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Abstract

We consider stochastic strongly convex opti-
mization with a complex inequality constraint.
This complex inequality constraint may lead to
computationally expensive projections in algo-
rithmic iterations of the stochastic gradient de-
scent (SGD) methods. To reduce the compu-
tation costs pertaining to the projections, we
propose an Epoch-Projection Stochastic Gradi-
ent Descent (Epro-SGD) method. The proposed
Epro-SGD method consists of a sequence of
epochs; it applies SGD to an augmented objec-
tive function at each iteration within the epoch,
and then performs a projection at the end of each
epoch. Given a strongly convex optimization and
for a total number of T iterations, Epro-SGD re-
quires only log(T ) projections, and meanwhile
attains an optimal convergence rate of O(1/T ),
both in expectation and with a high probabil-
ity. To exploit the structure of the optimization
problem, we propose a proximal variant of Epro-
SGD, namely Epro-ORDA, based on the opti-
mal regularized dual averaging method. We ap-
ply the proposed methods on real-world applica-
tions; the empirical results demonstrate the effec-
tiveness of our methods.

1 INTRODUCTION

Recent years have witnessed an increased interest in adopt-
ing the stochastic (sub)gradient (SGD) methods [1, 3, 21]
for solving large-scale machine learning problems. In each
of the algorithmic iterations, SGD reduces the computa-
tion cost by sampling one (or a small number of) example
for computing a stochastic (sub)gradient. Thus the compu-
tation cost in SGD is independent of the size of the data
available for training; this property makes SGD appealing
for large-scale optimization. However, when the optimiza-
tion problems involve a complex domain (for example a

positive definite constraint or a polyhedron one), the pro-
jection operation in each iteration of SGD, which is used
to ensure the feasibility of the intermediate solutions, may
become the computational bottleneck.

In this paper we consider to solve the following constrained
optimization problem

min
x∈Rd

f(x)

s.t. c(x) ≤ 0,
(1)

where f(x) is β-strongly convex [23] and c(x) is con-
vex. We assume a stochastic access model for f(·), in
which the only access to f(·) is via a stochastic gradi-
ent oracle; in other words, given arbitrary x, this stochas-
tic gradient oracle produces a random vector g(x), whose
expectation is a subgradient of f(·) at the point x, i.e.,
E[g(x)] ∈ ∂f(x), where ∂f(x) denotes the subdifferen-
tial set of f(·) at x. On the other hand we have the full
access to the (sub)gradient of c(·).

The standard SGD method [5] solves Eq. (1) by iterating
the updates in Eq. (2) with an appropriate step size ηt, e.g.,
ηt = 1/(βt)), as below

xt+1 = P{x∈Rd:c(x)≤0} [xt − ηtg(xt)] , (2)

and then returning x̂T =
∑T
t=1 xt/T as the final solution

for a total number of iterations T . Note that PD[x̂] is a
projection operator defined as

PD[x̂] = arg min
x∈D
‖x− x̂‖22. (3)

If the involved constraint function c(x) is complex (e.g., a
polyhedral or a positive definite constraint), computing the
associated projection may be computationally expensive;
for example, a projection onto a positive definite cone over
Rd×d requires a full singular value decomposition (SVD)
operation with time complexity of O(d3).

In this paper, we propose an epoch-based SGD method,
called Epro-SGD, which requires only a logarithmic num-
ber of projections (onto the feasible set), and mean-
while achieves an optimal convergence rate for stochastic



strongly convex optimization. Specifically, the proposed
Epro-SGD method consists of a sequence of epochs; within
each of the epochs, the standard SGD is applied to optimize
a composite objective function augmented by the complex
constraint function, hence avoiding the expensive projec-
tions steps; at the end of every epoch, a projection operation
is performed to ensure the feasibility of the intermediate so-
lution. Our analysis shows that given a strongly convex op-
timization and for a total number of T iterations, Epro-SGD
requires only log(T ) projections, and meanwhile achieves
an optimal rate of convergence at O(1/T ), both in expec-
tation and with a high probability.

To exploit the structure (for example the sparisty) of the
optimization problem, we propose a proximal variant of
the Epro-SGD method, namely Epro-ORDA, which uti-
lizes an existing optimal dual averaging method to solve
the involved proximal mapping. Our analysis shows that
Epro-ORDA similarly requires only a logarithmic number
of projections while enjoys an optimal rate of convergence.

For illustration we apply the proposed Epro-SGD meth-
ods on two real-world applications, i.e., the constrained
Lasso formulation and the large margin nearest neigh-
bor (LMNN) classification. Our experimental results
demonstrate the efficiency of the proposed methods, in
comparison to the existing methods.

2 RELATED WORK

The present work is inspired from the break-through work
in [20], which proposed two novel one-projection-based
stochastic gradient descent (OneProj) methods for stochas-
tic convex optimizations. Specifically the first OneProj
method was developed for general convex optimization; it
introduces a regularized Lagrangian function as

L(x, λ) = f(x) + λc(x)− γ

2
λ2, λ ≥ 0,

then applies SGD to the convex-concave problem
minx∈Bmaxλ≥0 L(x, λ), and finally performs only one
projection at the end of all iterations, where B is a bounded
ball subsuming F = {x ∈ Rd : c(x) ≤ 0} as a subset.

The second OneProj method was developed for strongly
convex optimization. The proposed method introduced an
augmented objective function

F (x) = f(x) + γ ln

(
1 + exp

(
λc(x)

γ

))
, (4)

where γ is a parameter dependent on the total number of
iterations T , and λ is a problem specific parameter [20].
OneProj applies SGD to the augmented objective func-
tion, specifically using a stochastic subgradient of f(x)
and a subgradient of c(x), and then performs a projec-
tion step after all iterations. For a total number T it-

erations, the OneProj method achieves a rate of conver-
gence at O(log T/(βT )), which is suboptimal for stochas-
tic strongly convex optimization.

Several recent works [15, 26] propose optimal methods
with optimal rates of convergence at O(1/T ) for stochas-
tic strongly convex optimization. In particular, the Epoch-
SGD method [15] consists of a sequence of epochs, each of
which has a geometrically decreasing step size and a geo-
metrically increasing iteration number. This method how-
ever needs to project the intermediate solutions onto a fea-
sible set at every algorithmic iteration; when the involved
constraint is complex, the involved projection is usually
computationally expensive. This limitation restricts the
practical applications on large scale data analysis. There-
fore we are motivated to develop an optimal stochastic al-
gorithm for strongly convex optimization but with a con-
stant number of projections.

Another closely related work is the logT-SGD [33] for
stochastic strongly convex and smooth optimization. LogT-
SGD achieves an optimal rate of convergence, while re-
quires to perform O(κ log2 T ) projections, where κ is the
ratio of the smoothness parameter to the strong convexity
parameter. There are several key differences between our
proposed Epro-SGD method and logT-SGD: (i) logT-SGD
and its analysis rely on both the smoothness and the strong
convexity of the objective function; in contrast, Epro-SGD
only assumes that the objective function is strongly convex;
(ii) the number of the required projections in logT-SGD is
O(κ log2 T ), where the conditional number κ can be very
large in real applications; in contrast, Epro-SGD requires
at most log2 T projections.

Besides reducing the number of projections in SGD, an-
other line of research is based on the conditional gradi-
ent algorithms [7, 14, 17, 18, 32]; this type of algorithms
mostly build upon the Frank-Wolfe technique [11], which
eschews the projection in favor of a linear optimization
step; however in general, they require the smoothness as-
sumption in the objective function. On the other hand, [12,
16] extended Frank-Wolfe techniques to stochastic or on-
line setting for general and strongly convex optimizations.
Specifically [16] presents an online/stochastic Frank-Wolfe
(OFW) algorithm with a convergence rate O(1/T 1/3) for
general convex optimization problems, which is slower
than the optimal rate O(1/

√
T ). [12] presents an algorithm

for online strongly convex optimization with an O(log T )
regret bound, implying an O(log T/T ) convergence rate
for stochastic stronlgy convex optimization. This algo-
rithm requires the problem domain to be a polytope, in-
stead of a convex inequality constraint used in this paper;
it also hinges on an efficient local linear optimization or-
acle that amounts to approximately solving a linear opti-
mization problem over an intersection of a ball and and the
feasible domain; furthermore the convergence result only
holds in expectation and is sub-optimal.



3 EPOCH-PROJECTION SGD
ALGORITHM

In this section, we present an epoch-projection SGD
method, called Epro-SGD, for solving Eq. (1) and discuss
its convergence result. Based on a stochastic dual averag-
ing algorithm, we then present a proximal variant of the
proposed Epro-SGD method.

3.1 SETUP AND BACKGROUND

Denote the optimal solution to Eq. (1) by x∗ and its domain
set byD = {x ∈ Rd : c(x) ≤ 0}. Since f(x) is β-strongly
convex [23] and c(x) is convex, the optimization problem
in Eq. (1) is strongly convex. Note that the strong convexity
in f(·) implies that f(x) ≥ f(x∗) + (β/2)‖x − x∗‖2 for
any x. Our analysis is based on the following assumptions:

A1. The stochastic subgradient g(x) is uniformly bounded
by G1, i.e., ‖g(x)‖2 ≤ G1.

A2. The subgradient ∂c(x) is uniformly bounded by G2,
i.e., ‖∂c(x)‖2 ≤ G2 for any x.

A3. There exists a positive value ρ > 0 such that[
min

c(x)=0,v∈∂c(x),v 6=0
‖v‖2

]
≥ ρ. (5)

Remarks Assumptions A1 and A2 respectively impose an
upper bound on the stochastic subgradient of the objective
function f(·) and the constraint function c(·). Assumption
A3 ensures that the projection of a point onto a feasible
domain does not deviate too much from this intermediate
point. Note that Assumption A1 is previously used in [15];
a condition similar to Assumption A3 is used in [20], which
however simply assumes that minc(x)=0 ‖∇c(x)‖2 ≥ ρ,
without considering possible non-differentiability in c(·).

A key consequence of Assumption A3 is presented in the
following lemma.
Lemma 1. For any x̂, let x̃ = arg minc(x)≤0 ‖x− x̂‖22. If
Assumption A3 holds, then

‖x̂− x̃‖2 ≤
1

ρ
[c(x̂)]+, ρ > 0, (6)

where [s]+ is a hinge operator defined as [s]+ = s if s ≥ 0,
and [s]+ = 0 otherwise.

Proof. If c(x̂T ) ≤ 0, we have x̂ = x̃; the inequality in
Eq. (6) trivially holds. If c(x̂T ) > 0, we can verify that
c(x̃T ) = 0, and there exists s ≥ 0 and v ∈ ∂c(x̃T ) such
that x̃T − x̂T + sv = 0 (using duality theory). It follows
that x̂T − x̃T = sv (v 6= 0), and thus x̂T − x̃T is the same
direction as v. It follows that

c(x̂T ) = c(x̂T )− c(x̃T ) ≥ (x̂T − x̃T )>v

= ‖v‖2‖x̂T − x̃T ‖2 ≥ ρ‖x̂T − x̃T ‖2,

where the last inequality uses Assumption A3. This com-
pletes the proof of this lemma.

The result in Lemma 1 is closely related to the polyhe-
dral error bound condition [13, 31]; this condition shows
that the distance of a point to the optimal set of a convex
optimization problem whose epigraph is a polyhedron is
bounded by the distance of the objective value at this point
to the optimal objective value scaled by a constant. For
illustration, we consider the optimization problem

min
x∈Rd

[c(x)]+

with an optimal set as {x ∈ Rd : c(x) ≤ 0}. If c(x̂) > 0,
x̃ = arg minc(x)≤0 ‖x − x̂‖22 is the closest point in the
optimal set to x̂. Therefore, by the polyhedral error bound
condition of a polyhedral convex optimization, if c(x) is a
polyhedral function, there exists a ρ > 0 such that

‖x̂− x̃‖2 ≤
1

ρ

(
[c(x̂)]+ −min

x
[c(x)]+

)
=

1

ρ
[c(x̂)]+.

Below we present three examples in which Assumption
A3 or Lemma 1 is satisfied. Example 1: an affine
function c(x) = c>x − b with ρ = ‖c‖2. Exam-
ple 2: the `1 norm constraint ‖x‖1 ≤ B where ρ =
minx:‖x‖1=B ‖∂‖x‖1‖2 ≥ 1. Example 3: the max-
imum of a finite number of affine functions c(x) =
max1≤i≤m c>i x − bi satisfying Lemma 1 as well as the
polyhedral error bound condition [31].

3.2 MAIN ALGORITHM

To solve Eq. (1) (using Epro-SGD), we introduce an aug-
mented objective function by incorporating the constraint
function as

F (x) = f(x) + λ[c(x)]+. (7)

It is worth noting that the augmented function in Eq. (7)
does not have any iteration-dependent parameter, for exam-
ple the parameter γ in Eq. (4). λ is a prescribed parameter
satisfying λ > G1/ρ, as illustrated in Lemma 2.

The details of our proposed Epro-SGD algorithm is pre-
sented in Algorithm 1. Similar to Epoch-SGD [15], Epro-
SGD consists of a sequence of epochs, each of which has a
geometrically decreasing step size and a geometrically in-
creasing iteration number (Line 9 in Algorithm 1). The up-
dates in every intra-epoch (Line 5 - 6) are standard SGD
steps applied to the augmented objective function F (x)
with x = xkt . Epro-SGD is different from Epoch-SGD
in that the former computes a projection only at the end of
each epoch, while the latter computes a projection at each
iteration. Consequently, when the projection step is com-
putationally expensive (e.g., projecting onto a positive def-
inite constraint), Epro-SGD may require much less compu-
tation time than Epoch-SGD.



Algorithm 1 Epoch-projection SGD (Epro-SGD)
1: Input: an initial step size η1, total number of iterations
T , and number of iterations in the first epoch T1, a La-
grangian multiplier λ (λ > G1/ρ)

2: Initialization: x1
1 ∈ D and k = 1

3: while
∑k
i=1 Ti ≤ T do

4: for t = 1, . . . , Tk do
5: Compute a stochastic gradient g(xkt )
6: Compute xkt+1 = xkt − ηk(g(xkt ) + λ∂[c(xkt )]+)
7: end for
8: Compute x̃kT = PD[x̂kT ], where x̂kT =

∑Tk
t=1 x

k
t /Tk

9: Update xk+1
1 = x̃kT , Tk+1 = 2Tk, ηk+1 = ηk/2

10: Set k = k + 1
11: end while

In Lemma 2, we present an important convergence analy-
sis for the intra-epoch steps of Algorithm 1, which are key
building blocks for deriving the main results in Theorem 1.

Lemma 2. Under Assumptions A1∼A3, if we apply the up-
date xt+1 = xt− η(∇̃f(xt; εt) + λ∇[c(xt)]+) for a num-
ber of T iterations, the following equality holds

E[f(x̃T )]−f(x∗)≤µ
[
η(G2

1 + λ2G2
2)+

E[‖x1 − x∗‖22]

2ηT

]
,

where µ = ρ/(ρ−G1/λ).

Proof. Let F (x) = f(x) + λ[c(x)]+ and denote by Et[X]
the expectation conditioned on the randomness until round
t − 1. It is easy to verify that F (x) ≥ f(x), F (x) ≥
f(x) + λc(x) and F (x∗) = f(x∗). For any x, we have

(xt − x)>∇F (xt) ≤ 1

2η

(
‖x− xt‖22 − ‖x− xt+1‖22

)
+

η

2
‖∇̃f(xt, ξt) + λ∇[c(xt)]+‖22 +

(x− xt)
>(g(xt)−∇f(xt))

≤ 1

2η

(
‖x− xt‖22 − ‖x− xt+1‖22

)
+

η
(
G2

1 + λ2G2
2

)
+ ζt(x),

where ζt(x) = (x− xt)
>(g(xt)−∇f(xt)). Furthermore

by the convexity of F (x), we have

F (xt)− F (x) ≤ 1

2η

(
‖x− xt‖22 − ‖x− xt+1‖22

)
+

η(G2
1 + λ2G2

2) + ζt(x).

Noting that Et[ζt(x)] = 0, taking expectation over ran-
domness and summation over t = 1, . . . , T , we have

1

T
E

[
T∑
t=1

(F (xt)− F (x))

]
= E [F (x̂t)− F (x)]

≤ E[‖x1 − x‖22]

2ηT
+ η(G2

1 + λ2G2
2).

Let B = E[‖x1 − x∗‖22]/ (2ηT ) + η(G2
1 + λ2G2

2). Since
x∗ ∈ D ⊆ B, we have

E [F (x̂t)− F (x∗)] ≤ B. (8)

It follows that

E[f(x̂T ) + λ[c(x̂T )]+] ≤ f(x∗) +B. (9)

If c(x̂T ) ≤ 0, we have x̃T = x̂T . Following from
F (x̃T ) ≥ f(x̃T ) and F (x∗) = f(x∗), we can verify that
E[f(x̂T )] − f(x∗) ≤ B and also E[f(x̂T )] − f(x∗) ≤
ρB/ (ρ−G1/λ) holds.

Next we show that E[f(x̂T )]− f(x∗) ≤ ρB/ (ρ−G1/λ)
holds when c(x̂T ) > 0. From Lemma 1, we have

c(x̂T ) ≥ ρ‖x̂T − x̃T ‖2. (10)

Moreover it follows from ‖∂f(x)‖2 ≤ G1 and f(x∗) ≤
f(x̃T ) that the following inequality holds

f(x∗)− f(x̂T ) ≤ f(x∗)− f(x̃T ) + f(x̃T )− f(x̂T )

≤ G1‖x̂T − x̃T ‖2. (11)

Substituting Eqs. (10) and (11) into Eq. (9), we have

λρE[‖x̂T − x̃T ‖2] ≤ E[f(x∗)− f(x̂T )] +B

≤ G1E[‖x̂T − x̃T ‖2] +B.

By some rearrangement, we have E[‖x̂T − x̃T ‖2] ≤
B/ (λρ−G1). Furthermore we have

E[f(x̃T )]− f(x∗) ≤ E[f(x̃T )− f(x̂T )] + E[f(x̂T )]

−f(x∗) ≤ E[G1‖x̂T − x̃T ‖2] +B ≤ λρ

λρ−G1
B,

where the second inequality follows from ‖∇f(x)‖2 ≤
E‖∇f(x; ε)‖ ≤ G1, and |f(x) − f(y)| ≤ G1‖x − y‖2
for any x,y. This completes the proof of the lemma.

We present a main convergence result of the Epro-SGD al-
gorithm in the following theorem.

Theorem 1. Under Assumptions A1∼A3 and given that
f(x) is β-strongly convex, if we let µ = ρ/(ρ − G1/λ),
G2 = G2

1 + λ2G2
2, and set T1 = 8, η1 = µ/(2β), the total

number of epochs k† in Algorithm 1 is given by

k† =

⌈
log2

(
T

8
+ 1

)⌉
≤ log2

(
T

4

)
, (12)

the solution xk
†+1

1 enjoys a convergence rate of

E[f(xk
†+1

1 )]− f(x∗) ≤
32µ2G2

β(T + 8)
, (13)

and c(xk
†+1

1 ) ≤ 0.



Proof. From the updating rule Tk+1 = 2Tk, we can easily
verify Eq. (12). Since xk

†+1
1 = x̃k

†

T ∈ D, the inequality
c(xk

†+1
1 ) ≤ 0 trivially holds.

Let Vk = µ2G2/
(
2k−2β

)
. It follows that Tk = 2k+2 =

16µ2G2/ (Vkβ) and ηk = µ/
(
2kβ

)
= Vk/

(
4µG2

)
. Next

we show the inequality

E[f(xk)]− f(x∗) ≤ Vk (14)

holds by induction. Note that Eq. (14) implies
E[f(xk+1

1 )]− f(x∗) ≤ 32µ2G2/ (β(T + 8)), due to Vk <
32µ2G2/ (β(T + 8)). Let ∆k = f(xk1)−f(x∗). It follows
from Lemma 5, µ > 1, and G2 > G2

1, the inequality in
Eq. (14) holds when k = 1. Assuming that Eq. (14) holds
for k = k†, we show that Eq. (14) holds for k = k†1 + 1.

For a random variable X measurable with respect to the
randomness up to epoch k† + 1. Let Ek† [X] denote the
expectation conditioned on all the randomness up to epoch
k†. Following Lemma 2, we have

Ek† [∆k†+1] ≤ µ

[
ηk†G

2 +
E[‖xk†1 − x∗‖22]

2ηk†Tk†

]
.

Since ∆k† = f(xk
†

1 ) − f(x∗) ≥ β‖xk†1 − x∗‖22/2 by the
strong convexity in f(·), we have

E[∆k†+1] ≤ µ

[
ηk†G

2 +
E[∆k† ]

ηk†Tk†β

]
= µηk†G

2 +
Vk†µ

ηk†Tk†β
=
Vk†

4
+
Vk†

4
= Vk†+1,

which completes the proof of this theorem.

Remark We compare the obtained main results in Theo-
rem 1 with several existing works. Firstly Eq. (13) implies
that Epro-SGD achieves an optimal boundO(1/T ), match-
ing the lower bound for a strongly convex problem [15].
Secondly in contrast to the OneProj method [20] with a
convergence rate O(log T/T ), Epro-SGD uses no more
than log2(T/4) projections to obtain an O(1/T ) conver-
gence rate. Epro-SGD thus has better control over the
solution for not deviating (too much) from the feasibil-
ity domain in the intermediate iterations. Thirdly com-
pared to Epoch-SGD with its convergence rate bounded by
O
(
8G2

1/ (βT )
)
, the convergence rate bound of Epro-SGD

is only worse by a factor of constant 4µ2G2/G2
1. Partic-

ularly consider a positive definite constraint with ρ = 1,
µ = 2, and λ = 2G1/ρ, we have G2 = 5G2

1 and the bound
of Epro-SGD is only worse by a factor of 80 than Epoch-
SGD. Finally compared to the logT-SGD algorithm [33]
which requires O(κ log2 T ) projections (κ is the condi-
tional number), the number of projections in Epro-SGD is
independent of the conditional number.

The main results in Lemma 2 and Theorem 1 are expected
convergence bounds. In Theorem 2 (proof provided in

Appendix) we show that Epro-SGD also enjoys a high
probability bound under a boundedness assumption, i.e.,
‖x∗ − xt‖2 ≤ D for all t. Note that the existing Epoch-
SGD method [15] uses two different methods to derive its
high probability bounds. Specifically the first method relies
on an efficient function evaluator to select the best solutions
among multiple trials of run; while the second one modi-
fies the updating rule by projecting the solution onto the in-
tersection of the domain and a center-shifted bounded ball
with decaying radius. These two methods however may
lead to additional computation steps, if being adopted for
deriving high probability bounds for Epro-SGD.

Theorem 2. Under Assumptions A1∼A3 and given ‖xt −
x∗‖2 ≤ D for all t. If we let µ = ρ/(ρ − G1/λ), G2 =
G2

1+λ2G2
2, C =

(
8G2

1/β + 2G1D
)

ln(m/ε)+2G1D, and
set T1 ≥ max

(
3Cβ/

(
µG2

)
, 9
)
, η1 = µ/(3β), the total

number of epochs k† in Algorithm 1 is given by

k† =

⌊
log2

(
T

T1
+ 1

)⌋
≤ log2(T/4),

and the final solution xk
†+1

1 enjoys a convergence rate of

f(xk
†+1

1 )− f(x∗) ≤
4T1µ

2G2

β(T + T1)

with a probability at least 1− δ, where m = d2 log2 T e.

Remark The assumption ‖x∗ − xt‖2 ≤ D can be sat-
isfied practically, if we estimate the value of D such that
‖x∗‖2 ≤ D/2, and then project the intermediate solutions
onto ‖x‖2 ≤ D/2 at every iteration. Note that Epoch-
SGD [15] requires a total number of T projections, and
its high probability bound of Epoch-SGD is denoted by
f(xk

†+1
1 )−f(x∗) ≤ 1200G2

1 log(1/δ̃)/ (βT ) with a prob-
ability at lest 1− δ, where δ̃ = δ/ (blog2(T/300 + 1)c).

3.3 A PROXIMAL VARIANT

We propose a proximal extension of Epro-SGD, by exploit-
ing the structure of the objective function. Let the objective
function in Eq. (1) be a sum of two components

f̂(x) = f(x) + g(x),

where g(x) is a relatively simple function, for example a
squared `2-norm or `1-norm, such that the involved proxi-
mal mapping

min
x∈Rd

g(x) +
1

2
‖x− x̂‖22

is easy to compute. The optimization problem in Eq. (1)
can be rewritten as

min
x∈Rd

f(x) + g(x)

s.t. c(x) ≤ 0.
(15)



Denote by x∗ the optimal solution to Eq. (15). We similarly
introduce an augmented objective function as

F (x) = f(x) + λ[c(x)]+ + g(x). (16)

The update of the proximal SGD method for solv-
ing (15) [9, 10, 22] is given by

xt+1 = arg min
x∈D

1

2
‖x− (xt − ηg(xt))‖22 + ηg(x). (17)

If g(x) is a sparse regularizer, the proximal SGD can guar-
antee the sparsity in the intermediate solutions and usually
yields better convergence than the standard SGD. However,
given a complex constraint, solving the proximal mapping
may be computational expensive. Therefore, we consider
a proximal variant of Epro-SGD which involves only the
proximal mapping of g(x) without the constraint x ∈ D.
An instinctive solution is to use the following update in
place of step 6 in Algorithm 1:

xkt+1 =arg min
x∈Rd

1

2
‖x−[

xkt−ηk(g(xkt )+λ∂[c(xkt )]+)
]
‖22+ηkg(x).(18)

Based on this update and using techniques in Lemma 2,
we obtain a similar convergence result (proof provided in
Appendix), as presented in the following lemma [8].
Lemma 3. Under Assumptions A1∼A3 and setting µ =
ρ/ (ρ−G1/λ), by applying the update in Eq. (18) a num-
ber of T iterations, we have

E[f̂(x̃kT )]− f̂(x∗) ≤ µE

[
ηG2 +

‖xk1 − x∗‖22
2ηT

+
g(xk1)− g(xkT+1)

T

]
, (19)

where G2 = (G2
1 + λ2G2

2), and x̃kT denotes the projected
solution of the averaged solution x̂kT =

∑T
t=1 x

k
t /T .

Different from the main result in Lemma 2, Eq. (19) has an
additional term (g(xk1) − g(xkT+1))/Tk; it makes the con-
vergence analysis in Epro-SGD difficult. To overcome this
difficulty, we adopt the optimal regularized dual averaging
(ORDA) algorithm [6] for solving Eq. (16). The details of
ORDA are presented in Algorithm 2. The main conver-
gence results of ORDA are summarized in the following
lemma (proof provided in Appendix).
Lemma 4. Under Assumptions A1∼A3 and setting µ =
ρ/ (ρ−G1/λ), by running ORDA a number of T iterations
for solving the augmented objective (16), we have

E[F (x̂T )− F (x∗)] ≤
4‖x1 − x∗‖22

η
√
T

+
2η(3G1 + 2λG2)2√

T
,

and

E[f̂(x̃T )]− f̂(x∗) ≤ µE

[
4‖x1 − x∗‖22

η
√
T

+

2η(3G1 + 2λG2)2√
T

]
,

Algorithm 2 Optimal Regularized Dual Averaging (ORDA)
1: Input: a step size η, the number iterations T , and the

initial solution x1,
2: Set θt = 2

t+1 , νt = 2
t , γt = t3/2

η and z1 = x1

3: for t = 1, . . . , T + 1 do
4: compute ut = (1− θt)xt + θtzt
5: compute a stochastic subgradient g(xt) of f(x) at

xt and a subgradient of [c(xt)]+

6: let ḡt = θtνt

(∑t
τ=1

g(xτ )+λ∂[c(xτ )]+
ντ

)
7: compute zt+1 = arg minx ḡ

>
t x + θtνtγt+1

2 ‖x −
x1‖22 + g(x)

8: compute xt+1 = arg minx x
>(g(xt) +

λ∂[c(xt)]+) + γt
2 ‖x− ut‖22 + g(x)

9: end for
10: Output: x̂T = xT+2

Algorithm 3 Epoch-projection ORDA (Epro-ORDA)
1: Input: an initial step size η1, total number of iterations
T , and number of iterations in the first epoch T1, a La-
grangian multiplier λ > G1/ρ

2: Initialization: x1
1 ∈ D and k = 1.

3: while
∑k
i=1 Ti ≤ T do

4: Run ORDA to obtain x̂kT = ORDA(xk1 , ηk, Tk)
5: Compute x̃kT = PD[x̂kT ]
6: Update xk+1

1 = x̃kT , Tk+1 = 2Tk, ηk+1 = ηk/
√

2
7: Set k = k + 1
8: end while

where x̃T denotes the projected solution of the final solu-
tion x̂T .

We present a proximal variant of Epro-SGD, namely Epro-
ORDA, in Algorithm 3, and summarize its convergence re-
sults in Theorem 3. Note that Algorithm 2 and the conver-
gence analysis in Lemma 4 are independent of the strong
convexity in f̂(x); the strong convexity is however used
for analyzing the convergence of Epro-ORDA in Theo-
rem 3 (proof provided in Appendix).

Theorem 3. Under Assumptions A1∼A3 and given that
f̂(x) is β-strongly convex, if we let µ = ρ/(ρ − G1/λ)
and G = 3G1 + 2λG2, and set T1 = 16, η1 = µ/β, then
the total number of epochs k† in Algorithm 3 is given by

k† =

⌊
log2

(
T

17
+ 1

)⌋
≤ log2(T/8),

and the final solution xk
†+1

1 enjoys a convergence rate of

E[f̂(xk
†+1

1 )]− f̂(x∗) ≤
68µ2G2

β(T + 17)
,

and c(xk
†+1

1 ) ≤ 0.



4 AN EXAMPLE OF SOLVING LMNN
VIA EPRO-SGD

In this section, we discuss an application of applying the
proposed Epro-SGD to solve a high dimensional distance
metric learning (DML) with a large margin formulation,
i.e., the large margin nearest neighbor (LMNN) classifica-
tion method [30]. LMNN classification is one of the state-
of-the-art methods for k-nearest neighbor classification. It
learns a positive semi-definite distance metric, based on
which the examples from the k-nearest neighbors always
belong to the same class, while the examples from differ-
ent classes are separated by a large margin.

To describe the LMNN method, we first present some nota-
tions. Let (xi, yi), i = 1, 2, · · · , N̂ , be a set of data points,
where xi ∈ Rd and y ∈ Y denote the feature representation
and the class label, respectively. Let A be a positive defi-
nite matrix that defines a distance metric as dist(x1, x2) =
‖x1− x2‖2A = (x1− x2)>A(x1− x2). To learn a distance
metric that separates the examples from different classes by
a large margin, one needs to extract a set of similar exam-
ples (from the same class) and dissimilar examples (from
a different class), denoted by (xj1, x

j
2, x

j
3), j = 1, . . . N ,

where xj1 shares the same class label to xj2 and a different
class from xj3. To this end, for each example xj1 = xi one
can form xj2 by extracting the k nearest neighbors (defined
by an Euclidean distance metric) that share the same class
label to xi, and form xj3 by extracting a set of examples that
have a different class label. Then an appropriate distance
metric could be obtained from the following constrained
optimization problem

min
A

c

N

N∑
j=1

`
(
A, xj1, x

j
2, x

j
3

)
+(1− c)tr(AL)+

µ1

2
‖A‖2F

s.t. A � εI, (20)

where `(A, xj1, x
j
2, x

j
3) = max(0, ‖xj1 − xj2‖2A − ‖x

j
1 −

xj3‖2A + 1) is a hinge loss and c ∈ (0, 1) is a trade-
off parameter. In Eq. (20), A � εI is used as the con-
straint to ensure that Assumption A3 holds. Minimizing
the first term is equivalent to maximizing the margin be-
tween ‖xj1 − xj3‖2A and ‖xj1 − xj2‖2A. The matrix L en-
codes certain prior knowledge about the distance metric;
for example, the original LMNN work [30] defines L as
L =

∑m
l=1 ‖xl1−xl2‖2A/m, where (xl1, x

l
2) are all k-nearest

neighbor pairs from the same class. Other works [19] have
used a weighted summation of distances between all data
pairs L =

∑n
i 6=j wij‖xi − xj‖2A/n(n − 1) or intra-class

covariance matrix [25]. The last term ‖A‖2F /2 is used as
a regularization term and also makes the objective function
strongly convex.

For data sets of very high dimensionality, i.e., d � n,
LMNN in Eq. (20) usually produces a sub-optimal solu-
tion [25], as this formulation does not capture the sparsity

structure of the features. Therefore we add a sparse regu-
larizer and express the formulation below

min
A

c

N

N∑
j=1

`
(
A, xj1, x

j
2, x

j
3

)
+ (1− c)tr(AL)

+
µ1

2
‖A‖2F + µ2‖A‖off

1

s.t. A � εI, (21)

where ‖A‖off
1 =

∑
i 6=j |Aij | is an elmenent-wise `1-norm

excluding the diagonal entries. Note that this sparse regu-
larizer ‖A‖off

1 have been previously used in [25] for a dif-
ferent purpose.

Many standard optimization solvers or algorithms may not
be efficient for solving Eq. (21). Firstly, the optimiza-
tion problem in Eq. (21) can be formulated as a semi-
definite program (SDP); however, general SDP solvers usu-
ally scale poorly with the number of triplets and is not suit-
able for large scale data analysis. Secondly, the gradient de-
cent method presented in [30] requires to project interme-
diate solutions onto a positive definite cone; this operation
invokes expensive singular value decomposition (SVD) for
a large matrix and this limitation restricts the real-world
applications of the gradient descent method. Thirdly, [25]
employs a block coordinate descent (BCD) method to solve
an L1-penalized log-det optimization problem; the BCD
method is not suitable for solving Eq. (21), as the loss func-
tion is not linear in the variable A.

We employ the proposed Epro-SGD algorithm to solve
the LMNN formulation in Eq. (21). Let f(A) =
c
N

∑N
j=1 `(A, x

j
1, x

j
2, x

j
3) + (1 − c)tr(AL) and g(A) =

µ1

2 ‖A‖
2
F + µ2‖A‖off

1 . The positive definite constraint can
be rewritten into an inequality constraint as c(A) = ε −
λmin(A) ≤ 0, where λmin(·) denotes the minimum eigen-
value of the matrix A. We also make the correspondences
Rd → Rd×d, x → A, ‖x‖2 → ‖A‖F , and provide neces-
sary details below in a question-answer form

• How to compute the stochastic gradient of f(A)? First
sample one triplet (xj1, x

j
2, x

j
3) (or a small number

of triplets) and then compute ∇̃f(A; ε) = c[(xj1 −
xj2)(xj1− x

j
2)>− (xj1− x

j
3)(xj1− x

j
3)>] + (1− c)L if

`(‖xj1 − x
j
2‖2A − ‖x

j
1 − x

j
3‖2A + 1) > 0, ∇̃f(A; ε) =

(1− c)L otherwise.

• How to compute the gradient of [c(A)]+ = [ε −
λmin(A)]+? By the theory of matrix analysis, the
subgradient of [c(A)]+ can be computed by ∂c(A) =
−uu> if c(A) > 0, and zero otherwise, where u de-
notes the eigevector ofA associated with its minimum
eigenvalue.

• What is the solution to the following proximal gradi-



ent step?

min
A

1

2
‖A− Āt+1‖2F + η

(µ1

2
‖A‖2F + µ2‖A‖off

1

)
.

The solution can be obtained via a soft-thresholding
algorithm [2].

• What are the appropriate values for β, ρ, r, λ, that are
necessary for running the algorithm? The value of
β = µ1. The value of ρ is minc(A)=0 ‖∇c(A)‖F = 1.
The value of r can be set to

√
2c/µ1. The value

of G2 = 1. The value of G1 can be estimated as
8cR2 + (1 − c)‖L‖F + µ1r + µ2d if we assume
‖xi‖2 ≤ R, i = 1, . . . , n. The value of λ > G1 is
usually tuned among a set of prespecified values.

Finally, we discuss the impact of employing Epro-SGD and
Epro-ORDA method on accelerating the computation for
solving LMNN. Note that at each iteration to compute the
gradient of c(A), we need to compute the minimum eigen-
value and its eigen-vector. For a dense matrix, it usually
involves a time complexity of O(d2). However, by em-
ploying a proximal projection, we can guarantee that the
intermediate solution At is a element-wise sparse solution,
for which the computation of the last eigen-pair can be sub-
stantially reduced to be linear to the number of non-zeros
elements in At.

To analyze the running time compared to the Epoch-SGD
method, let us assume we are interested in an ε-accurate
solution. In the following discussion, we take a particu-
lar choice of λ = 2G1 and suppress the dependence on
constants and only consider dependence on T , G1 and d.
The number of iterations required by Epro-SGD or Epro-
ORDA is Ω

(
G2

1/εµ1

)
. Taking into account the running

time per iteration, the total running time of Epoch-SGD
is Ω

(
G2

1d
3/ (εµ1)

)
and that of Epro-SGD/Epro-ORDA is

Ω
(
G2

1d
2/ (εµ1)

)
. When d is very large, the speed-up can

be orders of magnitude.

5 EXPERIMENTS

In this section, we empirically demonstrate the efficiency
and effectiveness of the proposed Epro-SGD algorithm. We
compare the following four algorithms:

• Stochastic sub-Gradient Descent method (SGD) [27]:
we set the step size ηt = 1/(λt) and SGD achieves a
rate of convergence O(logT/T ), requiring O(T ) pro-
jections for a constrained convex optimization prob-
lem.

• One-Projection SGD method (OneProj) [20]: we set
the step size ηt = 1/(λt) and OneProj achieves a rate
of convergence O(logT/T ), requiring only one pro-
jection for a constrained strongly convex optimization
problem.
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Figure 1: Empirical comparison of the four competing
methods for solving Eq. (22). (1) Left plot: the change
of the objective values with respect to the iteration num-
ber. (2) Right plot: the change of the objective values with
respect to the computation time (in seconds).

• O(logT )-projections SGD method (logT) [33]: we set
the step size ηt = 1/(

√
6L) and logT achieves a rate

of convergence O(1/T ), requiring O(log T ) projec-
tions steps for a constrained strongly convex optimiza-
tion problem.

• the proposed Epro-SGD withO(logT ) number of pro-
jections (Epro): we set the step size ηt = 1/(λt)
and Epro archives a rate of convergence O(1/T ) with
O(log T ) projections steps for a constrained strongly
convex optimization problem.

For illustration, we apply the competing algorithms for
solving the constrained Lasso problem and the Large Mar-
gin Nearest Neighbor Classification (LMNN) in Eq. (21)
respectively. We implement all algorithms using Matlab
R2015a and conduct all simulations on an Intel(R) Xeon(R)
CPU E5-2430 (15M Cache, 2.20 GHz).

5.1 EXPERIMENTS ON THE CONSTRAINED
LASSO FORMULATION

We apply the proposed Epro-SGD algorithm and the other
three competing algorithms to solve the L1-norm con-
strained least squares optimization problem

min
w

1

2N

N∑
i=1

(
xTi w − yi

)2
+ α‖w‖2

s.t. ‖w‖1 ≤ β. (22)

Eq. (22) is an equivalent constrained counterpart of the well
studied Lasso formation [29]. They aim at achieving entry-
wise sparsity in the weight vector w while computing a lin-
ear predictor for regression.

We use the algebra data, a benchmark data from KDD Cup
2010 [28], for the following experiments. Specifically we
use a preprocessed version of the algebra data1 for our sim-
ulations. This preprocessed data set consists of 8, 407, 752

1https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/



samples from two classes, and each of the samples is repre-
sented as a feature feature of dimensionality 20, 216, 830.
In our experiments, we set α = 1 and β = 0.5 for Eq. (22).
We tune the initial step size respectively for each of the
competing algorithms to get the (nearly) best performance;
specifically in this experiments, we set η0 = 0.5 for SGD,
η0 = 0.3 and λ = 0.03 for Epro, η0 = 0.1 for OneProj,
and η0 = 0.1 for LogT.

In the experiments, we respectively run all competing al-
gorithms for 2000 iterations; we then record the obtained
objective values and the corresponding computation time.
The experimental results are presented in Figure 1. The
left plot shows how the objective value is changed with re-
spect to the algorithm iteration. Note that for Eq. (22), the
number of algorithm iterations is equal to the number of
stochastic gradient computation (the access to the subgra-
dient of the objective function). From this plot, we can
observe that after running 2000 iterations, Epro and SGD
attain smaller objective values, compared to OneProj and
LogT; we can also observe that OneProj empirically con-
verges slightly faster than logT. The right plot shows how
the objective value is changed with respect to the com-
putation time. For this experiment, we set the maximum
computation time to 3035 seconds, which is the computa-
tion time required by running Epro for 2000 iterations. We
can observe that Epro attain a smaller objective value, com-
pared to the other three competing method; meanwhile, the
standard SGD and OneProj attain similar objective values,
given a fixed amount of computation time.

5.2 EXPERIMENTS ON THE LMNN
FORMULATION

We apply the four competing algorithms to solve the
LMNN formulation in Eq. (21). We use the Cora data [24]
for the following experiments. Cora consists of 2708 sci-
entific publications exclusively from 7 different categories.
Each publication is represented by a normalized vector of
length 1 and dimensionality 1433. From this data, we
construct 5416 neighbor pairs (NP) by randomly select-
ing 2 publications of the same label; we then construct
16248 non-neighbor (NNT) by randomly selecting 3 non-
neighbor publications (of a different label) for each of the
NPs. Therefore, in each iteration of the SGD-type meth-
ods, we can use a NP and a NNT to construct a stochastic
gradient for the optimization formulation. We set c = 0.5,
µ1 = 10−4, and µ2 = 10−3 in Eq. (21). We terminate the
algorithms when the iteration number is larger than 4, 000
or the relative change of the objective values in two itera-
tions is smaller than 10−8; we also record the obtained ob-
jective values, the required iteration number, and the com-
putation time. Similarly we tune the initial step size re-
spectively for the competing algorithms; specifically, we
set η0 = 4 × 10−8 for SGD, η0 = 10−5 and λ = 0.1 for
Epro, η0 = 5×10−7 for OneProj, and η0 = 10−6 for LogT.
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Figure 2: Empirical comparison of the four competing
methods for solving Eq. (21). (1) Left plot: the change
of the objective values with respect to the iteration num-
ber. (2) Right plot: the change of the objective value with
respect to the computation time.

The experimental results are presented in Figure 2. Simi-
larly in the left plot, we illustrate how the objective value
changes with respect to the iteration number. For the
LMNN formulation in Eq. (21), we can observe that Epro
converges empirically much faster than all three competing
algorithms; in particular, Epro converges after 1024 itera-
tions, while the other 3 algorithms need more iterations. In
the right plot, we illustrate how the objective value changes
with respect to the computation time. We can observe
that Epro converges using a smaller amount of computa-
tion time. specifically, in our experiment Epro converges
with the computation time as 3622 seconds; while the other
three competing algorithms need much more computation
time.

6 CONCLUSIONS

We proposed an epoch-projection based SGD method,
called Epro-SGD, for stochastic strongly convex optimiza-
tion. The proposed Epro-SGD applies SGD on each iter-
ation within its epochs and only performs a projection at
the end of each epoch. Our analysis shows that Epro-SGD
requires only a logarithmic number of projections, while
achieves a guaranteed optimal rate of convergence both in
expectation as well as with high probability. Additionally
we proposed a variant of Epro-SGD based on an existing
dual averaging method, called Epro-ORDA, which exploit
structures of the optimization problems by incorporating
an associated proximal mapping iteratively. For illustra-
tion, we applied the proposed Epro-SGD method for solv-
ing a large margin distance metric learning formulation and
a constrained Lasso formulation respectively with a posi-
tive definite constraint. Our empirical results demonstrate
the effectiveness of the proposed method.
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SUPPLEMENTAL MATERIALS

Lemma 5. [15] If f(x) is β-strongly convex and x∗
denotes the optimal solution to minx∈D f(x). For any
x ∈ D, we have f(x)− f(x∗) ≤ 2G2

1/β.

Proof. From Assumption A1, we have ‖∂f(x)‖2 ≤ G1.
Hence

f(x)− f(x∗) ≤ G1‖x− x∗‖2.

Moreover from the strong convexity in f(·) we have

f(x)− f(x∗) ≥
β

2
‖x− x∗‖22.

From the two inequalities above, we can easily verify that

‖x− x∗‖2 ≤
2G1

β
, f(x)− f(x∗) ≤

2G2
1

β
.

This completes the proof.

Proof of Theorem 2

The proof of Theorem 2 is based on an important result, as
summarized in Lemma 6.

Lemma 6. [20] Assume ‖x∗ − xt‖2 ≤ D for all t. Define
DT =

∑T
t=1 ‖xt − x‖22 and ΛT =

∑T
t=1 ζt(x). We have

Pr

(
ΛT ≤ 4G1

√
DT ln

m

ε
+ 2G1D ln

m

ε

)
+ Pr

(
DT ≤

D2

T

)
≥ 1− ε,

where m = d2 log2 T e and
∑T
t=1 ζt(x) =∑T

t=1(∇f(xt)− g(xt))
>(x− xt).

Proof of Theorem 2 The proof below follows from tech-
niques used in Lemma 2 and Theorem 1. Since F (x) is
β-strongly convex, we have

F (xt)− F (x) ≤ (xt − x)>∇F (xt)−
β

2
‖x− xt‖22.

Combining the above inequality with the inequality in (8)
and taking summation over all t = 1, . . . , T , we have

T∑
t=1

(F (xt)− F (x)) ≤ ‖x1 − x‖22
2η

+ ηT (G2
1 + λ2G2

2)︸ ︷︷ ︸
BT

+

T∑
t=1

ζt(x)− β

2
DT . (23)

We substitute the bound in Lemma 6 into the above in-
equality with x = x∗. We consider two cases. In the first

case, we assume DT ≤ D2/T . As a result, we have

T∑
t=1

ζt(x
∗) =

T∑
t=1

(∇f(xt)− g(xt))
>(x∗ − xt)

≤ 2G1

√
TDT ≤ 2G1D,

which together with the inequality in (23) leads to the
bound

T∑
t=1

(F (xt)− F (x∗)) ≤ 2G1D +BT.

In the second case, we assume

T∑
t=1

ζt(x
∗) ≤ 4G1

√
DT ln

m

ε
+ 4G1 ln

m

ε

≤ β

2
DT +

(
8G2

1

β
+ 4G1

)
ln
m

ε
,

where the last step uses the fact 2
√
ab ≤ a2 + b2. We thus

have

T∑
t=1

(F (xt)− F (x∗)) ≤
(

8G2
1

β
+ 2G1D

)
ln
m

ε
+BT

Combing the results of the two cases, we have, with a prob-
ability 1− ε,

T∑
t=1

(F (xt)− F (x∗)) ≤
(

8G2
1

β
+ 2G1D

)
ln
m

ε

+2G1D +BT,

where C =
(

8G2
1

β + 2G1D
)

ln m
ε + 2G1D. Following the

same analysis, we have

f(x̃T )− f(x∗) ≤
µC

T
+
µ‖x1 − x∗‖22

2ηT
+ µηG2

Let ∆k = f(x1
k)− f(x∗). By induction, we have

∆k+1 ≤
µC

Tk
+

µ∆k

2ηkTkβ
+ µηkG

2

Assume ∆k ≤ Vk , µ2G2

2k−2β
, by plugging the values of

ηk, Tk, we have

∆k+1 ≤
Vk
6

+
Vk
6

+
Vk
6

=
Vk
2

= Vk+1

where we use T1 ≥ max
(

3Cβ
µG2 , 9

)
and Tk ≥

max
(

6µc
Vk
, 18µ

2G2

Vkβ

)
and ηk = Vk

6µG2 = 2µ
2k(3β)

. This com-
pletes the proof of this theorem.



Proof of Lemma 3

To prove Lemma 3, we derive an inequality similar
to Eq. (8); the rest proof of Lemma 3 is similar to that of
Lemma 2.

Corollary 1. Given a β-strongly convex function f̂(x) =
f(x) + g(x), and a sequence {xt} defined by the update
xt+1 = minx

1
2‖x − (xt − ηg(xt))‖22 + ηg(x). Then for

any x, we have

T∑
t=1

[f(xt) + g(xt+1)− f(x)− g(x)]

≤ ‖x− x1‖22
2η

+
η

2

T∑
t=1

‖g(xt)‖22 +

T∑
t=1

(x− xt)
>(g(xt)

−∇f(xt))−
β

2

T∑
t=1

‖x− xt+1‖22.

Corollary 1 can be proved using techniques similar to the
ones in [9] but with extra care on the stochastic gradient.
As a consequence we have

1

T
E

[
T∑
t=1

f̂(xt)− f̂(x)

]

≤ E[‖x− x1‖22]

2ηT
+ η(G2

1 + λG2
2) +

g(x1)− g(xT+1)

T

Proof of Lemma 4

The lemma is a corollary of results in [6] for general convex
optimization. In particular, if we consider the stochastic
composite optimization

F (x) = φ(x) + g(x)

where g(x) is a simple function such that its proximal
mapping can be easily solved and φ(x) is only accessible
through a stochastic oracle that returns a stochastic subgra-
dient g(x). To state the convergence of ORDA for general
convex problems, [6] makes the following assumptions: (i)
E[‖g(x)− Eg(x)‖22] ≤ σ2 and (ii)

φ(y)− φ(x)− (y − x)>∂φ(x) ≤M‖y − x‖2

When ‖∂φ(x)‖2 ≤ G, the first inequality holds σ = G and
the second inequality holds withM = 2G. Applying to the
augmented objective

F (x) = f(x) + λ[c(x)]+ + g(x)

We note that σ = G1 and M = 2(G1 + λG2). Follow the
inequality (26) in the appendix of [6], we obtain that

E[F (xT+2)− F (x∗)] ≤
4‖x1 − x∗‖22

η
√
T

+
2η(σ +M)2√

T

by using the Euclidean distance V (x,y) = 1
2‖x−y‖22 and

their notation τ = 1, and noting that η is the inverse of their
notation c. Then the second inequality is Lemma 4 can be
proved similarly as for Lemma 2.

Proof of Theorem 3

Proof. Recall µ = ρ/(ρ − G1/λ) and G = 3G1 + 2λG2.
Let Vk =

(
µ2G2

)
/
(
2k−2β

)
. By the values of ηk and Tk

we have

Tk = 2k+3 =
32µ2G2

Vkβ
, ηk =

µ

2(k−1)/2β
=
Vk
√
Tk

8µG2
.

Define ∆k = f̂(xk1)− f̂(x∗). We first prove the inequality

E[∆k] ≤ Vk

by induction. It is true for k = 1 because of Lemma 5,
µ > 1 and G2 > G2

1. Now assume it is true for k and we
prove it for k+1. For a random variableX measurable with
respect to the randomness up to epoch k + 1. Let Ek[X]
denote the expectation conditioned on all the randomness
up to epoch k. Following Lemma 2, we have

Ek[∆k+1] ≤ µ
[

2ηkG
2

√
Tk

+
E[4‖xk1 − x∗‖22]

ηk
√
Tk

]
(24)

Since ∆k = f(xk1) − f(x∗) ≥ β‖xk1 − x∗‖22/2 by the
strong convexity, we have

E[∆k+1] ≤ µ

[
2ηkG

2

√
Tk

+
E[8∆k]

ηk
√
Tkβ

]
=

2ηkµG
2

√
Tk

+
Vkµ

ηk
√
Tkβ

=
Vk
4

+
Vk
4

=
Vk
2

where we use the fact ηk/
√
Tk = Vk/(8µG

2) and Tk =
32µ2G2/(Vkβ). Thus, we get

E[f(xk
†+1

1 )]− f(x∗) = E[∆k†+1] ≤ Vk†+1 =
µ2G2

2k†−1β

Note that the total number of epochs satisfies

k†∑
k=1

(Tk + 1) = 16(2k
†
− 1) + k† ≤ T

By some reformulations, we complete the proof of this the-
orem.

Proof of Lemma 6

The proof of Lemma 6 is based on the Bernstein Inequality
for Martingales [4]. We present its main result below for
completeness.



Theorem 4. [Bernstein Inequality for Martingales] Let
X1, . . . , Xn be a bounded martingale difference sequence
with respect to the filtration F = (Fi)1≤i≤n and with
‖Xi‖ ≤ K. Let

Si =

i∑
j=1

Xj

be the associated martingale. Denote the sum of the condi-
tional variances by

Σ2
n =

n∑
t=1

E
[
X2
t |Ft−1

]
,

Then for all constants t, ν > 0,

Pr

[
max

i=1,...,n
Si > t and Σ2

n ≤ ν
]
≤ exp

(
− t2

2(ν +Kt/3)

)
,

and therefore,

Pr

[
max

i=1,...,n
Si >

√
2νt+

√
2

3
Kt and Σ2

n ≤ ν

]
≤ e−t.

Proof of Lemma 6. Define martingale differenceXt = (x−
xt)
>(∇f(xt) − g(xt)) and martingale ΛT =

∑T
t=1Xt.

Define the conditional variance Σ2
T as

Σ2
T =

T∑
t=1

Eξt
[
X2
t

]
≤ 4G2

1

T∑
t=1

‖xt − x‖22 = 4G2
1DT .

Define K = 2G1D. Thus, ‖Xt‖2 ≤ K. We have
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(
ΛT ≥ 2

√
4G2
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√

2Kτ/3

)
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√
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1DT τ +
√
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1DT

)
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(
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√
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1DT τ +
√

2Kτ/3,Σ2
T ≤ 4G2

1DT ,

DT ≤
D2

T

)
+

m∑
i=1
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(
ΛT ≥ 2

√
4G2

1DT τ+

√
2Kτ/3,Σ2

T ≤ 4G2
1DT ,

D2

T
2i−1 < DT ≤

D2

T
2i
)

≤ Pr

(
DT ≤

D2

T

)
+

m∑
i=1

Pr

(
ΛT ≥

√
2× 4G2

1

D2

T
2iτ

+
√

2Kτ/3,Σ2
T ≤ 4G2

1

D2

T
2i
)

≤ Pr

(
DT ≤

D2

T

)
+me−τ ,

where we use the fact ‖xt − x‖22 ≤ D2 for all t and
m = d2 log2 T e, and the last step follows the Bernstein in-
equality for martingales. We complete the proof by setting
τ = ln(m/ε).


