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An Online Learning Framework for Refining Recency Search Results
with User Click Feedback

TAESUP MOON, WEI CHU, LIHONG LI, ZHAOHUI ZHENG, and YI CHANG, Yahoo! Labs

Traditional machine-learned ranking systems for Web search are often trained to capture stationary rele-
vance of documents to queries, which have limited ability to track nonstationary user intention in a timely
manner. In recency search, for instance, the relevance of documents to a query on breaking news often
changes significantly over time, requiring effective adaptation to user intention. In this article, we focus
on recency search and study a number of algorithms to improve ranking results by leveraging user click
feedback. Our contributions are threefold. First, we use commercial search engine sessions collected in a
random exploration bucket for reliable offline evaluation of these algorithms, which provides an unbiased
comparison across algorithms without online bucket tests. Second, we propose an online learning approach
that reranks and improves the search results for recency queries near real-time based on user clicks. This
approach is very general and can be combined with sophisticated click models. Third, our empirical com-
parison of a dozen algorithms on real-world search data suggests importance of a few algorithmic choices in
these applications, including generalization across different query-document pairs, specialization to popular
queries, and near real-time adaptation of user clicks for reranking.
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1. INTRODUCTION

Ranking a list of documents based on their relevance to a given query is the central
problem in various search applications of the Internet. Machine-learned ranking
algorithms have been shown highly effective for generalizing to unseen data from
labeled training data and have been very successful especially in commercial Web
search engines [Burges et al. 2005, 2007; Cortes et al. 2007; Freund et al. 2003;
Joachims 2002a; Liu 2009; Zheng et al. 2008]. Usually, these algorithms learn a
ranking function based on editorial judgments—relevance labels provided by human
editors. A critical assumption here is that the relevance of documents for a given
query is more or less stationary over time, and therefore, as long as the coverage of
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training set is broad enough, the ranking function learned from the training set would
be sufficient to generalize to unseen data in the future. This assumption is often
valid in Web search, especially for popular queries like “yahoo,” for which document
relevance is indeed (almost) static.

However, there are other important categories of applications where document rel-
evance to a query may change over time. One such example is the recency ranking
problem in Web search: when breaking news emerges, a document that used to be
most relevant to a query may be superseded by others that have more timely informa-
tion about the news; see Section 4 for a concrete example. A key challenge for such
problems is to track user intention in a timely fashion.

An interesting attempt was taken recently for tracking nonstationary document
relevance [Dong et al. 2010a]. The authors devised time-varying features that reflect
freshness of documents and utilized recency demoted labels provided by human editors
that explicitly modify the relevance target values in the training set. Their results
showed an improvement of ranking qualities for time-sensitive queries. However, their
approach is still based on editorial judgments and so limited for two reasons. First,
obtaining high-quality training data is hard. Implementing more fine-grained time-
varying features, such as features from the time series of clicks that can accurately
follow the relevance drifts is considerably subtle and complex since carefully testing
and selecting good features is a long and complicated process. Also, obtaining laborious
recency demoted labels from human editors not only is expensive, but also can be
inaccurate in correctly representing the temporal variation of document relevance.
Second, even when we can come up with such complex and expensive data to batch-
train a ranking function, tracking actual user intention remains challenging due to
the very unpredictable nature of how user intention evolves over time.

In this article,1 we investigate how to leverage user click feedback to complement
and improve such editorial-judgment based ranking systems. Our rationale is that,
particularly for recency queries, instantaneous click trends on the top portion of the
ranking list are important indicators of document relevance. Such signals allow us to
extract subtle information that may be hard for human editors to foresee when they
provide relevance judgments. In particular, we explicitly track the click-through rate
(CTR) of a query-document pair using a linear combination of extracted features, in-
cluding the editorial-judgment based ranking function’s score. Based on search results
returned by the current search engine, we propose a methodology for an online rerank-
ing to further improve search results for recency queries near real-time. We use user
click as labels for training the CTR models in either batch or online mode.

In order to justify our rationale mentioned before and develop a methodology for
exploration for learning and evaluation of different algorithms, an “exploration bucket”
was set up for a small random portion of live traffic for recency-classified queries in a
commercial search engine. Within the bucket, the top URLs returned by the search
engine was randomly shuffled and the corresponding click feedback was logged. This
bucket is integral to the work reported in this article, and the details on how we utilize
this bucket data for learning and evaluation are described in the subsequent sections.

The rest of the article is organized as follows. In Section 2, we discuss several closely
related previous research and highlight the difference and contributions of our work.
In Section 3, we describe our exploration bucket, which is essential for both learning
and evaluation. Using the data in this bucket, we present a motivating example in
Section 4, showing the necessity of taking into account temporal variation of docu-
ment relevance reflected in user click feedback. Our methods are detailed in Section 5

1The present article extensively augments our preliminary results reported in an extended abstract [Moon
et al. 2010].
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and empirically evaluated using the exploration bucket data in Section 6. Section 7
gives some possible future directions and concludes the article with a summary of our
contribution.

2. RELATED WORK AND CONTRIBUTION OF THE ARTICLE

Our work is closely related to several previous researches. We now summarize the
related work and point out the difference and contributions of our work.

2.1. Temporal Modeling for Ranking

Recently, several work proposed approaches regarding taking the temporal aspects of
documents and queries into account to improve search ranking. For example, Elsas
and Dumais [2010] considered the temporal dynamics of document content and ap-
plied that knowledge to improve search ranking for navigational queries, and Dai and
Davison [2010] tried to capture the temporal variations in the link structures between
Web pages and reflect them in improving the relevance and freshness of ranking. Jones
and Diaz [2007] and Kulkarni et al. [2011], on the other hand, focused on the query
side of temporal variations and tried to detect and classify the profiles of time-sensitive
queries.

Moreover, as mentioned in Section 1, Dong et al. [2010a] show how machine-learned
ranking system can take advantage of different signals that capture the temporal
variations of relevance of documents to recency queries. They introduced query classi-
fiers to detect time-sensitive queries, implemented time-varying features that reflect
document freshness, and recency demoted labels provided by human editors. More
recently, improvements were made by introducing additional click or micro-blogging
(e.g., Twitter) service related time-varying features [Dong et al. 2010b; Inagaki et al.
2010]. Note that the results in Elsas and Dumais [2010] and Dai and Davison [2010]
can be also used as time-varying document features, and those in Jones and Diaz
[2007] and Kulkarni et al. [2011] can be used as additional signals for the recency
query classifier in Dong et al. [2010a], as well.

The difference between our work and these examples is that we explicitly use the
click feedback as target to learn the temporal variation of the relevance of documents
for recency queries, whereas the given papers do not. While such an approach would
not be beneficial for all queries, we show in Section 4 how the click feedback can be
helpful in reflecting relevance of documents for recency queries via a motivating ex-
ample. Furthermore, our approach complements prior work; it can be applied to the
rankings that are generated by any of the work and further improve the quality of
rankings by utilizing the click feedback.

2.2. Click Models and Click-Based Reranking

Using users’ click feedback to improve ranking quality of a search engine has been
extensively studied before as well. Various click models [Chapelle and Zhang 2009;
Dupret and Liao 2010; Guo et al. 2009; Zhu et al. 2010] are developed based on click
log data, of which goals were to either remove positional biases of clicks in the log
data or extract some relevance signal so that they can be used as useful features for
batch-trained ranking functions. Several other works also used click feedback data to
directly modify search rankings by reranking; Ji et al. [2009], Kang et al. [2011], and
Liu et al. [2009] extracted preference information on rankings from the past click log
data and used it in a machine-learned reranking system.

There are several differences between our work and these examples. First, all of
that work is based on batch schemes that are trained on static training data, and
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thus the relevance features or the reranking functions obtained in that work are
often computed in the average sense and are hard to reflect the temporal variations
of document relevance. In contrast, the reranking algorithm in our work can update
its model on-the-fly as click data accumulate and can quickly track the temporal
variations reflected in the click feedback.

Second, the schemes in the given work are all based on the click feedback only
from the default search ranking, whereas our scheme explores the click feedback on
other rankings as well to find the potentially better ranking quickly. Finding better
ranking by exploration has been also considered in Radlinski and Joachims [2007] and
Yue and Joachims [2009], too, but the settings in those papers are different from ours.
Radlinski and Joachims [2007] devised a strategy to actively explore to collect the click
feedback that is helpful in improving the ranking quickly, but the results were based
on simulated user clicks rather than real ones. Yue and Joachims [2009] developed the
dueling bandit approach, but it required a special functionality of the retrieval system
to interleave two different ranking results.

Third, most of the previous click models do not generalize across different queries,
but instead compute a single number for each query-document pair. Here, our models
can generalize relevance information among different query-document pairs by work-
ing in a common feature space; it thus allows one to deal with tail/infrequent queries
with sparse training data. Furthermore, our models also provide a mechanism so that
highly accurate relevance predictions can be made for popular/frequent queries. It
should be noted that an interesting click model was recently proposed [Zhu et al. 2010]
that also relied on features for cross-query generalization. While the focus there was
to understand position bias and user click behavior, their click model may naturally
be used within our online-learning framework, which is left as an interesting direction
for future work.

2.3. Collaborative Filtering and Personalized Article Recommendation

Using feature-based models to track temporal variations of relevance reflected on the
user feedback has been considered in several collaborative filtering and personalized
content recommendation problems. Koren [2009] devised a scheme to capture tem-
poral dynamics of user ratings on items in a collaborative filtering problem. Using
techniques to balance exploration-exploitation has been also considered in the prob-
lems of personalized article recommendation on Web portals. While models in earlier
works [Agarwal et al. 2009] did not use features so that the scheme can generalize to
unseen articles, there have been efforts on developing feature-based models more re-
cently, such as the LinUCB algorithm [Li et al. 2010] that uses a similar linear model
as ours, and the warm-start solution by Agarwal et al. [2010].

The difference of our work from these is as following; Koren [2009] focused rather on
long-term dynamics and did not consider the cold-start problem, which is critical to our
recency ranking problem given the large volume of of tail queries as shown in Section 3.
Our work, on the other hand, incorporates a warm-start model. The work on personal-
ized article recommendation work [Agarwal et al. 2010; Li et al. 2010] maintain models
for a small number of articles/items, and so have not demonstrated capacities of learn-
ing with a much larger content pool, as in our space of query-document pairs. Another
difference is that their model was item-specific, whereas our model consists of both a
global model that applies to all queries and documents as well as a specific bias term
for each query-document pair. Stern et al. [2009] independently considered a similar
idea for large-scale personalized recommendation, but imposed a Bayesian framework
that is different from ours.
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2.4. Our Contribution

In summary, the contributions of our article are the following.

(1) We use a unique exploration bucket data collected from a real, commercial search
engine and propose a framework of learning and evaluating various reranking
schemes for recency queries.

(2) We use click feedback as a direct target to track the varying relevance of documents
for recency queries and use online reranking model that utilizes explore-exploit
techniques.

(3) We use mixture of feature-based parametric model and nonparametric bias terms
so that the reranking model can generalize to tail queries and specialize to popular
queries simultaneously.

Moreover, as also mentioned in the Introduction, this article significantly augments
and clarifies our conference version [Moon et al. 2010]. Followings are the summary of
the additional contribution of this journal version:

— significantly enlarged baseline schemes;
— analyses on the exploration bucket data;
— thorough result analyses.

In the following sections, we describe the details about the exploration bucket data,
our methods, and experimental results.

3. EXPLORATION BUCKET DATA

As described in the previous section, we set up a bucket to collect exploration data
from a small portion of live traffic at a commercial search engine. The bucket started
on Jan. 29, 2010 and ended on Feb. 4, 2010. Throughout these days, we collected
399, 880 search sessions that contained 61,904 recency classified queries, after remov-
ing nonrandom sessions corrupted by business rules. We used the recency query clas-
sifier described in Dong et al. [2010a, Section 4]. The ranked list for those queries were
generated by the recency ranking function trained as described in Dong et al. [2010a]
and the ranking score for each query-document was recorded. For each session, we
randomly shuffled the top four results and logged the permutation id of each shuffled
permutation (a total of 4! = 24 of them) and user clicks on the corresponding permuted
ranking results.

The collected data is very sparse and long-tailed, as shown in Figure 1, in which
92.4% of queries were issued no more than 10 times and more than half of queries were
issued just once. The reason for this sparsity is that the recency query classifier utilizes
some language model to determine the queries that are related to each other, which
causes some recency-related idiosyncratic, less popular queries, such as different word
orderings or typographically wrong queries, to be classified as recency queries.

By doing the random shuffling, we are able to collect user click feedback on each
document without positional bias, and such feedback can be thought of as a reliable
proxy on relevance of documents. Note that the effect on user experience of shuffling
would not be as severe as that for navigational queries, since the relevance differences
of top-ranked documents to recency queries would not be as dramatic as those for
navigational queries. Also, we chose a reasonably small number, 4, in order to limit
the negative impact on user experience in the exploration bucket.

Another byproduct of our exploration bucket is that we can accurately observe the
positional biases of clicks, which are not easy to obtain from published works. Specif-
ically, for the top four URLs in each session, we can infer the original ranking of the
search engine simply by the recorded ranking scores. For each session, the URL with
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Fig. 1. Recency query impression.

Fig. 2. Marginal nCTRs of four types of URL at the top four positions in exploration bucket, along with the
nCTRs on the original order as control. All are on logarithm scale.

a highest ranking score is called the “1st URL.” These URLs were displayed an equal
number of times in all four positions in the exploration bucket because of the ran-
dom shuffling. We can then estimate the aggregate Click-through rate (CTR) of the
1st URLs in each of the four positions, as depicted by the blue line in Figure 2.2 Such
nCTRs are marginal since we have taken all possible layouts (of other URLs) into
account, thanks to the uniform randomness in the exploration bucket. Similarly,
marginal nCTRs of the 2nd, 3rd, and 4th URLs of all sessions are also plotted in
Figure 2.

Interestingly, lines of these four marginal nCTRs are almost parallel to each other,
which implies the user click patterns follow the well-known power-law distribution.

2To protect business-sensitive information, the article reports only the normalized CTR or nCTR, which is
the CTR multiplied by a constant. We will use them interchangeably if there is no confusion.
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Fig. 3. Impression count in the exploration bucket of the query “giant squid in California.”

The slope indicates the intrinsic positional biases in the displayed layout of search re-
sults. To further illustrate the conditional effect on user click patterns, we also present
the nCTRs of the original display order. It corresponds to the steeper straight line of
Figure 2, indexed by “Control” in cyan. We observed that the nCTR of the 2nd URL
at the 2nd position conditioned on the 1st URL at the 1st position is much lower than
the marginal CTR of the 2nd URL at the 2nd position. The drop indicates a negative
conditional effect from the 1st URL at the 1st position. For the 3rd URL at the 3rd
position and the 4th URL at the 4th positions, we observed a similar conditional effect.

The apparent positional biases shown in Figure 2 would be taken into account in
devising our reranking algorithm. Moreover, the fact that the four lines other than the
“Control” do not cross each other shows that, on average, the original ranking is doing
a decent job in ranking the URLs also with respect to CTRs. However, in this article,
we show that we can do better than this by reranking the URLs appropriately so that
the overall CTRs of reranked results can be further improved.

In Section 5, we show how we use the exploration bucket data in our learning
method, and in Section 6.1 we show how the data is used for unbiased evaluation
of various algorithms.

4. MOTIVATION

Before describing the technical details of our method, let us first look at a concrete
example found in exploration bucket to illustrate our motivation, and then summa-
rize the challenges that we confront in recency search results. This example will be
revisited in our discussion of experimental results.

In our exploration bucket, “giant squid in California,” is a typical recency query,
which appeared on February 1, 2010, and then disappeared after two days in our
exploration bucket data. Figure 3 shows the impression statistics of the query with
respect to time, which clearly shows nonstationary temporal statistics.3 This query is

3To avoid revealing business-sensitive data, we normalize the query submission number by multiplying it
with a positive number.
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Fig. 4. Hourly CTR of the top 4 URLs associated with the recency query “giant squid in California.” After
the 30th hour, no more click of this query was observed in the exploration bucket.

related to local news in California. At that time, a number of giant squids weighing up
to 60 pounds had swum into waters off the Californian coast and were caught by sport
fishermen by the hundreds. It seems apparent that many people submitted the query
“giant squid in California” to find related materials of the local news from the search
engine.

To study user click patterns on the URLs associated with the query, we again ex-
amined the top four URLs in the exploration bucket. The four URLs were retrieved by
the default ranking function for recency queries in the search engine, and the corre-
sponding default ranking on the top four URLs was:

(1) foxnews.com/story/0,2933,290667,00.html,
(2) en.wikipedia.org/wiki/Giant_Squid_(band),
(3) metroactive.com/metro/03.29.06/squid-0613.html,
(4) youtube.com/watch?v=I3ENZDFkAow.

Based on their contents, the four Web pages can be categorized as “a news story
page,” “a background knowledge page,” “a relevant page,” and “a video page.” As
we randomly shuffled the display order of the top 4 URLs in the exploration bucket,
each URL had the same chance to be displayed at each position. Therefore, position
bias on clicks for these URLs was removed. The nCTRs of the four URLs observed in
our exploration bucket session data are presented in Figure 4. Clearly, although the
initial nCTRs were similar, the “video” content ended up receiving most clicks, while
the “news story” was runner-up. This shows that while our recency ranking function
made a reasonable decision (by putting the “video” content within top 4), it yet failed
to accurately predict the ranking with respect to the users’ preference reflected in
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the CTR patterns on the URLs. Moreover, we note that unless we actually see this
click patterns, it would be extremely hard for human editors to predict such relevance
patterns for these top 4 URLs.

Based on these observations, two challenges are identified for the recency ranking
problem.

— Relevance Drifting. As illustrated by the previous case, document relevance may
vary significantly over time. These examples show the limitations of the editorial
judgment based, batch learning framework in tracking such temporal dynamics. In
general, it is very difficult to design features that can correctly reflect the temporal
variances of relevance and for editors to predict the relevance labels before observ-
ing the actual user behaviors. How to rapidly track such drift would be a major
challenge of recency ranking.

— Data Sparsity. Due to the reason specified in Section 3, many recency queries
have few impressions. Hence, learning across queries (i.e., generalization) would be
important.

In addition, we note that keeping track of dynamic content for recency queries to
generate reasonably good top documents is also a critical challenge. However, as men-
tioned in Section 2.1, the topic is outside the scope of this article; various approaches in
Section 2.1 can be applied to generate good top documents with respect to the editorial
labels, and our focus is to propose a method that further refines the ranking generated
from any such approaches by tracking the temporal variation of relevance reflected in
the click feedback.

5. OUR METHOD

To address the two challenges in the previous subsection, it is necessary for a rank-
ing module to detect and track the nonstationarity of user interests reflected by click
feedback patterns.

— Relevance Drifting. In contrast to waiting for editorial judgments to update ranking
results for a recency query, our algorithm updates relevance scores near real-time
based on user click feedback on the ranked list of documents. Not only can it avoid
the expensive editorial judgments, but it can also quickly adapt to the varying rele-
vance that truthfully reflects real user intent.

— Data Sparsity. The ranking model in our method works in a common feature space
shared by all query–document pairs. It is then able to generalize click feedback of a
pair to other pairs via feature values. Furthermore, we will also show the benefits
of maintaining bias terms, or latent features, dedicated to popular query–document
pairs in the experimental results.

Ideally, if we knew the true relevance of every document for a recency query, we
would be able to display the optimal ranked list of documents. However, estimating
the relevance of all query-document pairs is unnecessarily difficult: similar to general
Web search in which most of the relevance metric focus on the top portion of the
ranking, it is more important to get better estimates for high-quality documents for
recency queries. Therefore, assuming that a baseline, the default recency ranking
function, already retrieves reasonably good quality documents at the top, we propose a
reranking approach that estimates the (possibly time-varying) relevance of top-ranked
documents returned by the default ranking function and optimizes the reranking by
those estimates.

To do so, our method assumes the availability of a real-valued reward signal, deriv-
able from user clicks, to refine its reranking model. While our technique is general
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enough and can be combined with essentially any such click-based signals [Radlinski
et al. 2008], in this work, we focus on CTR at position 1 (CTR@1) as the reward for the
sake of concreteness. The use of this metric can be justified as follows.

— First, CTR@1 is a widely adopted, critical metric when deploying general machine-
learned ranking function for Web search in practice. Indeed, our empirical find-
ings in Section 6.3.4 also confirms that lifts in CTR@1 are consistent with lifts in
other important click metrics that reflect the relevance of the whole ranked list of
documents.

— Second, our example in Section 4 shows that CTR@1 can be a more objective metric
than editorial judgment-based metrics for the recency queries, for which relevance
judgments are difficult to obtain in advance.

— Third, our CTR@1 based reranking would not hurt other traditional editorial
judgment-based metrics, for instance, NDCG (Normalized Discounted Cumulative
Gain) [Järvelin and Kekäläinen 2002], too much, either. The reason is that we are
only focusing on the very top portion of the ranked list of the baseline ranking func-
tion, and we are assuming that those metric values on the baseline ranking are
already reasonably high.

As mentioned in Section 2.2, there have been a lot of previous research on click mod-
els and click-based reranking. However, as pointed out in Section 2.2, most of those
work are batch trained schemes on click feedback data from the default rankings, and
feature-based generalization has seldom been used. In contrast, our method is based
on online scheme together with explore-exploit strategy, and uses a hybrid model with
both feature-based parametric model and nonparametric bias terms. We will also de-
scribe in Section 6.3.2 how such click model-based reranking method compares to our
method, and why directly comparing the two is not the focus of this article.

Finally, our approach is readily applicable for optimizing other real-valued metrics
like session length and revenue. It may be possible to be extended to more sophisti-
cated signals like skip-above [Joachims 2002b].

5.1. Settings

We consider the following reranking framework, naturally modeled as a round-by-
round process. At round t, the process proceeds as follows.

(1) A user arrives and types in a query qt.
(2) The default recency ranking function generates an ordered list of s documents with

highest relevance scores. Then, our reranking function reorders these s documents
and presents to the user the reordered ranked list (ut,1, . . . , ut,s).

(3) The user then provides feedback rt = (ct,1, . . . , ct,s) on our reranking result, where
ct,i = 1 if a user clicked on the document at potision i, and 0 otherwise.

(4) Based on the user feedback rt, the reranking function is updated and is used for
the next round t + 1.

From the described process, we see that our reranking function is inherently an on-
line algorithm that updates its logic on the fly from the sequential observation of click
feedback. In order to efficiently implement and update our reranking function, we im-
plement a common feature vector for every query-document pair, (q, u), and denote it
as xqu ∈ R

d. In our experiment, a total of d = 51 features were used. These features
include regular query-specific (e.g., number of words in a query), document-specific
(e.g., spam classification score of a document), and query-document-specific (e.g., num-
ber of times a query appears in a given document) features used in ordinary machine
learned ranking functions, and more importantly, the ranking score generated by the
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default, editorial judgment-based recency ranking function. Our reranking function
is then defined to be a function that predicts the CTR@1 of each (q, u) as a function
of xqu and possibly of some latent features, and the function gets updated based on
observing users’ click feedback in an online fashion. The detailed function form and
update formula are described in the subsequent two sections.

Given our goal of maximizing CTR@1 in the reranking results, it is tempting for an
online algorithm to follow a greedy strategy: that is, it always ranks (for the present
query at hand) the documents in the order of the highest CTR@1 estimates and up-
dates the function parameters solely based on the user feedback for the algorithm’s
ordered list. While this greedy approach is intuitively desirable, it can be detrimental
in practice. This is because, as can be seen in the interactive round-by-round process
described before, the reranking algorithm obtains user feedback only from the order-
ings that it has displayed to the user. Therefore, if an algorithm mistakenly orders
the documents, a greedy reranking strategy can prevent it from collecting user feed-
back for other (potentially better) rankings and correcting its mistake to find the most
relevant document on the top for maximizing CTR@1. Consequently, the algorithm
has to balance two conflicting goals: (a) “exploitation” — to display in the first posi-
tion most relevant documents to maximize reranking quality (in our case, to maximize
user clicks), and (b) “exploration” — to display documents for the purpose of collecting
data to further improvement. The exploration/exploitation tradeoff described before
is a defining characteristic of a class of problems known as bandit problems [Robbins
1952], which has received considerable attention recently for Internet-related applica-
tions [Radlinski and Joachims 2007; Yue and Joachims 2009].

In the following Section 5.2 and Section 5.3, we present the basic function form of
our online reranking function and its update formula provided the user feedback rt is
given, respectively. Then, in Section 5.4, we describe how we vary our scheme in order
to cope with the explore/exploit tradeoff explained previously and accelerate learning
speed.

5.2. CTR@1 Estimation Model

Although many alternatives exist, we choose our reranking function to be linear in the
feature vector xqu. This choice allows us to derive exact update rules and simplify the
exposition. Other nonlinear models may also be used, although numerical approxima-
tion is unavoidable in general when optimizing their model parameter. In particular,
we have tried logistic and probit regression [Graepel et al. 2010], and observed similar
performance as the linear model.

Since we try to maximize CTR@1, it is natural to find a function that estimates
CTR@1 of a (q, u) pair for reranking. Once the feature vector xqu of length d is given
for a (q, u) pair, a linear combination of them is used to estimate CTR@1. In fact, we
will use the most general form that captures all variants useful in our experiments:

CTR@1(q, u) = βββ�xqu + bq,u, (1)

where the vector βββ ∈ R
d contains the coefficients shared by all query-document pairs,

and bq,u ∈ R is a (q, u)-specific bias term. Both βββ and {bq,u} are to be learned by our
algorithm.

Clearly, user click feedback on any query-document pair may be used to estimate βββ,
which in turn can be used to predict CTR@1 for other query-document pairs. Therefore,
the linear part of βββ in Equation (1) addresses the data sparsity challenge by allowing
generalization across different queries and documents. However, a linear model in
the features may not be sufficiently accurate to capture the real CTR@1. The bias
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terms thus provide a mechanism to correct the residuals and to yield more accurate
estimates.

Because of these bias terms, it may appear that Equation (1) uses too many free pa-
rameters. However, as will be cleared in the next subsection, we use regularization to
control the magnitude of these terms, so the bias terms will be essentially zero except
for popular query-document pairs. Consequently, these terms can be used to yield a
highly accurate CTR@1 estimate for popular (q, u), while for unpopular (q, u) (which
suffer the data sparsity issue most) we essentially use the linear estimate βββ�xqu. Such
a dichotomy is done automatically within the regularization framework.

In summary, when optimized with regularization, our hierarchical linear model can
adapt to the data in a smooth fashion by automatically balancing model complexity
(which bias terms are used effectively) and frequencies of query-document pairs.

5.3. Parameter Update Rule

This subsection addresses the problem of parameter updates for model (1). We first
describe how to fit the parameters if we are given a static set of data, then extend the
update rule to the online case when data arrive sequentially, and finally discuss a few
practical issues when deploying the update rules in large-scale ranking systems.

5.3.1. Batch Parameter Fitting. Suppose we are given a set D of t data in the form of
{(qi, ui, ci)}i=1,2,...,t, where ci ∈ {0, 1} is the click feedback for (qi, ui) provided by the i-th
user. Let P be the set of distinct (q, u) pairs observed in D, and N = |P|. For brevity,
denote the feature vector for the (qi, ui) pair as xi.

A standard approach to learn the parameters in Equation (1) for CTR@1 estimation
is the ridge regression by using {ci}’s as targets: we seek the optimal parameters that
minimize a regularized square loss:

ft(βββ, {bq,u}) def=
t∑

i=1

(
ci − βββ�xi − bqiui

)2
+ λ1

∥∥βββ − βββ (0)
∥∥2

2 + λ2

∑
(q,u)∈P

∥∥bqu − b (0)
qu

∥∥2
2, (2)

where λ1 and λ2 are positive regularization parameters provided by users, βββ(0) and b (0)
qu

are the prior values, and ‖ · ‖2 is the ordinary �2-norm. In practice, values of λ1 and
λ2 are often determined by cross-validation on the training data, while b (0)

qu are often
set to zero to favor simple models. As usual, regularization is applied to avoid over-
fitting and to ensure numerical stability. In our specific application, it also has desired
consequences as explained in the previous subsection.

Since (2) is a least-squares problem with d + N many parameters, one may think
it is intractable to solve for the exact solution since the computation complexity is
O((d+ N)3) and N is often very large. Fortunately, using matrix algebra, we can derive
a closed-form solution for the minimizer of (2), whose complexity is cubic in d and only
linear in N.

Specifically, we partition the index set {1, 2, . . . , t} into I1 ∪ I2 ∪ · · · ∪ IN, so that
I j contains indices in D that corresponds to the j-th distinct (q, u) pair. For every
j ∈ {1, 2, . . . , N}, we define the following quantities,

aj
def= λ2 + |I j|,

b j
def=

∑
i∈I j

xi,

dj
def= λ2b (0) +

∑
i∈I j

ci.
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In addition, we define

A0
def= λ1I +

t∑
i=1

xix�
i ,

d0
def= λ1βββ

(0) +
t∑

i=1

cixi.

Now the optimal solution to the least-squares problem must satisfy the first-order
optimality condition:

∂ ft(βββ, {bq,u})
∂βββ

= 000,

∂ ft(βββ, {bq,u})
∂b j

= 0,

for each j ∈ {1, . . . , N}. Solving this system of linear equations immediately gives the
regularized least-squares solution:

βββ∗ =

⎛
⎝A0 −

N∑
j=1

a−1
j b jb�

j

⎞
⎠

−1 ⎛
⎝d0 −

N∑
j=1

a−1
j djb j

⎞
⎠ (3)

b ∗
j = a−1

j

(
dj − b�

j βββ
∗
)

, for each j ∈ {1, 2, . . . , N}. (4)

In other words, the complexity of solving the least-squares problem now becomes
O(d3 + dN), a substantial improvement over the O((d + N)3) complexity of the naive
approach.

5.3.2. Online Parameter Updates. More importantly, these formulas suggest that we
only need to maintain a set of sufficient statistics (A0, d0, aj, b j, and dj) to obtain the
exact solution when a new data is added to the set D, without the need to recomputing
all quantities.

When a new example (qt+1, ut+1, ct+1) arrives, all these sufficient statistics can be
updated efficiently in an incremental fashion. In particular, let jt+1 be the index of
(qt+1, ut+1) in P, then O(d2) time is needed for the updates:

A0 ← A0 + xt+1x�
t+1

d0 ← d0 + ct+1xt+1

ajt+1 ← ajt+1 + 1
b jt+1 ← b jt+1 + xt+1

djt+1 ← djt+1 + ct+1.

With these updated sufficient statistics, we can now apply Equations (3) and (4) to
compute the exact solutions, which again requires O(d3 + dN) time. However, there
are acceleration techniques that can reduce the complexity to O(d2) and even O(d), as
explained in the next section.

5.3.3. Implementation Issues in Practice. While the update rules we have derived are
reasonably efficient, we would still like greater acceleration for large d and large N, so
that the response time of the whole reranking system can be further reduced.
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First of all, the most time-consuming part is the inversion of the matrix in
Equation (3), which takes O(d3) time. Fortunately, since every new data results in a
rank-one update on the matrix, A0 − ∑N

j=1 a−1
j b jb�

j , a straightforward variant of the
famous Sherman-Morrison formula may be applied to reduce the complexity to O(d2).

Second, we may also ignore off-diagonal elements of the matrix, A0 − ∑N
j=1 a−1

j b jb�
j ,

and so inversion can be done very efficiently in O(d) time. According to our experience
(not reported in the present article), this approximation is quite effective, yielding a
good trade-off between solution quality and time requirement.

Third, we note that it is unnecessary to update all N bias terms b∗
j every time a

new example arrives. In fact, these bias terms can be updated independently, provided
that βββ∗ is given. Therefore, we may delay their updates until the moment they are
used. Specifically, for a new example (qt+1, ut+1, ct+1), we may only update b ∗

jt+1
, where

jt+1 is the index of (qt+1, ut+1) in P. This lazy-update trick completely removes the time
dependency on N, a significant improvement when N is large.

Finally, as mentioned in Section 5.2, it may be impossible and unnecessary to explic-
itly maintain a bias term for every (q, u) pair, since only a small fraction of them are
popular queries and thus are expected to take advantage of those bias terms. While
the regularization helps as previously mentioned, we can also take advantage of a
few techniques such as the hashing trick [Langford et al. 2007] to limit the effective
number of bias terms.

5.4. Model Variations

Given the model form and update formula in Section 5.2 and Section 5.3, there are a
couple of choices to try for our online reranking function, which we describe as follows.

Exploration and ε-greedy. In Section 5.3, we did not describe how the click
feedback for the data D is collected. In order to explore rankings other than the out-
put of our reranking model and collect balanced click feedback in our data set D, we
use ε-greedy strategy. The ε-greedy is a simple strategy to handle the explore-exploit
tradeoff described in Section 5.1. It collects the feedback from the randomly permuted
ranking with probability ε and from the reranked result by the function (1) with prob-
ability 1−ε. Thus, by controlling ε, we can balance the exploration and exploitation for
our online learning, and our exploration bucket data enables us to realize this strategy.
More details on the methodology of using our exploration bucket data are described in
the next section.

Warm start. When we are sequentially learning (βββ, {bqu}) as described in Sec-
tion 5.3, we need not learn them from scratch solely based on online learning (which
is known as cold-start), but learn a starting point from some already available click
logs (i.e., warm-start). The effectiveness of such warm-start models could be critical in
terms of improving the performance and learning speed of our reranking function as
presented in the next section.

Using clicks on multiple positions. In Section 5.3, we inherently assumed that the
click feedback {ci}’s are the ones received by the user when the document was dis-
played in the first position for the query, since we used them as a target for our CTR@1
function in (2). However, although our goal is maximizing CTR@1, we may not limit
ourselves to use the click feedback only on position 1, that is, ct,1 in the rt = {ct,1, . . . , ct,s}
defined in Section 5.1, but use clicks on multiple positions for learning our reranking
function. In that case, we can enlarge the data set D to {(qi, ui,p, ci,p)}p=1,...,s

i=1,2,...,t, and we
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introduce additional bias terms {bp}s
p=1 to correct the positional biases in the click feed-

back on position p. Then, we model CTR@p as

CTR@p(q, u) = CTR@1(q, u) + b p (5)

while modifying the loss function as

ft(βββ, {bqu}, {bp}) def=
t∑

i=1

s∑
p=1

(
ci,p − βββ�xi,p − bqi,pui,p − bp

)2

+ λ1
∥∥βββ − βββ (0)

∥∥2
2 + λ2

∑
(q,u)∈Pt

∥∥bqu − b (0)
∥∥2

2 + λ3

s∑
p=2

∥∥bp − b (0)
p

∥∥2
2, (6)

where λ3 and b (0)
p are regularization coefficient and prior for the positional bias terms

{bp}. Note that we set bp = 0 when p = 1, and our reranking function is still
CTR@1(q, u) = βββTxqu + bqu learned by minimizing (6). In this way, we can utilize more
click feedback than only using the clicks on position 1 to learn the reranking function
(1). In Section 6, we will show how useful this approach is for building the warm start
model described before. For the online updates, however, in order to control the number
of experiments to compare, we remain to use only the clicks at the first positions and
use the loss function and update formula in Section 5.3 for all of the online schemes in
our experiments.

6. EXPERIMENTAL RESULTS

This section reports our experiments on various algorithms for recency search
reranking using the exploration bucket data described in Section 3. Section 6.1
describes an unbiased offline evaluation method we will adopt in the experiments.
Section 6.2 describes a number of representative algorithms for comparison. These al-
gorithms are selected to demonstrate benefits of various algorithmic choices described
in Section 5.4. Section 6.3 presents and analyzes the experiment results in details.
Finally, Section 6.4 revisits the query examined in Section 4, illustrating how our
algorithm adapts to user click feedback to rerank the top documents and yield better
results.

6.1. Unbiased Offline Evaluation

A tricky part of our problem is that, unlike in supervised learning, it is hard to evalu-
ate and compare performance of algorithms using a static set of log data. The reason is
that the click feedback in the log depends on the ranking results that the user observed
when the log was collected; consequently, we do not know what that user might have
clicked if the algorithm we evaluate ranked the results differently. Fortunately, our ex-
ploration bucket data can be used for reliable offline evaluation of different algorithms,
including both batch or online ones.

We follow the “replaying” evaluation method studied by Li et al. [2011] for interac-
tive applications like the reranking problem considered here. First, we hold out the
sessions for the latter three days in the exploration bucket data and use it as a test
set. The first three days’ data may be used as a training set for batch learning or
warm start model described in Section 5.4. We then sort the test sessions in the order
of time stamps. To evaluate an algorithm’s CTR@1 on the test set, we maintain two
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quantities, C and M, which are interpreted as the number of clicks at position 1 and
number of search sessions, respectively. Both C and M are initialized to 0.

(1) We retrieve the t-th session in the test set, present the top s documents together
with their features to the reranking function.

(2) The reranking algorithm then proposes to display one of the documents in the
first position based on its reranking scores. We call it a “match” if this proposed
document is the same as the one displayed in the first position in the retrieved test
session.

(3) If a match happens, we reveal the user feedback ct (1 for click and 0 otherwise) to
the algorithm, and perform the updates: C ← C + ct and M ← M + 1.

(4) Otherwise, ct is not revealed, and the values of C and M are unchanged. Effectively,
this session is ignored.

Finally, the overall CTR@1 of the algorithm in this evaluation process is C/M.
For each session in our test set, the probability that a match happens is 1/s for any

ranking algorithm, since the top s documents are randomly shuffled in our exploration
bucket data. Therefore, for a test set of L sessions, M equals L/s on average. In
our experiments, since L is large, M is almost constant across different runs. The
following key property justifies the soundness of the given evaluation method: it can
be proved that the estimated CTR@1, C/M, of an online algorithm is an unbiased
estimate of its true CTR@1 as if we were able to run it to serve live user traffic [Li
et al. 2011, Theorem 2]. Therefore, algorithms that have higher CTR@1 estimates
using this evaluation method will have higher CTR@1 in live buckets as well. This
important fact allows us to reliably compare and evaluate various algorithms offline
without the costs and risks of actually testing them with live users.

6.2. Models

There are various options to leverage user click feedback to adjust a reranking func-
tion. For instance, one may expect better adaptation to user interest if a reranking
system can adjust its ranking function in real time based on user feedback; it may also
be interested in understanding how reranking performance is affected by the CTR
model, such as the ability to generalize (via the linear features) and specialize (via the
bias terms) in our model (1).

In the following, we describe a few representatives, chosen carefully to demonstrate
the benefits of various algorithmic choices. The models are grouped into four cate-
gories. When there is @4 symbol in the model name, it means that the data D used
for the model update consists of click feedback from top 4 positions in the click log.
Otherwise, by default, D for the following models consists of click feedback only from
the first position.

(1) The first is a baseline that is based entirely on editorial judgments and does not
leverage user clicks at all.
— frmsc(baseline). We used the recency ranking function [Dong et al. 2010a] de-

ployed in our search engine as a baseline. This function was trained using time-
varying recency features and recency demoted labels provided by human editors.
This method does not use click feedback.

(2) The second category contains methods that learn CTR@1 from the first three days’
training data (as specified in Section 6.1), and then, do not online update in the test
phase. Following three batch methods will be compared to their online-learning
counterpart.
— batch(b). This is the linear model in (1) trained on the training set, and then

deployed on the test set without any online updates. Note that there is no
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positional biases in the click feedback in the training set for this model due
to the exploration bucket.

— batch(nb). This is the same as before, but does not use the bias terms in (1). In
other words, only a linear combination of features is used to compute a CTR@1
estimate. This model is used to show the benefits of the bias terms.

— batch@4(counting). This scheme sets βββ = 000 and only train the bias terms from
the training set using click feedback from all 4 positions. That is, this is equiva-
lent to simply computing the ratio of cumulative clicks and views for each query-
document in the training set separately. Since this scheme is not using any
features, when it sees a new query-document pair in the test set, it does not
have any information for the pair to do the reranking; in this case, it switches
to frmsc(baseline). Moreover, note that this scheme uses clicks from all four
positions, so the size of data it uses is four times larger than these two batch
models. Furthermore, we do not utilize the position features described in Sec-
tion 5.4 since the scheme is based on the exploration bucket and the position
biases will be removed as shown in Section 3.

(3) The third category contains online learning methods in Section 5.3 for reranking
with ε-greedy strategy mentioned in Section 5.4. We realize the ε-greedy strat-
egy in our online learning method by utilizing the exploration bucket data again.
That is, while we use the exploration bucket data for an unbiased evaluation of
performances of various schemes as in Section 6.1, we use the data once more
to incrementally train the online schemes, as in Section 5.3. More concretely,
at time t, the click feedback at the first position ct,1 is revealed to the online
schemes for the model updates, no matter whether there is a “match” or not for
the schemes so that the reranking function can observe the feedbacks for all pos-
sible randomly served documents in the top position to correctly learn the rerank-
ing based on CTR@1. Note that this is effectively simulating the ε-greedy strat-
egy with ε = 1 and a separate deployment test bucket for evaluation. Ideally,
to fully realize the ε-greedy strategy rigorously, we need to set ε < 1 and also
learn from the exploitation feedback of the reranking schemes. However, imple-
menting the procedure would reduce the data size for learning significantly (since
we need to simulate the exploitation via “matching” of sessions, and it will cause
large variance in our results). Thus, in our experiment with the online learn-
ing method will learn solely from the random exploration of rankings. Note that
when our online schemes get deployed in the live system, then there would be
no issue with realizing ε-greedy with ε < 1. Also, a clear but subtle point is
that we are revealing the click feedback after the data point was used for the
“replay” evaluation so that we are not training and testing with the same data
point.
Moreover, in practice, we note there is usually a time delay between delivery of
the ranking result and the receipt of user feedback. To make our evaluation and
online learning process closer to reality, we do not reveal user feedback ct,1 to the
reranking algorithm immediately. Rather, these signals are revealed every five
minutes (based on the time stamps of the test sessions) for our simulation. Figure 5
summarizes the whole procedure of batch training for warm start, online update,
and testing using our exploration bucket data.
Based on a few algorithmic choices, we tested following variations to see
the effect of online schemes. Similarly as in the previous batch models,
online@4(counting,ws) uses clicks from all four positions, and the rest only uses
clicks from the first positions.
— online(b) and online(nb). These are the online algorithms that optimize the pa-

rameters in (1) incrementally based on user click feedback, with and without
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Fig. 5. Summary of the usage of the exploration bucket data for batch training, online update, and testing.
ε was set to 1 in our experiments.

bias terms, respectively. Note that both algorithms learn the parameters βββ from
scratch.

— online(b,ws) and online(nb,ws). These are the same as online(b) and online(nb)
but use warm-start initialization of the parameters. Specifically, we used the
batch-learned parameters (in batch(b) and batch(nb), respectively) as βββ (0) and
b (0)

qu in (1). These methods thus combine the prior knowledge extracted from pre-
vious data with the ability to learn online. While the regularization parameters
λ1 and λ2 can be set by cross validation, we set the parameters to 10 based on
our previous experience in related problems (such as in experiments of the cited
reference [Li et al. 2010]), in which values between 1 and 10 seemed to work
stably and reasonably well.4

— online(b,ws,w0). This method is similar to online(b,ws) except that the weight
vector βββ is fixed to the warm-start βββ (0) learned by batch(b). Thus, this model
performs limited online updates and is useful to demonstrate the benefits of
online update of βββ.

— online@4(counting, ws). This scheme does the warm start from the bias terms
learned in batch@4(counting) and continues the learning, or equivalently, count-
ing clicks and views, in the test set using click feedback from all 4 positions. This
scheme is also using four times more data than these online schemes. Again,
since this scheme does not utilize query–document features for generalization,
it may still suffer from the “cold-start” problem on new or tail queries.

(4) Batch learning of (warm-start) parameters in the previous two categories is trained
on the first three days of exploration bucket data. However, although the explo-
ration bucket gives the unbiased CTR@1 of the documents as in Section 4, in prac-
tice, it is not realistic to always require such expensive data in order to build the
batch model as a starting point for online models. Therefore, we use the controlled
log from nonexploration buckets (e.g., production bucket) for the same period of
time to build the batch models and compare them with the models built from the
exploration bucket. Note that the controlled log is very cheap to attain, but have
large positional biases in clicks, so it is not clear to see how well the batch models
trained on the controlled logs would perform. We include following three varia-
tions regarding the batch model with the controlled log, which contained 485, 135

4As a sanity check, we tried varying the parameters in a grid of parameters in a neighboring range, and
found the performance to be quite insensitive (less than 0.6% relative difference).
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Table I. Overall Cumulative nCTR@1 on the Test Set

algorithms nCTR@1 lift over frmsc(baseline)

frmsc(baseline) 0.770 0%
batch(b) 0.877 13.90%
batch(nb) 0.849 10.26%
batch@4(counting) 0.854 10.91%
online(b) 0.875 13.64%
online(nb) 0.839 8.96%
online(b,ws) 0.901 17.01%
online(nb,ws) 0.851 10.52%
online(b,ws,w0) 0.891 15.71%
online@4(counting) 0.872 13.25%
batch@1(control) 0.883 14.68%
batch@4(control,np) 0.856 11.17%
batch@4(control) 0.885 14.94%

sessions from production logs that overlaps with the first three days of exploration
bucket.5
— batch(control). This method learns the model in (1) using the clicks at the first

positions in the controlled log.
— batch@4(control,np). This method learns the model with the loss function in (6)

and using top four positions’ clicks in the controlled log. However, it ignores the
position biases, {b p}’s are all set to zero, so data from all four positions are not
distinguished.

— batch@4(control). This method improves on batch@4(control,np) by considering
position biases and including nonzero {bp}’s as described in Section 5.4.

6.3. Experimental Results

We ran the algorithms described in the previous subsection, whose overall nCTR@1
results are summarized in Table I. The lifts over the baseline’s nCTR@1 are also
computed.

To visualize how instantaneous nCTR@1 evolves over time, we also computed ag-
gregated clicks in every 6-hour period for the algorithms. Only five algorithms are
included in Figure 6 to ensure legibility.

6.3.1. Results Analysis. A number of important observations are in order based on the
results reported in Table I and Figure 6.

(1) The advantage of leveraging user click feedback is obvious from the lift of all al-
gorithms over the baseline that does not use click feedback at all. The click lift,
which ranges from 8.96% to 17.01%, is statistically significant given the size of our
data set. Even the batch-learning methods that do not perform online updates are
quite strong, capable of achieving at least 10% lift.

(2) We can see the additional benefits brought by the bias terms in both batch and
online algorithms. It is true in all cases that an algorithm is better than its coun-
terpart without bias terms. In the case between online(b,ws) and online(nb,ws), the
bias terms account for about 6.49% lift.

(3) While batch algorithms have quite strong lift, greater lifts are achieved by algo-
rithms that adjust their reranking functions online. This benefit is expected since

5Note that the online methods described here may also be combined with warm-start models learned from
control logs. We do not include them for comparison in the article to simplify the presentation of results.

ACM Transactions on Information Systems, Vol. 30, No. 4, Article 20, Publication date: November 2012.



20:20 T. Moon et al.

Fig. 6. Instantaneous (normalized) CTR@1 of the four models on the test data. Each point was mea-
sured for an approximately six-hour period. The counting scheme in this plot refers to online@4(counting)
scheme.

the online algorithms are able to extract more information from online click feed-
back, in addition to the batch-learned models. In addition, it is worth pointing
out a practically important fact that it is compatible to use batch-learned mod-
els as warm-start models for online methods. Of all the algorithms in Table I, the
greatest lift is achieved by online(b,ws)—the online method that uses batch-learned
warm-start models and bias terms. Even for the coefficient vector βββ that is shared
by all query-document pairs, updating it online is still helpful, which is justified by
the gap between online(b,ws) and online(b,ws,w0). A larger gap is possible if the
time span of our test data is larger.

(4) We examine the role of generalization in our CTR@1 model. As discussed ear-
lier, the bias terms are essentially zero except for popular query-document pairs,
due to the regularization we used in the optimization step. Therefore, the linear
part in (1) determines the CTR@1 estimates of tail queries for which we observed
one or few sessions. The result in Table I confirms our conjecture: the method
online@4(counting) which uses the bias terms alone for reranking yielded a lower
click lift than online(b,ws,w0) or online(b,ws). The reason is that the CTR model in
online@4(counting) cannot make good prediction in “cold-start” situation and so lit-
tle lift was achieved on the tailed queries. Moreover, note that online@4(counting)
is using three times more data than the others, which emphasizes the significance
of the feature-based generalization.

(5) Our results suggest it is possible to use control log to build a competitive warm-
start model. It should be noted that the control log has much more data than
the exploration data, thus the strong performance. However, position bias has to
be considered when clicks from multiple positions are used, as demonstrated by
the gap between batch@4(control) and batch@4(control,np). We believe the perfor-
mance of learning from controlled logs could be further improved by advanced click
models. We plan to investigate this direction in future work.
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6.3.2. Discussion on the Relations with Click Models and Click-Based Reranking. We delib-
erately have not included the results of the possible reranking schemes that apply
CTR@1 estimation methods of various click models in the literature, because the focus
of our work and those click models is different. That is, as mentioned in Section 2.2,
one of the main motivations for studying click models is to remove positional biases of
the clicks in the controlled log and obtain unbiased estimate of static CTR@1 of each
query-document pair. Moreover, most of the click models operate in a batch mode,
which requires significant time and complexity for collecting the data and training the
model. In contrast, in our work, the focus is to show the effectiveness of online learning
framework that quickly updates the model and tracks the CTR@1 variations of docu-
ments for recency queries by utilizing the feature based models and the exploration
bucket, in which the positional biases are already removed. Therefore, applying the
click models in our exploration bucket to obtain CTR@1 estimates for reranking in an
online manner would be not only computationally expensive, due to the complex train-
ing process, but also not necessary, since the positional biases are already removed in
the exploration bucket.

We may still try to apply the click models in our reranking scenario by obtaining the
CTR@1 estimates from the controlled logs and use the estimates for reranking in the
test set. However, we can expect that this scheme would not perform much better than
batch@4(counting) in Table I, since batch@4(counting) is estimating the CTR@1 from
the exploration bucket in which the positional biases are already removed, although
the exploration bucket data is smaller than the controlled log data. For the compari-
son purpose and sanity check, we have implemented several click models, for instance,
Dynamic Bayesian Network (DBN) model [Chapelle and Zhang 2009], Cumulated Rel-
evance model [Dupret and Liao 2010], and COEC model [Zhang and Jones 2007], on
the previously described controlled log, and as expected, their test results were simi-
lar to or slightly worse than batch@4(counting). We have not included the numbers in
order to prevent from causing unnecessary confusion to the readers.

From these intuitions and the strong generalization performances of the feature
based models in our experiment, one may also conceive of online reranking schemes
for recency queries that combine feature-based model with click models as in Zhu et al.
[2010], which would be an interesting topic for future research. Again, the main pur-
pose of this article is to propose a framework for online reranking method in recency
search problem, not to find the best click models to estimate CTR@1, thus our findings
can be applied to those future work as well.

6.3.3. Lift Distribution. We now examine lift distribution over queries with different
impression and lengths, respectively. Results of two representatives, batch(b) and
online(b,ws), are reported.

Figure 7 presents CTR@1 lifts over frmsc aggregated over queries with different
impressions. We notice that the online(b,ws) model is doing very well on popular re-
cency queries, whereas the batch(b) model gives more lift on queries with less than 2
impressions. For queries with very limited impressions, for instance, less than 2, the
online(b,ws) model cannot gain much advantage over the batch(b) model. This problem
might be mitigated when applying the online(b,ws) model to larger traffic. This obser-
vation also suggests a practical solution, that is, employing batch(b) models for queries
with scarce impressions while using online(b,ws) models for popular recency queries
only. It is expected that the online(b,ws) model achieves much more lift on popular
recency queries, since the batch(b) model cannot specialize well on such cases despite
the relatively large number of impressions. For example, the query “giant squids in
California” was a popular recency query. A batch(b) model well trained on historical
click events still fails to foresee the popularity and high relevance of the youtube video,
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Fig. 7. Relative CTR@1 lift in percentage (%) over the baseline model (frmsc) for queries with different
impressions.

Fig. 8. Relative CTR@1 lift in percentage (%) over the baseline model (frmsc) for queries with different
lengths.

whereas the online(b,ws) model does so correctly by adapting to users’ click feedback;
see Section 6.4 for more details of this example.

Figure 8 presents CTR@1 lifts over frmsc for queries with different lengths. Ex-
cept for a tie in two-word queries, the online(b,ws) model consistently outperforms the
batch(b) model. The results suggest the online reranking method is robust to queries
of various lengths.

6.3.4. Comparison of Other Click Metrics. Although we have focused on training and
evaluating our online reranking function based on CTR@1, we also compare our results
with following other click metrics for ranking proposed in Radlinski et al. [2008].

— Query CTR is the average number of clicks for each query
— 1−Abandonment Rate is the probability of a session receiving a click
— Max RR (Reciprocal Rank) is the reciprocal rank of the highest ranked result

clicked on
— Mean RR (Reciprocal Rank) is the average of clicked documents’ reciprocal ranks
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Fig. 9. Relative lift in percentage (%) over the baseline model (frmsc) on various click metrics.

— Min RR (Reciprocal Rank) is the reciprocal rank of the lowest ranked results
clicked on.

Thus, for all metrics, higher values are assumed to indicate better ranking qualities.
In Figure 9, both batch and online models show significant lifts over the frmsc base-

line on all click metrics listed before. Moreover, the online(b,ws) method consistently
gives about 2% more lift than batch(b). Thus, although our algorithms focus on maxi-
mizing CTR@1, it also gives simultaneous lifts on other click metrics as well. This fact
shows the easily measurable CTR@1 is a good surrogate to optimize, and also justifies
our choice of using click at the top position as user feedback.

Remark. We have done similar experiments on the nonrecency queries as well, but
our online reranking scheme did not show too much gain for those queries as in the re-
cency queries, of which results are omitted here. The absence of improvements for
nonrecency queries is expected; the relevance of documents with respect to such
queries does not change dramatically over time, so the reranking based on the click
feedback may not be too different from the original ranking.

6.3.5. Effect of Model Update Frequency. A critical parameter in our online-learning
framework is the update frequency, that is, how often we use click feedback to update
the reranking function. Usually, more frequent updates ensure better ability to adapt
to relevance changes, but, at the same time, they impose greater engineering require-
ments on the search engine. It is of practical significance to study how performance of
an online-learning algorithm is affected by model update frequencies.

Our results so far have used 5 minutes as the update cycle, which was determined
somewhat arbitrarily. Figure 10 plots the cumulative nCTR@1 of online(b,ws) with
varying model update periods, ranging from 5 minutes to 3 days. As expected, the
longer the period, the lower nCTR@1 is achieved due to lack of swift adaptivity. When
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Fig. 10. Cumulative nCTR@1 of online(b,ws) with various model update periods. The leftmost result on
the blue line is for 5 minutes, and the rightmost for 3 days. The straight line is for batch(b) that does not
perform any online model updates. It should be noted that our data for online learning contained slightly
more than 3 days’ data, thus the small difference in the performance of batch(b) and online(b,ws) with a
3-day model update period.

the model is updated every 2 or 3 days, the nCTR@1 is very close to the batch(b) scheme
that does not do online updates at all.

An interesting observation is that our method is quite robust to this parameter.
Within the range of six hours, model update periods do not affect the performance
much. This is also consistent with our intuition that, when a breaking news occurs, a
few hours’ delay may be good enough for online learning to wait for enough click signals
to identify the relevance changes. In general, however, we expect greater benefits of
online learning with higher traffic volume.

6.4. Case Study

We now revisit our example query “giant squid in California” in Section 4 to illustrate
how our online reranking function can adapt to the click feedback quickly and track
the best reranking. Coincidentally, the query happened to only appear in our test set.
We ran our online model, online(b,ws), on the test set, and recorded the function values
of the 4 URLs. Figure 11(a) shows the function values of 4 URLs for the first 10 hours,
and Figure 11(b) presents the entire temporal curves for those function values in the
lifetime of “giant squid in California.”

Since the initial reranking function online(b,ws) is (almost) identical to the fixed one
of batch(b), we can see from Figure 11(a) that when the query appears around the 5th
hour, batch(b) orders the four URLs as

(1) foxnews.com/story/0,2933,290667,00.html
(2) youtube.com/watch?v=I3ENZDFkAow
(3) metroactive.com/metro/03.29.06/squid-0613.html
(4) en.wikipedia.org/wiki/Giant_Squid_(band).

Note that this ranking is different from the frmsc ranking presented in Section 4. That
is, although the batch(b) has not observed the query “giant squid in California” in its
training set sessions, from the sessions of other queries in the training set, it was able
to predict based on the query–document features that the “video” page will attract
many clicks for the query and improve the original ranking. Nonetheless, we see that
it still fails to accurately predict the users’ click behaviors.
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Fig. 11. Function values in the online model on the 4 URLs associated with the recency query “giant squid
in California.” Note that the URL of metroactive.com was replaced by another URL (not shown here) after
the 23rd hour.

On the other hand, given the users’ click patterns in Figure 4, the online(b,ws)
promptly learns from them and put the “video” content with the highest CTR to the top
rank within an hour. The ranking was then maintained for the rest of the time. Then,
after the 25th hours, when the impression of the query quickly decreased toward 0 as
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shown in Figure 3, the function values of online(b,ws) were kept intact, as can be seen
in Figure 11(b).

Thus, this example indeed illustrates how reranking algorithms may benefit from
user click feedback to improve ranking results. Furthermore, by real-time adap-
tion online(b,ws) can quickly learn from users’ click patterns and outperforms not
only the editorial-based batch recency ranking, frmsc, but also the click-based batch
reranking, batch(b), for recency queries.

7. CONCLUSIONS

In this work, we investigated various learning algorithms to reranking recency search
results based on real-time user feedback. Our contributions are threefold. First, our
evaluation method is novel for Web search—a random exploration bucket was used to
collect user feedback, which not only removed positional bias but also allowed one to
reliably evaluate online learning algorithms offline. Second, we proposed a rerank-
ing approach to improve current search results for recency queries, and carried out
extensive empirical results for a dozen of variants. Third, we demonstrated the need
for using online learning as a flexible machine learning paradigm to adapt a ranking
system to time-varying document relevance.

In future work, we would like to investigate on how we can combine the feature-
based model and click models in the recency search reranking problem. Also, incor-
porating other metrics from search sessions, such as dwell time of a click, session
length, or revenue, into our objective function so that the learned reranking model can
optimize for those more sophisticated objective would be another topic to pursue. Fi-
nally, in this work, we focused on ranking documents based on individual document’s
CTR estimate, and it would be more challenging to design algorithms for the best
permutation of a set of documents, in which interactions between documents can be
taken into account, so that the diversity of the ranking can be taken into account as
well.
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