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Abstract—The goal of cross-domain matching (CDM) is to find correspondences between two sets of objects in different
domains in an unsupervised way. CDM has various interesting applications, including photo album summarization where photos
are automatically aligned into a designed frame expressed in the Cartesian coordinate system, and temporal alignment which
aligns sequences such as videos that are potentially expressed using different features. In this paper, we propose an information-
theoretic CDM framework based on squared-loss mutual information (SMI). The proposed approach can directly handle non-
linearly related objects/sequences with different dimensions, with the ability that hyper-parameters can be objectively optimized
by cross-validation. We apply the proposed method to several real-world problems including image matching, unpaired voice
conversion, photo album summarization, cross-feature video and cross-domain video-to-mocap alignment, and Kinect-based
action recognition, and experimentally demonstrate that the proposed method is a promising alternative to state-of-the-art CDM
methods.
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1 INTRODUCTION

Matching/alignment of objects/time-series from dif-
ferent domains is an important task in machine learn-
ing, data mining, and computer vision communities.
Applications include photo album summarization,
cross-feature video and cross-domain video-to-mocap
alignment, activity recognition, temporal segmenta-
tion, and curve matching [1], [2], [3], [4], [5], [6]. In
this paper, we propose a general information-theoretic
cross-domain matching (CDM) framework based on
squared-loss mutual information [7]. In particular, we
address two CDM problems: cross-domain object match-
ing and cross-domain temporal alignment. The difference
between the two CDM problems is subtle. In object
matching the relative ordering within the sets does
not matter, where as in temporal alignment the relative
ordering within each set must be preserved.

Cross-Domain Object Matching (CDOM): The ob-
jective of cross-domain object matching (CDOM) is to
match two sets of objects in different domains. For in-
stance, in photo album summarization, photos are au-
tomatically assigned into a designed frame expressed
in the Cartesian coordinate system (see Figure 5(a)).
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A typical approach of CDOM is to find a mapping
from objects in one domain (photos) to objects in the
other domain (frame) so that the pairwise dependency
is maximized. In this scenario, accurately evaluating
the dependence between objects is the key challenge.

Kernelized sorting (KS) [1] tries to find a mapping be-
tween two domains that maximizes mutual information
(MI) [8] under the Gaussian assumption. However,
since the Gaussian assumption may not be fulfilled
in practice, this method (which we refer to as KS-MI)
tends to perform poorly. To overcome the limitation
of KS-MI, Quadrianto et al. [2] proposed using the
kernel-based dependence measure called the Hilbert-
Schmidt independence criterion (HSIC) [9] for KS. Since
HSIC is a distribution-free independence measure,
KS with HSIC (which we refer to as KS-HSIC) is
more flexible than KS-MI. However, HSIC includes
the Gaussian kernel width as a tuning parameter, and
its choice is crucial in obtaining desired performance
(see also [10]).

In this paper, we propose an alternative CDOM
method that can naturally address the model selection
problem. The proposed method, called least-squares
object matching (LSOM), employs squared-loss mutual
information (SMI) [7] as the dependence measure. An
advantage of LSOM is that cross-validation (CV) with
respect to the SMI criterion is possible. Thus, all the
tuning parameters such as the Gaussian kernel width
and the regularization parameter can be objectively
determined by CV. Through experiments on image
matching, unpaired voice conversion, and photo al-
bum summarization tasks, LSOM is shown to be a
promising alternative to CDOM, outperforming com-
peting methods.
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Cross-Domain Temporal Alignment (CDTA): Tem-
poral alignment of sequences is an important prob-
lem with many practical applications such as speech
recognition [11], [12], activity recognition [4], tempo-
ral segmentation [5], curve matching [6], chromato-
graphic and micro-array data analysis [13], synthesis
of human motion [14], and temporal alignment of
human motion [3], [15].

Dynamic time warping (DTW) is a classical temporal
alignment method that aligns two sequences by min-
imizing the pairwise distance [11], [12] between sam-
ples (e.g., under the Euclidean, squared Euclidean, or
Manhattan distance measures). An advantage of DTW
is that the minimization can be efficiently carried out
by dynamic programming (DP). [16]. However, due to
the typical fixed sample-wise notion of distance, DTW
may not be able to find a good alignment where two
signals are related in complex ways (e.g., a video
and negative of the video are perceptually similar
but would result in large sample-to-sample distance
and DTW score). Moreover, DTW cannot handle se-
quences with different dimensions (e.g., video to au-
dio alignment), which limits the range of applications
significantly. Even if the dimensionality is the same,
it is not clear which distance measure is the most
appropriate for a given application.

To overcome the weaknesses of DTW, canonical time
warping (CTW) was introduced in [3]. CTW performs
sequence alignment in a common latent space found
by canonical correlation analysis (CCA) [17]. Thus,
CTW can naturally handle sequences with different
dimensions. However, CTW can only deal with lin-
ear subspace projections, and it is difficult to opti-
mize model parameters, such as the regularization
parameter used in CCA and the dimensionality of
the common latent space. To handle non-linearity,
dynamic manifold temporal warping (DMTW) was re-
cently proposed in [4]. DMTW first projects original
data onto a one-dimensional non-linear manifold and
then finds an alignment on this manifold using DTW.
Although DMTW is highly flexible by construction,
its performance depends heavily on the choice of the
non-linear transformation and, moreover, it implicitly
assumes the smoothness of sequences.

In this paper, we propose a novel information-
theoretic CDTA method based on dependence max-
imization. Our method, which we call least-squares
dynamic time warping (LSDTW), employs SMI as a
dependency measure. Our method can naturally deal
with non-linearity and non-Gaussianity in data and
CV is available for model selection. Furthermore,
LSDTW does not require strong assumptions on the
topology of the latent manifold (e.g., smoothness).
Thus, LSDTW is expected to perform well in a broader
range of applications. Through experiments on syn-
thetic data, video sequence alignment, and Kinect
action recognition tasks, LSDTW is shown to be a
promising alternative to existing temporal alignment

methods.
Preliminary version of this work appeared in [18]

which only focused on SMI-based CDOM. In this jour-
nal version, we further explore SMI-based CDTA and
provide a more extensive experimental evaluation.

2 SQUARED-LOSS MUTUAL INFORMATION

We first review squared-loss mutual information
(SMI) [7].

SMI is defined and expressed as

SMI =
1

2

∫∫ (
p(x,y)

p(x)p(y)
− 1

)2

p(x)p(y)dxdy

=
1

2

∫∫ (
p(x,y)

p(x)p(y)

)
p(x,y)dxdy − 1

2
. (1)

Note that SMI is the Pearson divergence [19] from
p(x,y) to p(x)p(y), while the ordinary MI is
the Kullback-Leibler divergence [20] from p(x,y) to
p(x)p(y). SMI is non-negative and takes zero if and
only if x and y are independent, as the ordinary MI.

SMI cannot be directly computed since it contains
unknown densities p(x,y), p(x), and p(y). Here, we
briefly review an SMI estimation method called least-
squares mutual information (LSMI) [7].

Suppose that we are given n independent and iden-
tically distributed (i.i.d.) paired samples {(xi,yi)}ni=1

drawn from a joint distribution with density p(x,y).
A key idea of LSMI is to directly estimate the density
ratio,

r(x,y) =
p(x,y)

p(x)p(y)
,

without going through density estimation of p(x,y),
p(x), and p(y).

In LSMI, the density ratio function r(x,y) is directly
modeled by the following linear-in-parameter model:

rα(x,y) =

b∑
`=1

α`ϕ`(x,y) = α>ϕ(x,y), (2)

where b is the number of basis functions,
α = (α1, . . . , αb)

> are parameters, ϕ(x,y) =
(ϕ1(x,y), . . . , ϕb(x,y))> are basis functions, and >

denotes the transpose. Here, we use the product kernel
of the following form for b = n as basis functions:

ϕ`(x,y) = K(x,x`)L(y,y`),

where K(x,x′) and L(y,y′) are reproducing kernels
for x and y. In this paper, we use the Gaussian kernel.

The parameters α are estimated so that the follow-
ing squared-error J is minimized:

J(α) =
1

2

∫∫
(r(x,y)− rα(x,y))2p(x)p(y)dxdy

= C −
∫
rα(x,y)p(x,y)dxdy

+
1

2

∫∫
rα(x,y)2p(x)p(y)dxdy,
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where we use r(x,y)p(x)p(y) = p(x,y) and C is a
constant.

By using an empirical approximation, the parame-
ter α in the model rα(x,y) is learned as follows:

α̂ = argmin
α

[
1

2
α>Ĥα− ĥ>α+

λ

2
α>α

]
, (3)

where a regularization term λα>α/2 is included for
avoiding overfitting, and

Ĥ =
1

n2

n∑
i,j=1

ϕ(xi,yj)ϕ(xi,yj)
>

=
1

n2
(KK>) ◦ (LL>),

ĥ =
1

n

n∑
i=1

ϕ(xi,yi)

=
1

n
(K ◦L) 1n,

where ◦ denotes the Hadamard product (a.k.a. the
element-wise product) and 1n = [1, . . . , 1]> ∈ Rn.

Differentiating the objective function in Eq.(3) with
respect to α and equating it to zero, we can obtain an
analytic-form solution:

α̂ = (Ĥ + λIb)
−1ĥ.

Given a density ratio estimator r̂ = rα̂, SMI can be
simply approximated as

ŜMI =
1

2
α̂>ĥ− 1

2
. (4)

Model selection: In order to determine the kernel
parameter and the regularization parameter λ, cross-
validation (CV) is available for the SMI estimator:
First, the samples {(xi,yi)}ni=1 are divided into K
disjoint subsets {Sk}Kk=1, Sk = {(xk,i,yk,i)}nk

i=1 of (ap-
proximately) the same size, where nk is the number
of samples in the subset Sk. Then, an estimator α̂Sk is
obtained using {Sj}j 6=k, and the approximation error
for the hold-out samples Sk is computed as

J
(K-CV)
Sk =

1

2
α̂>SkĤSkα̂Sk − ĥ

>
Skα̂Sk ,

where, for [KSk ]ij = K(xi,xk,j), [LSk ]ij = L(yi,yk,j)
i = 1, . . . , n, j = 1, . . . , |Sk|,

ĤSk =
1

n2k
(KSkK

>
Sk) ◦ (LSkL

>
Sk),

ĥSk =
1

nk
(KSk ◦LSk) 1nk

.

This procedure is repeated for k = 1, . . . ,K, and its
average J (K-CV) is taken as

J (K-CV) =
1

K

K∑
k=1

J
(K-CV)
Sk .

We compute J (K-CV) for all model candidates, and
choose the model that minimizes J (K-CV).

3 CROSS-DOMAIN OBJECT MATCHING
WITH SMI
In this section, we propose a CDOM method called
least-squares object matching (LSOM).

3.1 Overview of Least-Squares Object Matching
The goal of CDOM is, given two sets of samples of the
same size, {xi}ni=1 and {yi}ni=1, to find a mapping that
well “matches” them. Note that the dimensionality of
x and y can be different.

Let π be a permutation function over {1, . . . , n},
and let Π be the corresponding permutation indicator
matrix, i.e.,

Π ∈ {0, 1}n×n, Π1n = 1n, and Π>1n = 1n,

where 1n is the n-dimensional vector with all ones.
Let us denote the samples matched by a permuta-

tion π by
{(xi,yπ(i))}ni=1.

The optimal permutation, denoted by Π∗, can be
obtained as the maximizer of the SMI between the two
sets X = [x1, . . . ,xn] and YΠ = [yπ(1), . . . ,yπ(n)]:

Π∗ := argmax
Π

SMI(X,YΠ). (5)

Based on Eq.(5), we develop the following iterative
algorithm for optimizing Π:

(i) Initialization: Initialize the alignment matrix Π.
(ii) Dependence estimation: For the current Π, ob-

tain an SMI estimator ŜMI(X,YΠ).
(iii) Dependence maximization: Given an SMI es-

timator ŜMI(X,YΠ), obtain the maximum
alignment Π.

(iv) Convergence check: The above (ii) and (iii)
are repeated until Π fulfills a convergence
criterion.

We call this approach least-squares object matching
(LSOM).

3.2 Dependence Estimation
In dependence estimation, we compute Eq.(4) with X
and YΠ:

ŜMI(X,YΠ) =
1

2
α̂>ΠĥΠ −

1

2
, (6)

where

α̂Π = (ĤΠ + λIn)−1ĥΠ,

ĤΠ =
1

n2
(KK>) ◦ (Π>LL>Π),

ĥΠ =
1

n

(
K ◦ (Π>LΠ)

)
1n.

Then, plugging ĥΠ into Eq.(6), we get

ŜMI(X,YΠ) =
1

2n
α̂>Π

(
K ◦ (Π>LΠ)

)
1n −

1

2

=
1

2n
tr
(
Π>LΠÂΠK

)
− 1

2
,
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where Â is the diagonal matrix with diagonal ele-
ments given by α̂. Note that we used Eq.(73) and
Eq.(75) in [21] for obtaining the above SMI expression.
Note, we use the model selection presented in Section
2.

3.3 Dependence Maximization
Dependence maximization of LSOM is formulated as
follows:

max
Π

ŜMI(X,YΠ).

Since this optimization problem is in general NP-
hard, we simply use the same optimization strategy
as kernelized sorting [2] (see also Section 5.1.2), i.e.,
for the current Πold, the solution is updated as

Πnew = (7)

(1− η)Πold + η argmax
Π

tr
(
Π>LΠoldÂΠoldK

)
.

where 0 < η ≤ 1 is a step size. The second term is
a linear assignment problem (LAP) [22], which can be
efficiently solved by using the Hungarian method [22].
In this paper, a C++ implementation of the Hungarian
method provided by Cooper1 was used for solving
Eq.(7); then Π is repeatedly updated by Eq.(7) until
convergence.

Initialization: In this iterative optimization proce-
dure, the choice of the initial permutation matrix is
critical to obtain a good solution. Quadrianto et al. [2]
proposed a HSIC-based initialization scheme. HSIC is
a kernel-based dependence measure given as follows
[9]:

HSIC(X,Y ) = tr(K̄L̄),

where K̄ = ΓKΓ and L̄ = ΓLΓ are the centered
kernel matrices for x and y, respectively. Note that
smaller HSIC scores mean that X and Y are closer
to be independent. In the HSIC-based initialization
scheme, the alignment that maximizes HSIC between
X and Y is used.

Suppose that the kernel matrices K̄ and L̄ are rank
one, i.e., for some f and g, K̄ and L̄ can be expressed
as K̄ = ff> and L̄ = gg>. Then HSIC can be written
as

HSIC(X,YΠ) = ‖f>Πg‖2. (8)

The initial permutation matrix is determined so that
Eq.(8) is maximized. According to Theorems 368 and
369 in [23], the maximum of Eq.(8) is attained when
the elements of f and Πg are ordered in the same
way. That is, if the elements of f are ordered in
the ascending manner (i.e., f1 ≤ f2 ≤ · · · ≤ fn),
the maximum of Eq.(8) is attained by ordering the
elements of g in the same ascending way. However,
since the kernel matrices K̄ and L̄ may not be rank

1. http://mit.edu/harold/www/code.html

one in practice, the principal eigenvectors of K̄ and
L̄ were used as f and g in [2]. We call this eigenvalue-
based initialization.

4 CROSS DOMAIN TEMPORAL ALIGNMENT
VIA SMI
Next, we propose cross-domain temporal alignment
(CDTA) based on SMI [7], [24]. The key difference
between temporal alignment and object matching is
that sample ordering within each set must be strictly
preserved in temporal alignment, as that accounts for
the temporal order of samples.

4.1 Overview of Least-Squares Dynamic Time
Warping (LSDTW)
Let X = [x1,x2, . . . ,xnx

] and Y = [y1,y2, . . . ,yny
] be

sequences, represented by ordered samples xi ∈ Rdx
and yi ∈ Rdy , from different domains. Our goal is
to find temporal alignment such that the statistical
dependency between two sequences of samples is
maximized. Note that nx and dx can, in general, be
different from ny and dy.

Let πx and πy be alignment functions over
{1, . . . , nx} and {1, . . . , ny}, and let Π be the corre-
sponding alignment matrix:

Π := [πx πy]> ∈ R2×m,

πx := [πx
1 , . . . , π

x
m]> ∈ {1, . . . , nx}m×1,

πy := [πy
1 , . . . , π

y
m]> ∈ {1, . . . , ny}m×1,

where m is the number of indexes needed to align
the sequences and > denotes the transpose. Π needs
to satisfy the following constraints:
• Boundary condition: [πx

1 πy
1 ]> = [1 1]> and

[πx
m πy

m]> = [nx ny]>.
• Continuity condition: πx

t −πx
t−1 ∈ {0, 1} and πy

t −
πy
t−1 ∈ {0, 1}.

Note that the continuity condition implies monotonic-
ity: t1 ≥ t2 ⇒ πx

t1 ≥ π
x
t2 , π

y
t1 ≥ π

y
t2 .

Let us denote the aligned sequences by using πx

and πy as

Xπx = [xπx
1
,xπx

2
, . . . ,xπx

m
],

Yπy = [yπy
1
,yπy

2
, . . . ,yπy

m
].

Then, the optimal alignment, denoted by Π∗, is de-
fined as the maximizer of SMI between the two se-
quences Xπx and Yπy . The optimization problem of
LSDTW is defined as

Π∗ := argmax
Π

SMI(Xπx ,Yπy). (9)

Based on Eq.(9), we develop the following iterative
algorithm for estimating Π:

(i) Initialization: Initialize the alignment matrix Π.
(ii) Dependence estimation: For the current Π, ob-

tain an SMI estimator ŜMI(Xπx ,Yπy).
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(iii) Dependence maximization: Given an SMI esti-
mator ŜMI(Xπx ,Yπy), obtain the maximum
alignment Π.

(iv) Convergence check: (ii) and (iii) are repeated
until Π fulfills a convergence criterion.

We call this method as least-squares dynamic time warp-
ing (LSDTW).

4.2 Dependence Estimation
In dependence estimation of LSDTW, we compute
Eq.(4) from Xπx and Yπy as

ŜMI(Xπx ,Yπy) =
1

2
α̂>ΠĥΠ −

1

2

=
1

2m

m∑
i=1

rα̂Π
(xπx

i
,yπy

i
)− 1

2
, (10)

where

rα̂Π
(x,y) = α̂>Πϕ(x,y),

α̂Π = (ĤΠ + λIn)−1ĥΠ,

ĤΠ,`,`′ :=
1

m2

m∑
i=1

m∑
j=1

K(xπx
i
,xπx

`
)L(yπy

j
,yπy

`
)

×K(xπx
i
,xπx

`′
)L(yπy

j
,yπy

`′
),

hΠ,` :=
1

m

m∑
i=1

K(xπx
i
,xπx

`
)L(yπy

i
,yπy

`
).

ϕ(x,y) is the basis function (See Eq.(2) for details). We
select model parameters of SMI using the approach in
Section 2.

4.3 Dependence Maximization
Based on the empirical estimate of SMI given by
Eq.(10), the dependence maximization problem is
given as

max
Π

ŜMI(Xπx ,Yπy).

We here provide a computationally efficient approxi-
mation algorithm based on dynamic programming (DP)
[16].

Given the empirical estimate of SMI computed at
the dependence estimation step, the dependence max-
imization problem is given from Eq.(10) as

max
Π

ŜMI(Xπx ,Yπy)

= max
Π

1

2m

m∑
i=1

mold∑
`=1

α̂`K(xπx
i
,xπx

` old
)L(yπy

i
,yπy

` old
).

Based on the constraints on the alignment func-
tions Π described in Section 4.1, this optimal align-
ment can be computed by DP [16]. In order to
verify this, we define the prefix sequences Xn :=
[x1,x2, . . . ,xn] and Yn′ := [y1,y2, . . . ,yn′ ], with n ≤
nx and n′ ≤ ny, and

ŜMI(Xn,Yn′) =: SMI(n, n′) = A(n, n′)/M(n, n′).

This denotes the optimal SMI for the aligned pre-
fix sequences Xn and Yn′ , where A(n, n′) :=∑m
i=1 rα̂Πold

(xπx
i
,yπy

i
) and M(n, n′) = m.

Based on the continuity and monotonicity condi-
tions, the optimal SMI for the aligned prefix sequences
Xn and Yn′ is computed as

SMI(n, n′) = A(n, n′)/M(n, n′),

A(n, n′)=

{
A(n, n′−1)+γn,n′ , (µ=SMI(n, n′−1))
A(n−1, n′)+γn,n′ , (µ = SMI(n−1, n′))
A(n−1, n′−1)+γn,n′ , (µ = SMI(n−1, n′−1))

,

M(n, n′)=

{
M(n, n′−1)+1, (µ = SMI(n, n′ − 1))
M(n−1, n′)+1, (µ = SMI(n− 1, n′))
M(n−1, n′−1)+1, (µ = SMI(n− 1, n′ − 1))

,

µ = max{SMI(n−1, n′−1),SMI(n−1, n′), SMI(n, n′−1)},
γn,n′ = rα̂Πold

(xn,yn′), for 1 < n ≤ nx and 1 < n′ ≤
ny, where the boundary conditions of the alignment
functions is given as follows,

SMI(1, 1) = rα̂Πold
(x1,y1),

A(1, 1) = SMI(1, 1),

M(1, 1) = 1.

Therefore, the optimal ŜMI(Xπx ,Yπy) =
1
2A(nx, ny)/M(n, n′) − 1

2 can be computed in time
complexity O(nxny). Given the accumulated cost
matrix Bn,n′ = SMI(n, n′), we can compute the
optimal alignment Π using backtracking.

Initialization: Due to the greedy nature of the al-
gorithms, using a good initial alignment is highly
important for the success of LSDTW. Here, from the
alignment obtained using CTW [3] and the simple
uniform initialization,

πx = [1, b1 + nx/mc, b1 + 2nx/mc, . . . , nx]> ∈ Rm×1,
πy = [1, b1 + ny/mc, b1 + 2ny/mc, . . . , ny]> ∈ Rm×1,

where m = min(nx, ny) and bcc denotes the largest
integer not greater than c. Out of the two resulting
alignments, one for each initialization, we choose the
one with the larger cross-validation score as the final
result of LSDTW.

5 RELATED METHODS

In this section, we review related methods for CDOM
and CDTA.

5.1 Cross-Domain Object Matching

First, we review relevant CDOM methods and point
out their potential weaknesses.
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5.1.1 Kernelized Sorting with Mutual Information
Kernelized sorting with mutual information (KS-MI) [1]
matches objects in different domains so that MI be-
tween matched pairs is maximized. We review KS-MI
following the alternative derivation provided in [2].

MI is one of the popular dependence measures
between random variables. For random variables X
and Y , MI is defined as follows [8]:

MI(X,Y ) :=

∫∫
p(x,y) log

p(x,y)

p(x)p(y)
dxdy,

where p(x,y) denotes the joint density of x and y,
and p(x) and p(y) are the marginal densities of x and
y, respectively.

Now, let us assume that x and y are jointly normal
in some reproducing Kernel Hilbert Spaces (RKHSs)
endowed with joint kernel K(x,x′)L(y,y′), where
K(x,x′) and L(y,y′) are reproducing kernels for x
and y, respectively. Then KS-MI is formulated as
follows:

min
Π

log |Γ(K ◦ (Π>LΠ))Γ|, (11)

where K = {K(xi,xj)}ni,j=1 and L = {L(yi,yj)}ni,j=1

are kernel matrices, Γ = In − 1
n1n1>n is the centering

matrix, and In is the n-dimensional identity matrix.
A critical weakness of KS-MI is the Gaussian as-

sumption, which may not be fulfilled in practice.

5.1.2 Kernelized Sorting with Hilbert-Schmidt Inde-
pendence Criterion
Kernelized sorting with Hilbert-Schmidt independence cri-
terion (KS-HSIC) matches objects in different domains
so that HSIC between matched pairs is maximized.

HSIC is a kernel-based dependence measure given
as follows [9]:

HSIC(X,Y ) = tr(K̄L̄),

where K̄ = ΓKΓ and L̄ = ΓLΓ are the centered
kernel matrices for x and y, respectively. Note that
the smaller the HSIC score is, the closer X and Y are
to be independent.

KS-HSIC is formulated as follows [2]:

max
Π

HSIC(X,YΠ), (12)

where

HSIC(X,YΠ) = tr(K̄Π>L̄Π). (13)

This optimization problem is called the quadratic as-
signment problem (QAP) [25], and it is known to be
NP-hard. There exists several QAP solvers based on,
e.g., simulated annealing, tabu search, and genetic
algorithms. However, those QAP solvers are not easy
to use in practice since they contain various tuning
parameters.

Another approach to solving Eq.(12) based on a
linear assignment problem (LAP) [22] was proposed

in [2], which is explained below. Let us relax the
permutation indicator matrix Π to take real values:

Π ∈ [0, 1]n×n, Π1n = 1n, and Π>1n = 1n. (14)

Then, the update formula of KS-HSIC can be given
as [2]

Πnew = (1− η)Πold + η argmax
Π

tr
(
Π>L̄ΠoldK̄

)
,

(15)

where 0 < η ≤ 1 is a step size. The second term is an
LAP subproblem, which can be efficiently solved by
using the Hungarian method [22].

In the original KS-HSIC paper [2], a C++ implemen-
tation of the Hungarian method provided by Cooper1

was used for solving Eq.(15); then Π is kept updated
by Eq.(15) until convergence.

Since HSIC is a distribution-free dependence mea-
sure, KS-HSIC is more flexible than KS-MI. However,
a critical weakness of HSIC is that its performance
is sensitive to the choice of kernels [10]. A practical
heuristic is to use the Gaussian kernel with width set
to the median distance between samples [26], but this
does not always work well in practice.

5.1.3 Kernelized Sorting with Normalized Cross-
Covariance Operator

The kernel-based dependence measure based on the
normalized cross-covariance operator (NOCCO) [27] is
given as follows [27]:

DNOCCO(Z) = tr(K̃L̃),

where K̃ = K̄(K̄ + nεIn)−1, L̃ = L̄(L̄ + nεIn)−1,
and ε > 0 is a regularization parameter. DNOCCO was
shown to be asymptotically independent of the choice
of kernels. Thus, KS with DNOCCO (KS-NOCCO) is
expected to be less sensitive to the kernel parameter
choice than KS-HSIC [18].

The dependency measure for Z(Π) can be written
as [18]

DNOCCO(Z(Π)) = tr(K̃Π>L̃Π).

Since this is essentially the same form as HSIC, a
local optimal solution may be obtained in the same
way as KS-HSIC:

Πnew = (1− η)Πold + η argmax
Π

tr
(
Π>L̃ΠoldK̃

)
.

(16)

However, the property that DNOCCO is independent
of the kernel choice holds only asymptotically. Thus,
with finite samples, DNOCCO does still depend on
the choice of kernels as well as the regularization
parameter ε which needs to be manually tuned.

1. http://mit.edu/harold/www/code.html
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5.2 Cross-Domain Temporal Alignment

Next, we review relevant temporal alignment meth-
ods which are based on pairwise distance minimiza-
tion (not dependence maximization) and point out
their potential weaknesses.

5.2.1 Dynamic Time Warping (DTW)

The goal of dynamic time warping (DTW) is, given two
sequences of the same dimensionality with different
lengths, X and Y , to find an alignment such that the
sum of pairwise distances between two sequences is
minimized [11], [12]:

min
Wx,Wy

‖XW>
x − YW>

y ‖2Frob,

where ‖·‖Frob is the Frobenius norm, Wx ∈ {0, 1}m×nx

and Wy ∈ {0, 1}m×ny are binary selection matrices
that need to be estimated to alignX and Y . The above
DTW optimization problem can be efficiently solved
by DP with time complexity O(nxny). However, DTW
tends to fail if the magnitude of two sequences are dif-
ferent. To deal with this issue, the Derivative dynamic
time warping (DDTW) [28], which aligns the first order
derivative of sequences, is useful.

Potential weaknesses of DTW and DDTW are that
they cannot handle sequences with different dimen-
sionalities such as image-to-audio alignment. More-
over, even when the dimensionality of the sequences
is the same, DTW and DDTW may not be able to
find a good alignment of sequences with different
characteristics such as sequences with different ampli-
tudes. These drawbacks highly limit the applicability
of DTW and DDTW.

5.2.2 Iterative Motion Warping (IMW)

The optimization problem of the iterative motion warp-
ing (IWM) [29] is given as

min
A,B,W

‖(X ◦Ax +Bx)W>
x − (Y ◦Ay +By)W>

y ‖2Frob

+R(Ax,Ay,Bx,By),

where Ax ∈ Rd×nx and Ay ∈ Rd×ny are the scal-
ing matrices, Bx ∈ Rd×nx and By ∈ Rd×nx are
the translation matrices, ◦ is the Hadamard product,
R(Ax,Ay,Bx,By) is the regularization term to avoid
overfitting.

IMW can successfully deal with sequences with
different characteristics, e.g., having different ampli-
tudes. However, similarly to the original DTW, IMW
cannot handle sequences with different dimensional-
ities.

5.2.3 Canonical Time Warping (CTW)

Canonical time warping (CTW) can align sequences
with different dimensionalities by considering a com-
mon latent space [3], [15].

The CTW optimization problem is given as

min
Wx,Wy,Vx,Vy

‖V >x XW>
x − V >y YW>

y ‖2Frob, (17)

where Vx ∈ Rdx×b and Vy ∈ Rdy×b (b ≤ min(dx, dy))
are linear projection matrices of x and y onto a com-
mon latent space, respectively. The above optimiza-
tion problem can be efficiently solved by alternately
performing CCA and DTW, where the alignment ma-
trix obtained using DTW is usually used as an initial
alignment matrix.

Generalized time warping (GTW) [15] can be regarded
as CTW if we align two sequences and use the dy-
namic programming to obtain an alignment.

A limitation of CTW is that, since CTW finds a
common latent space using CCA, it can only deal with
linear and Gaussian temporal alignment problems.
Thus, CTW cannot properly deal with multi-modal
and non-Gaussian data. Another limitation of CTW
is that comparing the alignment quality over differ-
ent model parameters is not straightforward. This
is because, for different model parameters, common
latent spaces found by CCA are generally different
and thus the metrics of the pairwise distance (17)
are also different. For this reason, a systematic model
selection method for the regularization parameter,
the dimensionality of the common latent space, and
the initial alignment matrix has not been properly
addressed so far, to the best of our knowledge.

5.2.4 Kernelized Canonical Time Warping (KCTW)
Let us transform X and Y to higher dimensional ma-
trices Φ and Ψ and define Vx = ΦṼx and Vy = ΨṼy.
Then, we have a nonlinear version of CTW (Eq.(17))
as

min
Wx,Wy,Ṽx,Ṽy

‖Ṽ >x KxW
>
x − Ṽ >y KyW

>
y ‖2Frob, (18)

where Kx = Φ>Φ and Ky = Ψ>Ψ are the Gram
matrices.

Using this formulation, one can handle nonlinearity
in the CTW framework. However, it is not clear
how to objectively select model parameters such as
kernel parameters. That is, the KCCA-based approach
works well only when appropriate model parameters
are used. However, if the parameters are not chosen
carefully, KCTW can perform poorly.

6 EXPERIMENTS

In this section, we report experimental results.

6.1 Cross-Domain Object Matching

First, we experimentally evaluate the performance
of our proposed CDOM method in image matching,
unpaired voice conversion, and photo album summa-
rization.
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6.1.1 Setup
In all the methods, we use the Gaussian kernels:

K(x,x′) = exp

(
−‖x− x

′‖2

2σ2
x

)
,

L(y,y′) = exp

(
−‖y − y

′‖2

2σ2
y

)
,

and we experimentally set the maximum number of
iterations for updating permutation matrices to 20 and
the step size η to 1. To avoid falling into undesirable
local optima, optimization is carried out 10 times with
different initial permutation matrices, which are deter-
mined by the eigenvalue-based initialization heuristic
with Gaussian kernel widths

(σx, σy) = c× (mx,my),

where c = 11/2, 21/2, . . . , 101/2, and

mx = 2−1/2median({‖xi − xj‖}ni,j=1),

my = 2−1/2median({‖yi − yj‖}ni,j=1).

In KS-HSIC and KS-NOCCO, we use the Gaussian
kernel with the following widths:

(σx, σy) = c′ × (mx,my),

where c′ = 11/2, 101/2. In KS-NOCCO, we use the
following regularization parameters:

ε = 0.01, 0.05.

In KS-HSIC (CV), we choose the model parameters of
HSIC, σx and σy by 2-fold CV from

(σx, σy) = c× (mx,my),

where we use the cross-validation approach proposed
in [30].

In LSOM, we choose the model parameters of LSMI,
σx, σy, and λ by 2-fold CV1 from

(σx, σy) = c× (mx,my),

λ = 10−1, 10−2, 10−3.

6.1.2 Image Matching
Let us consider a toy image matching problem. In this
experiment, we use images with the RGB format used
in [2], which were originally extracted from Flickr2. We
first convert the images from the RGB space to the
Lab space and resize them to 40×40 pixels. Then, we
vertically divide the images in the middle, and make
two sets of half-images of 40 × 20 pixels. We denote
the vectorized images by {xi}ni=1 and {yi}ni=1, which
are 2400-dimensional vectors (2400 = 40× 20× 3). We
then decouple them by randomly permuting {yi}ni=1,
and try to recover the correct correspondence by a
CDOM method.

1. We choose 2-fold cross validation to reduce the computational
cost.

2. http://www.flickr.com

Figure 1 summarizes the average correct matching
rate over 100 runs as functions of the number of
images, showing that the proposed LSOM method
tends to outperform the optimally tuned KS-HSIC,
KS-HSIC (CV), and KS-NOCCO methods. Moreover,
through experiments, we observed that the optimally
tuned KS-HSIC compares favorably with KS-HSIC
(CV). Figure 2 depicts an example of image matching
results obtained by LSOM, showing that most of
the images are correctly matched. Moreover, we plot
the learning curve of LSOM in Figure 1(c) and it
converges in 10 steps. Note that the tuning parameters
of LSOM (σx, σy, and λ) are automatically tuned by
CV.

6.1.3 Unpaired Voice Conversion

Next, we consider an unpaired voice conversion task,
which is aimed at matching the voice of a source
speaker with that of a target speaker.

In this experiment, we use 200 short utterance sam-
ples recorded from two male speakers in French, with
sampling rate 44.1kHz. We first convert the utterance
samples to 50-dimensional line spectral frequency (LSF)
vectors [31]. We denote the source and target LSF
vectors by x and y, respectively. Then the voice con-
version task can be regarded as a multi-dimensional
regression problem of learning a function from x to y.
However, different from a standard regression setup,
paired training samples are not available; instead,
only unpaired samples {xi}ni=1 and {yi}ni=1 are given.

By CDOM, we first match {xi}ni=1 and {yi}ni=1, and
then we train a multi-dimensional kernel regression
model [32] using the matched samples {(xπ(i),yi)}ni=1

as

min
W

n∑
i=1

‖yi −W>k(xπ(i))‖2 +
δ

2
tr(W>W ),

where

k(x) = (K(x,xπ(1)), . . . ,K(x,xπ(n)))
>,

K(x,x′) = exp

(
−‖x− x

′‖2

2τ2

)
.

Here, τ is a Gaussian kernel width and δ is a regular-
ization parameter; they are chosen by 2-fold CV.

We repeat the experiments 100 times by randomly
shuffling training and test samples, and evaluate the
voice convergence performance by log-spectral distance
called the spectral distortion [33] for 8000 test samples.
Note that the smaller the spectral distortion is, the
better the quality of voice conversion is. Figure 4
shows the true spectral envelope and their estimates,
and Figure 3 shows the average performance over 100
runs as functions of the number of training samples.
These results show that the proposed LSOM tends to
outperform KS-NOCCO and KS-HSIC.
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Fig. 1. Image matching results. The best method in terms of the mean error and comparable methods according
to the t-test at the significance level 1% are specified by ‘◦’.

Fig. 2. Image matching result by LSOM. In this
case, 234 out of 320 images (73.1%) are matched
correctly.
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(a) Layout of 120 images into a Japanese
character ‘mountain’ by LSOM.

(b) Layout of 153 facial images into ‘smiley’
by LSOM.

(c) Layout of 199 digit ‘7’ into ‘777’ by
LSOM.

Fig. 5. Images are automatically aligned into complex grid frames expressed in the Cartesian coordinate system.

6.1.4 Photo Album Summarization
Finally, we apply the proposed LSOM method to a
photo album summarization problem, where photos
are automatically aligned into a designed frame ex-
pressed in the Cartesian coordinate system.

We align the Flickr2, Frey face[34], and USPS im-
ages [35] into complex frames—a Japanese/Chinese
character ‘mountain’, a smiley-face shape, and a ‘777’
digit shape. The results depicted in Figure 5 show
that images with similar profiles are located in nearby
grid-coordinate cells.

6.2 Cross-Domain Temporal Alignment

Next, we experimentally evaluate the performance of
our proposed CDTA method on synthetic, video se-
quence alignment, and Kinect action recognition tasks.

6.2.1 Setup
In LSDTW, we use the Gaussian kernels:

K(x,x′) = exp

(
−‖x− x

′‖2

2σ2
x

)
,

L(y,y′) = exp

(
−‖y − y

′‖2

2σ2
y

)
,

where σx, σy, and the regularization parameter λ are
chosen by 3-fold CV from

(σx, σy) = c× (mx,my),

c = 2−1/2, 1.8−1/2, . . . , 0.2−1/2,

λ = 10−1, 10−2,

and

mx = 2−1/2median({‖xi − xj‖}nx
i,j=1),

my = 2−1/2median({‖yi − yj‖}
ny

i,j=1).

Comparisons: We compare the performance of LS-
DTW with DTW and CTW. For DTW and CTW, we
use the publicly available implementations provided

2. http://www.flickr.com

by the authors of the original papers [3], [15]2. For
CTW, we choose the dimensionality of CCA to pre-
serve 90% of the total correlation, and we fix the
regularization parameter at 0.01. We use the align-
ment given by DTW as the initial alignment for CTW.
In the video sequence alignment and the real-world
Kinect action recognition experiments, we also com-
pare LSDTW to kernel CTW (KCTW), derivative DTW
(DDTW) [28], and iterative motion warping (IMW)
[29]. In KCTW, we use the Gaussian kernel and set
the kernel width at mx and my , which is a common
heuristic [32]. For existing methods, we use the same
parameters as those used in [15].

Evaluation: To evaluate the alignment results, we use
the following standard alignment error [15]:

Error =
dist(Π∗, Π̂) + dist(Π̂,Π∗)

m∗ + m̂
,

where

dist(Π1,Π2) =

m1∑
i=1

min({‖π(i)
1 − π

(j)
2 ‖}

m2
j=1),

Π∗ and Π̂ are true and estimated alignment matrices,
and π(i)

1 ,π
(j)
2 ∈ R2×1 are the i-th and j-th columns of

Π1 and Π2, respectively.

6.2.2 Synthetic Dataset
We first illustrate the behavior of the proposed LS-
DTW method on aligning two non-linearly related
non-stationary sequences using a synthetic dataset.

We use the following function:

xi = i/200 + 0.4 sin(πi/100) + ei, i = 1, . . . , 200,

yj = ((j − 1)× 2 + 1)/200 + ej , j = 1, . . . , 100,

where ei and ej are randomly generated additive
Gaussian noise with standard deviation 0.01 (see Fig-
ure 6(a) and (b)). Note that, sample-wise, for a given
value of xi there may be multiple yj ’s.

Figure 6(c) shows the alignment path obtained
using LSDTW, CTW, and DTW, respectively. In this

2. www.f-zhou.com/ta code.html.
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experiment, we initialize CTW and DTW with the true
alignment matrix and check whether the correspond-
ing methods perform well. On the other hand, we use
the CTW and uniform initialization (true alignment)
for LSDTW and choose the one that has the highest
SMI score. As can be observed, LSDTW can find a
better alignment in the middle region (i.e., a highly
non-linear region) than DTW and CTW. This shows
that the LSDTW objective is more appropriate than al-
ternatives when it comes to more complex data (with
noise), due to its use of more universal information-
theoretic metric that is sensitive to statistical depen-
dence (not absolute distance) and is insensitive to
noise. Figure 6(d) depicts the SMI score with respect
to the number of iterations in LSDTW, showing that
SMI score does not change after 5 iterations. LSDTW
took 14.1 seconds on 16 core Intel Xeon 2.4GHz CPU
with 24G memory vs. CTW that took 2.4 seconds on
the same machine. Note that, LSDTW is implemented
with Matlab. Thus, we can speed up LSDTW by
implementing with C/C++.

6.2.3 Sequence Alignment
Videos with Different Features: In this experiment,
we align two video sequences taken from the Weiz-
mann database [36], which consists of 10 motion se-
quences performed by 9 people. Each video sequence
is encoded with two different visual features; we
align sequences of pairs of subjects each encoded
by different feature representation. Based on [15] we
extract two feature representations based on silhou-
ettes obtained with background subtraction: (i) Eu-
clidean distance transform [37] and (ii) solution of
Poisson equation as features [38] (2450 dimensional).
To reduce the dimensionality of inputs, we used the
top M principal components that preserve 99.9% of
the total energy of the features3. For evaluation, we
randomly pick two walking sequences from different
subjects and compute the error between the estimated
alignment and the ground-truth alignment. Note that
the ground-truth alignment is computed using DTW
applied to the same features (see [15] for further
experimental details). For competing methods, we
use the same parameter setting as that used in [15].
Figure 7(a) shows the mean and variance of alignment
error for different methods. LSDTW gives the smallest
alignment error (with CTW and KCTW the next best).

Cross-Domain Sequence Alignment: To illustrate the
capability of our method in dealing with sequences
with different dimensionalities in alignment, we align
sequences of different people performing a similar
activity but recorded with different sensors. We use
one motion capture sequence from the CMU motion
capture database and one video sequence from the

3. We set M = min(Mx,My) where Mx is the dimensionality
of distance transform features and My is dimensionality of Poisson
features that preserve 99.9% of the total energy respectively.

Weizmann database [36]. For the mocap data, we use
60-dimensional feature (the imaginary portion of a
unit quaternion computed for each of the 20 joints)
vectors to describe body configuration, while we use
the solution of Poisson equation as features (2450 di-
mensional) for video. Again, to reduce the dimension-
ality, we apply PCA to each modality preserving 95%
of total energy, resulting in the final representation for
mocap xi ∈ R11 and image features yi ∈ R45. See [15]
for the detail of the feature extraction procedure. Fig-
ure 7(b) shows key frames after alignment by LSDTW.
It can be seen that LSDTW can align two sequences
well, despite the fact that they are represented by
signals with different dimensionalities.

6.2.4 Kinect Action Recognition
We also evaluate the proposed LSDTW method on the
publicly available Kinect action recognition dataset4

[39]. This dataset consists of human skeleton data (15
joints) obtained using a Kinect sensor, and there are 16
subjects and 16 actions with 5 trials. Instead of using
the raw skeleton data, we compute a 105-dimensional
feature vector for each pose, where each element of
the feature vector is the Euclidean distance between
joint pairs.

We carry out unsupervised action recognition exper-
iments and evaluate the performance of each align-
ment, looking at the classification accuracy. More
specifically, we first divide the action recognition
dataset into two disjoint subsets: 8 subjects (#9-#16)
for training database (640 sequences), and the re-
maining 8 subjects (#1-#8) for testing (640 sequences).
At test time, we retrieve N ≤ 10 similar sequences
for each test action from the training database using
DTW, KCTW, CTW, DDTW, IMW, and LSDTW; we
use the pairwise Euclidean distance based on the es-
timated alignment to measure the similarity between
sequences. We consider retrieval/classification as be-
ing correct if one of the retrieved nearest neighbor
sequences has a correct action label.

Figure 8 shows the mean classification accuracy as
functions of the number of retrieved sequences, N ,
where three different database sizes are tested. The
graphs clearly show that LSDTW compares favorably
with existing methods in terms of classification accu-
racy across all settings. For example in Figure 8(a),
the proposed method achieves more than 70% clas-
sification accuracy (the number of extracted actions
is 2) while best existing methods give about 65%
classification accuracy.

7 CONCLUSION

In this paper, we first proposed least-squares object
matching (LSOM) for the cross-domain object matching
(CDOM) problem. LSOM adopts squared-loss mutual

4. www.cs.ucf.edu/∼smasood/datasets/UCFKinect.zip
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Fig. 8. Mean action classification accuracy with respect to the number of retrieved sequences. (a) Only
sequences of subject#9 are used in training to form a database. (b) Sequences of Subjects#9− 12 are used in
training. (c) Sequences of all subjects (#9− 16) are used in training.

information as a dependence measure, and it is esti-
mated by the method of least-squares mutual informa-
tion (LSMI). A notable advantage of LSOM is that
it is equipped with a natural cross-validation pro-
cedure that allows us to objectively optimize tuning
parameters such as the Gaussian kernel width and the
regularization parameter in a data-dependent fashion.

Moreover, we proposed a novel cross-domain tem-
poral alignment framework, based on SMI maximiza-
tion, that we call least-squares dynamic time warping
(LSDTW). Similarly to LSOM, LSDTW includes its
natural ability to deal with non-linearly related se-
quences with different dimensionalities (with non-
Gaussian noise) and its ability to optimize model
parameters, such as the Gaussian kernel width and

the regularization parameter, by cross-validation.
We applied the proposed methods to various prob-

lems including image matching, unpaired voice con-
version, photo album summarization, cross-feature
video alignment, cross-domain video-to-mocap align-
ment, and Kinect action recognition, and quantita-
tively showed that LSOM and LSDTW are promising
alternatives to state-of-the-art cross-domain matching
methods.

There are several remaining issues that we leave
for future work. For example, matching/alignment
of multiple objects/sequences, similar to [15], can
be addressed by computing squared-loss mutual in-
formation for more than two variables [40]. More-
over, one can integrate dimensionality reduction into
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SMI estimation [41], potentially further improving the
temporal alignment performance. Another interesting
direction is to develop a convex variant of LSOM
by incorporating the techniques of convex kernelized
sorting (CKS) [42]. Finally, CDOM methods cannot
handle the matching problem more than 10K samples.
Recently, several efficient graph matching algorithms
including a path following algorithm [43] and de-
formable graph matching [44] are proposed. Thus,
scaling up the KS and LSOM using the state-of-the-
art graph matching algorithms is also an interesting
problem.
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