the av-
erage MRR score of all keystrokes, and the average MRR of the
last keystroke only, since this is the keystroke where the user’s click
occurs. Notice that existing works which didn’t make use of high-
resolution QAC logs usually used the MRR of the last keystroke
to measure their performance. In the following experiments, the
whole dataset is divided evenly into a training set and a test set for
different settings.

Table 3 compares the proposed model with state-of-the-art QAC
algorithms by MRR. We can observe that Hawkes performs the best
among all compared approaches, and outperforms existing QAC

algorithms by over 11%, for all the data sets and different set-
tings. Moreover, significance tests show that the differences be-
tween the proposed model and those baselines are statistically sig-
nificant. The major difference between Hawkes and state-of-the-art
QAC methods is that the proposed model is designed to capture the
influence between users’ click choices in each QAC session from
three aspects: temporal, position, and contextual, while existing
QAC methods generally ignored most or part of such influence.
Thus, such phenomenon demonstrates the effectiveness of making
use of the relationship between users’ click behaviors across differ-
ent QAC sessions in solving the QAC task, appropriate modeling
of such relationships makes the proposed model significantly better
than those alternative baselines which fail to utilize such relation-
ships. Besides our proposed model, RBCM and TDCM perform
better than the rest of existing QAC algorithms, which we attribute
to the usage of high-resolution QAC logs. Here RBCM obtains
a better result than TDCM, which may attribute to the modeling
of the relationship between users’ behaviors within the same QAC
session. BBS outperforms UBM since it adopts the content-aware
relevance model. MPC performs the worse, since it pays little at-
tention to users’ behaviors in QAC logs. By comparing with the
performance using all the keystrokes and last keystroke only, we
find that the advantages of the proposed model are ever more sig-
nificant when measured by MRR@All. It indicates that the pro-
posed model can recommend user intended queries higher with less
keystrokes. The advantage of the proposed model on all the data
sets and different settings also shows the robustness of the proposed
model and the consistency of its improvement.

4.2.3 Strategy Selection.
In the following, we explore how different factors utilized in

our model, including temporal, spacial, and contextual, contribute
to the influence between click events in different QAC sessions.
Since all three factors are critical in modeling the influence be-
tween users’ clicks across different QAC sessions, and they closely
collaborate in such influence modeling, we design this series of ex-
periments to testify the absence of which factor can result in the
greatest loss in the modeling of influence between clicks, instead
of evaluate the effect of each factor in influence modeling alone.
In the following experiments, we compare the proposed model us-
ing all three factors with those using only two factors among them.
Those alternative solutions include:
T & C: This model utilizes both temporal and contextual factors in
modeling the influence between the click events in different QAC
sessions. The spacial factors is not utilized in this model.
S & C: This model utilizes both spacial and contextual factors in
modeling the influence between the click events in different QAC
sessions. The temporal factors is not utilized in this model.
T & S: This model utilizes both temporal and spacial factors in
modeling the influence between the click events in different QAC
sessions. The contextual factors is not utilized in this model.
Also, we denote the Hawkes model that utilizes all three factors,
i.e., temporal, spacial, and contextual, as T & S & C. Table 4 com-
pares the performance of the proposed model with above alterna-
tive solutions in solving the query auto-completion task measured
by MRR.

According to Table 4, T & S & C outperforms all three alter-
native solutions, which illustrates that all our utilized factors have
a positive contribution to the modeling of influence between the
clicks in different QAC sessions. Among all three alternative solu-
tions, T & S performs the worst, which shows that contextual data
play the most important role in capturing the influence between
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Figure 2: Coefficient Learning of Contextual Features. The Y axis (β) denotes the average value of the learned coefficients of
features characterized by different types. These average values are scaled to the range of [0, 1] to clarify the comparison of relative
importance of different features. Here In Figure (a), features are categorized by the distance between two queries when issued. In
Figure (b), features are categorized by whether the co-occurrence of two issued queries are counted with the temporal order taken
into consideration or not. In Figure (c), features are categorized by the time range that the co-occurrence of queries are counted.

Table 4: Performance Comparison of Hawkes that Captures
Influence of Different Factors

Data set T & S & C T & C S & C T & S
Measured by MRR@Last

OldQAC/PC 0.694 0.658 0.632 0.611
OldQAC/MB 0.770 0.740 0.727 0.720
NewQAC/PC 0.732 0.711 0.691 0.652
NewQAC/MB 0.811 0.798 0.775 0.761

Measured by MRR@All
OldQAC/PC 0.612 0.588 0.570 0.559
OldQAC/MB 0.671 0.649 0.638 0.634
NewQAC/PC 0.664 0.646 0.625 0.611
NewQAC/MB 0.754 0.719 0.698 0.682

click events. Such results can imply that, when provided with a
set of suggestions, a user makes the click choice mainly based on
his/her current search intent, which we believe is captured by our
proposed contextual features. Meanwhile, T & C performs the best
among all three alternative solutions, which illustrates that the spa-
tial distance between users’ clicks is the weakest signal in influence
modeling. Such phenomenon shows that search engine users are
not likely to take the slot where a suggestion is located as the top
priority when they make a click decision. S & C performs worse
than T & C, which emphasizes that instant situation also play a
very important role in users’ click choices. Although the temporal
distance between click events alone does not influence users’ click
decision given a set of suggestions, it plays a very important role
in understanding users’ instant intent when works jointly with con-
textual data, which makes it more powerful in the proposed model
than the position information.

4.2.4 Coefficient Learning of Contextual Features.
This series of experiments estimate the coefficients in our pro-

posed model, and compare the difference of coefficients of dif-
ferent categories of features. Figure 2(a) shows the coefficients
of features that characterized by v, the distance between two se-
quential queries. From Figure 2(a), we can find that with larger v,
the coefficients of corresponding features shapely decrease. Such
phenomenon implies that the relationship between two queries be-
comes significantly weaker with respect to the increase of distance
that those two queries are issued in historical log. The coefficient of
the feature that counts the co-occurrence of adjacent queries is sig-
nificantly larger than the coefficients of rest features, which high-
lights the closeness of the relationship between queries that search

engine users issue sequentially. Figure 2(b) shows the coefficients
of features that characterized by the temporal order of the sequen-
tial queries that users issue. As introduced in Table 1 in above
sections, "–>" indicates those features that take the temporal or-
der of queries into consideration, while "<–>" indicates features
that do not consider the temporal order information. From Figure
2(b), we can find that the coefficient of those features that count
the co-occurrence of queries following the same temporal order is
larger than that of features counting the co-occurrence of queries
without taking the temporal order into consideration. We may con-
clude that search engine users do have some preference on the tem-
poral order of queries they submit. Figure 2(c) shows the coeffi-
cients of features that characterized by the time range where the
co-occurrence of queries occur. From Figure 2(c), we can find that
when co-occurrence of queries in the latest 15 minutes is the most
powerful signal for the prediction of the next query a user to issue
given his/her current submitted query. Along with the enlargement
of the time range, the signal becomes weaker. Such phenomenon
may due to the fact that users’ search intent changes from time to
time. Given the same proceeding issued query, search engine users’
click choices can vary with respect to different periods.

4.2.5 Case Study of Query Auto-Completion.
Now we show a few examples that illustrate how the proposed

model recommends users queries that better satisfy user intent by
capturing the influence between users’ click behaviors across dif-
ferent QAC sessions. Figure 3 shows how the proposed model and
RBCM, which performs the best among all state-of-the-art QAC
methods in our experiments, rank the suggestions given various
prefixes in a different way. The example presented in this figure
is a QAC session where a user finally submitted “star wars”, which
is the user’s intended query in this session. From Figure 3, we
can find that the proposed model generally ranks users’ intended
queries higher than RBCM, especially at keystrokes with shorter
prefixes. For example, with the prefix “st”, Hawkes ranks the in-
tended query at the position 1 while RBCM ranks it at the position
3. Although RBCM already utilizes the user’s preference of the
clicked queries at the last keystroke to improve their rankings at
shorter keystrokes in the future by modeling the relationship be-
tween users’ behaviors at different keystrokes, this method is still
not sure about the user’s specific intent in the current QAC session
given a relatively short prefix, since queries such as "staples" and
"stubhub" are also submitted frequently in the past. On the other
hand, Hawkes jointly utilizes the temporal, spacial, and contextual
factors in modeling the influence between users’ suggestion click

137



star wars #1 
 
starbucks.com #2 
 
stardoll #3 
 
star wars the old  
republic #5 
 
starfall.com #4 
 
star tribune #6 
 
star alliance #7 
 
starbucks menu #8 
 
starbucks locations #9 
 
starwood hotels #10 

staples.com #2 
 
star wars #1 
 
starbucks #3 
 
state farm #4 
 
stardoll #5 
 
staples office supply #8 
 
staple locations #7 
 
starfall.com #6 
 
 
starbucks locations #9 
 
star tribune #10 

star wars #1 
 
star wars the old republic #4 
 
star wars episode 7 #5 
 
star trek #2 
 
star trek into darkness #6 
 
star tribune #3 
 
star furniture #7 
  
star spangled banner #9 
 
 
star magazine #8 
 
star ledger #10 

Timeline 

u 

s| 

staples #1 
 
super bowl #2 
 
sam’s club #3 
 
sear #4 
 
sports #6 
 
southwest #5 
 
sprint #7 
 
southwest 
airlines #8 
 
spirit airlines #9 
 
stubhub #10 

st| 

staples #2 
 
stubhub #3 
 
star wars #1 
 
starbuck #4 
 
state farm #5 
 
stardoll #7 
 
study island #6 
 
starfall #8 
 
 
stream #9 
 
straight talk #10 

sta| star| star | 

Figure 3: Case Study: The position of listed queries from top
to down shows their rankings predicted by RBCM; the num-
ber tagged with # behind each query shows its ranking given
by the proposed model. The yellow box highlights the user’s
intended query; the green box highlights queries satisfy similar
user intent. Note that “|” denotes the cursor.

events, which can successfully understand this user’s instant intent
in the current QAC session. Since in the last QAC session, the user
submitted the query "science fiction movie", based on the generated
contextual features, we can guess that “star wars” probably satisfies
his/her current intent given the entered prefix. Therefore, the pro-
posed model ranks “star wars” at the top position. We also notice
that queries of similar intent, such as “star wars the old republic”
and “star wars episode 7” are ranked lower by our proposed model
than by RBCM, which may due to that those queries are rarely is-
sued in the history, which results in a low co-occurrence of those
queries with the query "science fiction movie". Thus the proposed
contextual features do not work under such situation. Meanwhile,
we find that the suggestion "star trek" are ranked at a higher posi-
tion by the proposed method than that by RBCM, since "star trek"
are also closely related to "science fiction movie", and it is more
popular than queries “star wars the old republic” and “star wars
episode 7”. Thus we can conclude that appropriate modeling of
influence between users’ click behaviors in different QAC sessions
is critical for predicting users’ instant intent given short prefixes
under the current QAC session.

5. RELATED WORK
Hawkes Processes Our proposed model is closely related to point
processes, which have been used to model social networks [4] and
natural events [40]. People find self-exciting point processes nat-
urally suitable to model continuous-time events where the occur-
rence of one event can affect the likelihood of subsequent events
in the future. One important self-exciting process is Hawkes pro-
cess, which is first used to analyze earthquakes [26, 40], and then
widely applied to many different areas, such as market modeling
[12, 1], crime modeling [33], terrorist [28], conflict [36], scholarly
literature [35, 25], and viral videos on the Web [7]. To solve such
models, an EM algorithm is generally adopted to estimate the max-
imum likelihood of Hawkes process [20].
Query Auto-Completion (QAC) The main objective of QAC is to
predict users’ intended queries and assist them formulate a query
while typing. The most popular QAC algorithm is to suggest com-
pletions according to their past popularity. Generally, a popularity
score is assigned to each query based on the frequency of the query
in the query log from which the query database was built. This
simple QAC algorithm is called MostPopularCompletion (MPC),
which can be regarded as an approximate maximum likelihood es-
timator [2].

Several QAC methods [2, 32, 31, 34, 5] were proposed to ex-
tend MPC from various aspects. Bar-Yossef and Kraus [2] intro-
duced the context-sensitive QAC method by treating users’ recent
queries as context and taking into account the similarity of QAC
candidates with this context for ranking. But there is no consen-
sus of how to optimally train the relevance model. Shokouhi [31]
employed learning-based strategy to incorporate several global and
personal features into the QAC model. However, these methods
only exploit the final submitted query or simulate the prefixes of
the clicked query, which do not investigate the users’ interactions
with the QAC engine.

In addition the above models, there are several studies address-
ing different aspects of QAC. For example, [32, 34] focused on the
time-sensitive aspect of QAC. Other methods studied the space ef-
ficiency of index for QAC [3, 16]. Duan and Hsu [10] addressed
the problem of suggesting query completions when the prefix is
mis-spelled. Kharitonov et al. [19] proposed two new metrics for
offline QAC evaluation, and [18] investigated user reformation be-
havior for QAC.

The QAC is a complex process where a user goes through a se-
ries of interactions with the QAC engine before clicking on a sug-
gestion. As can be seen from the related work, little attention has
been paid to understand the interactions with the QAC engine. Un-
til recently, Li et al. [23] created a two-dimensional click model
to combine users’ behaviors with the existing learning-based QAC
model. In this paper, we attempt to directly model and leverage the
relationship between users’ behaviors, so as to improve the perfor-
mance of QAC.
Click Models This work is related to click models. In the field
of document retrieval, the main purpose for modeling users’ clicks
is to infer the intrinsic relevance between the query and document
by explaining the positional bias. The position bias assumption
was first introduced by Granka et al. [13], stating that a document
on higher rank tends to attract more clicks. Richardson et al. [29]
attempted to model the true relevance of documents by imposing
a multiplicative factor. Later examination hypothesis is formalized
in [8], with a key assumption (Cascade Assumption) that a user will
click on a document if and only if that document has been exam-
ined and it is relevant to the query. In addition, several extensions
were proposed, such as the User Browsing Model (UBM) [11],
the Bayesian Browsing Model [24], the General Click Model [39]
and the Dynamic Bayesian Network model (DBN) [6]. Despite the
abundance of click models, these existing click models cannot be
directly applied to QAC without considerable modification. The
click model most similar to our work is [38], which models users
clicks on a series of queries in a session. However because of the
main difference between QAC and document retrieval, our model
is very different from [38].

6. CONCLUSION AND FUTURE WORK
We presented a novel Hawkes process based model for QAC by

taking into account the context, temporal and position information.
The model systematically captures the context influence between
query pairs, along with the corresponding temporal and position
influence. We evaluate our proposed methods on two real-world
data in comparison with state-of-the-art methods. Experimental re-
sults show that our method offers a significant better performance
comparing with state-of-the-art methods. The results also demon-
strate that the proposed model can significant improve the perfor-
mance by integrating different factors together. In the future work,
it would be interesting to consider additional information such as
location in the proposed model. Meanwhile, we plan to investigate
alternative models that can be applied to other search tasks.
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