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Abstract—Learning to rank arises in many data mining applications, ranging from web search engine, online advertising to

recommendation system. In learning to rank, the performance of a ranking model is strongly affected by the number of labeled

examples in the training set; on the other hand, obtaining labeled examples for training data is very expensive and time-consuming.

This presents a great need for the active learning approaches to select most informative examples for ranking learning; however, in

the literature there is still very limited work to address active learning for ranking. In this paper, we propose a general active learning

framework, expected loss optimization (ELO), for ranking. The ELO framework is applicable to a wide range of ranking functions.

Under this framework, we derive a novel algorithm, expected discounted cumulative gain (DCG) loss optimization (ELO-DCG), to

select most informative examples. Then, we investigate both query and document level active learning for raking and propose a

two-stage ELO-DCG algorithm which incorporate both query and document selection into active learning. Furthermore, we show

that it is flexible for the algorithm to deal with the skewed grade distribution problem with the modification of the loss function.

Extensive experiments on real-world web search data sets have demonstrated great potential and effectiveness of the proposed

framework and algorithms.

Index Terms—Active learning, ranking, expected loss optimization

Ç

1 INTRODUCTION

RANKING is the core component of many important infor-
mation retrieval problems, such as web search, recom-

mendation, computational advertising. Learning to rank
represents an important class of supervised machine learn-
ing tasks with the goal of automatically constructing rank-
ing functions from training data. As many other supervised
machine learning problems, the quality of a ranking func-
tion is highly correlated with the amount of labeled data
used to train the function. Due to the complexity of many
ranking problems, a large amount of labeled training exam-
ples is usually required to learn a high quality ranking func-
tion. However, in most applications, while it is easy to
collect unlabeled samples, it is very expensive and time-
consuming to label the samples.

Active learning comes as a paradigm to reduce the label-
ing effort in supervised learning. It has been mostly studied
in the context of classification tasks [20]. Existing algorithms
for learning to rank may be categorized into three groups:
pointwise approach [8], pairwise approach [26], and listwise

approach [22]. Compared to active learning for classifica-
tion, active learning for ranking faces some unique chal-
lenges. First, there is no notion of classification margin in
ranking. Hence, many of the margin-based active learning
algorithms proposed for classification tasks are not readily
applicable to ranking. Further more, even some straightfor-
ward active learning approach, such as query-by-committee
(QBC), has not been justified for the ranking tasks under
regression framework. Second, in most supervised learning
setting, each data sample can be treated completely inde-
pendent of each other. In learning to rank, data examples
are not independent, though they are conditionally inde-
pendent given a query. We need to consider this data
dependence in selecting data and tailor active learning algo-
rithms according to the underlying learning to rank
schemes. Third, ranking problems are often associated with
very skewed data distributions. For example, in the case of
document retrieval, the number of irrelevant documents is
of orders of magnitude more than that of relevant docu-
ments in training data. It is desirable to consider the data
skewness when selecting data for ranking. Therefore, there
is a great need for an active learning framework for ranking.

In this paper, we attempt to address those three impor-
tant and challenging aspects of active learning for ranking.
We first propose a general active learning framework,
expected loss optimization (ELO), and apply it to ranking.
The key idea of the proposed framework is that given a loss
function, the samples minimizing the expected loss (EL) are
the most informative ones. Under this framework, we
derive a novel active learning algorithm for ranking, which
uses function ensemble to select most informative examples
that minimizes a chosen loss. For the rest of the paper, we
use web search ranking problem as an example to illustrate

� B. Long is with LinkedIn Inc., Mountain View, CA 94043.
E-mail: blong@linkedin.com.

� J. Bian is with Microsoft Research, Beijing, China 100080.
E-mail: jibian@microsoft.com.

� O. Chapelle is with Criteo, Palo Alto, CA 94301.
E-mail: olivier@chapelle.cc.

� Y. Zhang is with Shanghai Jiao Tong University, Shanghai, China
200240. E-mail: ya_zhang@sjtu.edu.cn.

� Y. Inagaki and Y. Chang are with Yahoo! Labs, Sunnyvale, CA 94089.
E-mail: {inagakiy, yichang}@yahoo-inc.com.

Manuscript received 3 May 2013; revised 22 Dec. 2013; accepted 13 Sept.
2014. Date of publication 29 Oct. 2014; date of current version 27 Mar. 2015.
Recommended for acceptance by I. Davidson.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TKDE.2014.2365785

1180 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. 5, MAY 2015

1041-4347� 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



the ideas and perform evaluation. But the proposed
method is generic and may be applicable to all ranking
applications. In the case of web search ranking, we mini-
mize the expected discounted cumulative gain (DCG) loss,
one of the most commonly used loss for web search rank-
ing. This algorithm may be easily adapted to other ranking
loss such as normalized discounted cumulative gain
(NDCG) or average precision. To address the data depen-
dency issue, the proposed algorithm is further extended to
a two-stage active learning schema to seamlessly integrate
query level and document level data selection. Finally, we
extended the proposed algorithms to address the skew
grade distribution problem.

The main contributions of the paper are summarized as
follows.

� We propose a general active learning framework
based on expected loss optimization. This frame-
work is applicable to various ranking scenarios with
a wide spectrum of learners and loss functions. We
also provides a theoretically justified measure of the
informativeness.

� Under the ELO framework, we derive novel algo-
rithms to select most informative examples by opti-
mizing the expected DCG loss. Those selected
examples represent the ones that the current ranking
model is most uncertain about and they may lead to
a large DCG loss if predicted incorrectly.

� We propose a two stage active learning algorithm for
ranking, which addresses the sample dependence
issue by first performing query level selection and
then document level selection.

� We further show how to extend ELO framework to
address the skewed grade distribution problem in
ranking. Balanced version ELO algorithms are
derived for both query level active learning and two-
stage active learning.

2 RELATED WORK

The main motivation for active learning is that it usually
requires time and/or money for the human expert to label
examples and those resources should not be wasted to label
non-informative samples, but be spent on interesting ones.

Optimal experimental design [12] is closely related to
active learning as it attempts to find a set of points such that
the variance of the estimate is minimized. In contrast to this
“batch” formulation, the term active learning often refers to
an incremental strategy [7].

There has been various types of strategies for active
learning that we now review. A comprehensive survey can
be found in [21]. The simplest and maybe most common
strategy is uncertainty sampling [18], where the active learn-
ing algorithm queries points for which the label uncertainty
is the highest. The drawback of this type of approach is that
it often mixes two types of uncertainties, the one stemming
from the noise and the variance. The noise is something
intrinsic to the learning problem which does not depend on
the size of the training set. An active learner should not
spend too much effort in querying points in noisy regions of
the input space. On the other hand, the variance is the

uncertainty in the model parameters resulting from the
finiteness of the training set. Active learning should thus try
to minimize this variance and this was first proposed in [7].

In Bayesian terms, the variance is computed by integrat-
ing over the posterior distribution of the model parameters.
But in practice, it may be difficult or impossible to compute
this posterior distribution. Instead, one can randomly sam-
ple models from the posterior distribution [9]. An heuristic
way of doing so is to use a bagging type of algorithm [1].
This type of analysis can be seen as an extension of the
Query-By-Committee algorithm [14] which has been derived
in a noise free classification setting. In that case, the poste-
rior distribution is uniform over the version space—the space
of consistent hypothesis with the labeled data—and the
QBC algorithm selects points on which random functions in
the version space have the highest disagreement.

Another fairly common heuristic for active learning is to
select points that once added in the training set are expected
to result in a large model change [21] or a large increase in
the objective function value that is being optimized [4].

Another related filed is ranking. In recent years, the rank-
ing problem is frequently formulated as a supervised
machine learning problem [28], [29], [30], [31], [32], [33], [34].
These learning-to-rank approaches are capable of combining
different kinds of features to train ranking functions. The
problem of ranking can be formulated as that of learning a
ranking function from pair-wise preference data. The idea is
to minimize the number of contradicting pairs in training
data. For example, RankSVM [28] uses support vector
machines to learn a ranking function from preference data.
RankNet [29] applies neural network and gradient descent
to obtain a ranking function. RankBoost [30] applies the idea
of boosting to construct an efficient ranking function from a
set of weak ranking functions. The studies reported in [33]
proposed a framework called GBRank using gradient
descent in function spaces, which is able to learn relative
ranking information in the context of web search.

For the main focus of this paper, active learning for rank-
ing, compared with traditional active learning, there is still
limited work in the literature. Donmez and Carbonell stud-
ied the problem of document selection in ranking [11]. Their
algorithm selects the documents which, once added to the
training set, are the most likely to result in a large change in
the model parameters of the ranking function. They apply
their algorithm to RankSVM [17] and RankBoost [13]. Also
in the context of RankSVM, [25] suggests to add the most
ambiguous pairs of documents to the training set, that is
documents whose predicted relevance scores are very close
under the current model [35], [36]. Other works based on
pairwise ranking include [6], [10]. In case of binary rele-
vance, [5] proposed a greedy algorithm which selects docu-
ment that are the most likely to differentiate two ranking
systems in terms of average precision. Moreover, an empiri-
cal comparison of document selection strategies for learning
to rank can be found in [2]. Finally, Long et al. [19] proposed
a general active learning framework for ranking. But, it still
suffered from the problem of imbalanced grade in ranking.

There are some related works about query sampling.
Yilmaz and Robertson [24] empirically show that having
more queries but less number of documents per query is
better than having more documents and less queries. Yang
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et al. propose a greedy query selection algorithm that tries
to maximize a linear combination of query difficulty, query
density and query diversity [23].

3 EXPECTED LOSS OPTIMIZATION

FOR ACTIVE LEARNING

As explained in the previous section, a natural strategy for
active learning is based on variance minimization. The vari-
ance, in the context of regression, stems from the uncer-
tainty in the prediction due to the finiteness of the training
set. Cohn et al. [7] proposes to select the next instance to be
labeled as the one with the highest variance. However, this
approach applies only to regression and we aim at general-
izing it through the Bayesian expected loss [3].

In the rest of the section, we first review Bayesian deci-
sion theory in Section 3.1 and then introduce the expected
loss optimization principle for active learning. In Section 3.2
we show that in the cases of classification and regression,
applying ELO turns out to be equivalent to standard active
learning method. Finally, we present ELO for ranking in
Section 3.3.

3.1 Bayesian Decision Theory

We consider a classical Bayesian framework to learn a func-
tion f : X ! Y parametrized by a vector u. The training data
D is made of n examples, ðx1; y1Þ; ; ðxn; ynÞ. Bayesian learn-
ing consists in:

1) Specifying a prior P ðuÞ on the parameters and a like-
lihood function P ðyjx; uÞ.

2) Computing the likelihood of the training data,
P ðDjuÞ ¼Qn

i¼1 P ðyijxi; uÞ.
3) Applying Bayes rule to get the posterior distribution

of the model parameters, P ðujDÞ ¼ P ðDjuÞP ðuÞ=
P ðDÞ.

4) For a test point x, computing the predictive distribu-
tion P ðyjx;DÞ ¼ R

u
P ðyjx; uÞP ðujDÞdu.

Note that in such a Bayesian formalism, the prediction
is a distribution instead of an element of the output space
Y. In order to know which action to perform (or which
element to predict), Bayesian decision theory needs a loss
function. Let ‘ða; yÞ be the loss incurred by performing
action a when the true output is y. Then the Bayesian
expected loss is defined as the expected loss under the
predictive distribution:

rðaÞ :¼
Z
y

‘ða; yÞP ðyjx;DÞdy: (1)

The best action according to Bayesian decision theory is
the one that minimizes that loss: a� :¼ argminarðaÞ. Central
to our analysis is the expected loss of that action, rða�Þ or

ELðxÞ :¼ min
a

Z
y

‘ða; yÞP ðyjx;DÞdy: (2)

This quantity should be understood as follows: given that
we have taken the best action a� for the input x, and that the
true output is in fact given by P ðyjx;DÞ, what is, in expecta-
tion, the loss to be incurred once the true output is revealed?

The overall generalization error (i.e. the expected error
on unseen examples) is the average of the expected loss
over the input distribution:

R
x ELðxÞP ðxÞdx. Thus, in order

to minimize this generalization error, our active learning
strategy consists in selecting the input instance x to maxi-
mize the expected loss:

argmax
x

ELðxÞ:

3.2 ELO for Regression and Classification

In this section, we show that the ELO principle for active
learning is equivalent to well known active learning strat-
egies for classification and regression. In the cases of
regression and classification, the ”action” a discussed
above is simply the prediction of an element in the output
space Y.

3.2.1 Regression

The output space for regression is Y ¼ R and the loss func-

tion is the squared loss ‘ða; yÞ ¼ ða� yÞ2. It is well known
that the prediction minimizing this square loss is the mean
of the distribution and that the expected loss is the variance:

arg min
a

Z
y

ða� yÞ2P ðy jx;DÞdy ¼ m

and min
a

Z
y

ða� yÞ2P ðy jx;DÞdy ¼ s2;

where m and s2 are the mean and variance of the predictive
distribution. So in the regression case, ELO will choose the
point with the highest predictive variance which is exactly
one of the classical strategy for active learning [7].

3.2.2 Classification

The output space for binary classification is Y ¼ f�1; 1g and
the loss is the 0/1 loss: ‘ða; yÞ ¼ 0 if a ¼ y, 1 otherwise. The
optimal prediction is given according to argmaxa2YP ðy ¼
ajx;DÞ and the expected loss turns out to be:

minðP ðy ¼ 1jx;DÞ; P ðy ¼ �1jx;DÞÞ;

which is maximum when P ðy ¼ 1jx;DÞ ¼ P ðy ¼ �1jx;DÞ ¼
0:5, that is when we are completely uncertain about the class
label. This uncertainty based active learning is the most
popular one for classification which was first proposed in
[18].

3.3 ELO for Ranking

In the case of ranking, the input instance is a query and a set
of documents associated with it, while the output is a vector
of relevance scores. If the query q has n documents, let us
denote by Xq :¼ ðx1; . . . ; xnÞ the feature vectors describing
these (query,document) pairs and by Y :¼ ðy1; . . . ; ynÞ their
labels. As before we have a predictive distribution P ðY j
Xq;DÞ. Unlike active learning for classification and regres-
sion, active learning for ranking can select examples at dif-
ferent levels. One is query level, which selects a query with
all associated documents Xq; the other one is document
level, which selects documents xi individually.

1182 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 27, NO. 5, MAY 2015



3.3.1 Query Level

In the case of ranking, the ”action” in ELO framework is
slightly different than before because we are not directly
interested in predicting the scores, but instead we want to
produce a ranking. So the set of actions is the set of permu-
tations of length n and for a given permutation p, the rank
of the ith document pðiÞ. The expected loss for a given p can
thus be written as:Z

Y

‘ðp; Y ÞP ðY jXq;DÞdY; (3)

where ‘ðp; Y Þ quantifies the loss in ranking according to p if
the true labels are given by Y . The next section will detail the
computation of the expected loss where ‘ is the DCG loss.

As before, the ELO principle for active learning tells us to
select the queries with the highest expected losses:

ELðqÞ :¼ min
p

Z
Y

‘ðp; Y ÞP ðY jXq;DÞdY: (4)

As an aside, note that the ranking minimizing the loss (3)
is not necessarily the one obtained by sorting the documents
according to their mean predicted scores. This has already
been noted for instance in [27].

3.3.2 Document Level

Selecting the most informative document is a bit more com-
plex because the loss function in ranking is defined at the
query level and not at the document level. We can still use
the expected loss (4), but only consider the predictive distri-
bution for the document of interest and consider the scores
for the other documents fixed. Then we take an expectation
over the scores of the other documents. This leads to:

ELðq; iÞ ¼
Z
Y i

min
p

Z
yi

‘ðp; Y ÞP ðY jXq;DÞdyidY i; (5)

where ELðq; iÞ is the expected loss for query q associatedwith

the ith document and Y i is the vector Y after removing yi.

4 ALGORITHM DERIVATION

Wenow provide practical implementation details of the ELO
principle for active learning and in particular specify how to
compute equations (4) and (5) in case of the DCG loss.

The difficulty of implementing the formulations of the
previous section lies in the fact that the computation of the
posterior distributions P ðyijxi;DÞ and the integrals is in
general intractable. For this reason, we instead use an
ensemble of learners and replace the integrals by sums over
the ensemble. As in [1], we propose to use bootstrap to con-
struct the ensemble. More precisely, the labeled set is sub-
sampled several times and for each subsample, a relevance
function is learned. The predictive distribution for a docu-
ment is then given by the predicted relevance scores by var-
ious functions in the ensemble. The use of bootstrap to
estimate predictive distributions is not new and there has
been some work investigating whether the two procedures
are equivalent [16].

Finally note that in our framework we need to estimate
the relevance scores; therefore, we concentrate in this paper

on pointwise approaches for learning to rank, since pairwise
and listwise approaches may not provide relevance scores.
However, the proposed algorithm can be applied to situa-
tions when pairwise and listwise approaches can generate
relevance scores.

4.1 Query Level Active Learning

If the metric of interest is DCG, the associated loss is the dif-
ference between the DCG for that ranking and the ranking
with largest DCG:

‘ðp; Y Þ ¼ max
p0

DCGðp0; Y Þ �DCGðp; Y Þ; (6)

where

DCGðp; Y Þ ¼
X
i

2yi � 1

log2ð1þ pðiÞÞ : (7)

Substituting (6) into (4), the expected loss for a given q is
expressed as follows:

ELðqÞ ¼ min
p

Z
Y

ðmax
p0

DCGðp0; Y Þ �DCGðp; Y ÞÞ
P ðY jXq;DÞdY

¼
Z
Y

max
p0

DCGðp0; Y ÞP ðY jXq;DÞdY

�max
p

Z
Y

DCGðp; Y ÞP ðY jXq;DÞdY:

(8)

The derivation of the second step uses the fact that the first
term in the loss function (6) is a constant w.r.t. p.

The maximum in the first component of (8) can easily be
found by sorting the documents according to Y . We rewrite
the integral in the second component as:Z

Y

DCGðp; Y ÞP ðY jXq;DÞdY

¼
X
i

1

log2ð1þ pðiÞÞ
Z
yi

ð2yi � 1ÞP ðyijxi;DÞdyi|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
:¼ti

; (9)

with which the maximum can now be found by sorting
the ti.

The pseudo-code for selecting queries based on equa-
tion (8) is presented in Algorithm 1. The notations and defi-
nitions are as follows:

� G is the gain function defined as

GðsÞ ¼ 2s � 1:
.

� The notation �h imeans average. For instance,

dih i ¼ 1

N

XN
i¼1

di:

� BDCG is a function which takes as input a set of gain
values and returns the corresponding best DCG:

BDCGðfgjgÞ ¼
X
j

gj
log2ð1þ p�ðjÞÞ ;

where p� is the permutation sorting the gj in decreas-
ing order.
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Algorithm 1. Query Level ELO-DCG Algorithm

Input: Labeled set L, unlabeled set U, the number of queries to
be selected nq.
Output: The selected query setQ.
Method:
for i ¼ 1; . . . ; N do N ¼ size of the ensemble
Subsample L and learn a relevance function
sij  score predicted by that function on the jth document
in U .

end for
for q ¼ 1; . . . ; Q do Q ¼ number of queries in U
I  documents associated to q
for i ¼ 1; . . . ; N do
di  BDCGðfGðsijÞgj2I Þ

end for
tj  hGðsijÞi
d BDCGðftjgj2I Þ
ELðqÞ  dih i � d

end for
Return Q contains nq queries with the highest values ELðqÞ:

4.2 Document Level Active Learning

Substituting (6) into (5), the expected loss of the ith docu-
ment is expressed as:

ELðq; iÞ ¼
Z
Y i

min
p

Z
yi

ðmax
p0

DCGðp0; Y Þ �DCGðp; Y ÞÞdyidY i;

¼
Z
Y i

Z
yi

max
p0

DCGðp0; Y ÞP ðY jXq;DÞdyi
"

�max
p

Z
yi

DCGðp; Y ÞP ðY jXq;DÞdyi
#
dY i;

(10)
which is similar to equation (8) except that the uncertainty is
on yi instead of the entire vector Y and that there is an outer
expectation on the relevance values for the other documents.
The corresponding pseudo-code is provided in Algorithm 2.

Algorithm 2. Document Level ELO-DCG Algorithm

Input: Labeled set L, unlabeled set U, the number of documents
to be selected nu.
Output: The selected document set D.
Method:
for i ¼ 1; . . . ; N do N ¼ size of the ensemble
Subsample L and learn a relevance function
sij  score predicted by that function on the jth document
in U .

end for
for all j 2 U do
for i ¼ 1; . . . ; N do
tk  sik; 8k 6¼ j
for p ¼ 1; . . . ; N do
tj  spj
dp  BDCGðfGðtkÞgÞ

end for
gk  GðsikÞ; 8k 6¼ j
gj  hGðsijÞi

ELðjÞ  dp
� �� BDCGðfgkgÞ

end for
end for
Return D that contains nu documents with the highest values of
ELðjÞ:

4.3 Two-Stage Active Learning

Both query level and document level active learning have
their own drawbacks. Since query level active learning selects
all documents associated with a query, it is tend to include
non-informative documents when there are a large number of
documents associated with each query. For example, in Web
search applications, there are large amount of Web docu-
ments associated for a query; most of them are non-informa-
tive, since the quality of a ranking function is mainly
measured by its ranking output on a small number of top
ranked Web documents. On the other hand, document level
active learning selects documents individually. This selection
process implies unrealistic assumption that documents are
independent, which leads to some undesirable results. For
example, an informative query could be missed if none of its
documents is selected; or only one document is selected for a
query, which is not a good example in ranking learning.

Algorithm 3. Two Stage ELO-DCG Algorithm

Input: Labeled set L, unlabeled doc U , the number of queries to
be selected nq, the number of documents to be selected for each
query nu.
Output: The selected query-document set D.
Method:
for i ¼ 1; . . . ; N doN ¼ size of the ensemble
Subsample L and learn a relevance function
sij  score predicted by that function on the jth document
in U .

end for
for q ¼ 1; . . . ; Q do Q ¼ number of queries in U
I  documents associated to q
for i ¼ 1; . . . ; N do
di  BDCGðfGðsijÞgj2I Þ

end for
tj  hGðsijÞi
d BDCGðftjgj2I Þ
ELðqÞ  dih i � d

end for
Select nq queries with the highest values ELðqÞ intoQ.
for all q 2 Q do
I  documents associated to q
for all j 2 I do
for i ¼ 1; . . . ; N do
tk  sik; 8k 6¼ j
for p ¼ 1; . . . ; N do
tj  spj
dp  BDCGðfGðtkÞgÞ

end for
gk  GðsikÞ; 8k 6¼ j

gj  hGðsijÞi
ELðjÞ  dp

� �� BDCGðfgkgÞ
end for
Select nu documents with the highest values of ELðjÞ into
Dq

end for
D ¼ D [ Dq

end for
Return D.

Therefore, it is natural to combine query level and docu-
ment level into two-stage active learning. A realistic
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assumption for ranking data is that queries are indepen-
dent and the documents are independent given on a
query. Based on this assumption, we propose the two-
stage ELO-DCG algorithm that is summarized in
Algorithm 3. Algorithm 3 first selects most informative
queries; then, selects the most informative documents for
each selected query.

4.4 Balanced ELO Active Learning

In this section, we show how ELO framework can be eas-
ily adapted to address the grade imbalance problem for
ranking.

In many ranking applications, especially Web search
ranking, the distribution of relevance scores are very
skewed. Under five grade scheme, ”Perfect-4”, ”Excellent-
3”, ”Good-2”, ”Fair-1”, and ”Bad-0”, there are usually much
less perfect and excellent examples in a randomly selected
Web search data set from a commercial search engine. Fig. 1
shows the grade distribution of a randomly selected Web
search data set. In Fig. 1, we observe that the excellent exam-
ples are less that 10 percent and perfect examples are less
than 2 percent.

On the other hand, users usually only care about the top
ranked documents, which are often perfect or excellent
documents, instead of entire collection of documents that
match a query. Intuitively, if a training set has very few per-
fect or excellent examples, it will be very difficult for the
ranking learner to learn decision boundaries to identify per-
fect and excellent documents. As a result, the learned rank-
ing function cannot be expected to have good performance.
In fact, [2] shows that selecting more relevant documents
into a training set can improve ranking models.

ELO framework can be easily to extended to address
the skew grade distribution problem by re-designing the
expected loss function. For the ELO-DCG algorithms,
we propose the following expected loss function for the

document selection, which selects the examples with
high expected DCG loss and at the same time put more
preference on highly relevant documents to obtain more
balanced train data,

ELðq; iÞ ¼
Z
Y i

min
p

Z
yi

sðyiÞ‘ðp; Y ÞP ðY jXq;DÞdyidY i; (11)

where sðyiÞ is a function to incorporate the prior knowledge
to balance the grade distribution. For example,

sðyÞ ¼ y (12)

puts preference on highly relevant documents; and simi-
larly,

sðyÞ ¼ y2 (13)

put even more on highly relevant documents; and

sðyÞ ¼ ðy� EðyÞÞ2 (14)

whereE denotes expectation, puts preference on both highly
relevant documents and highly irrelevant documents.

In this paper we simply adopt the identity function in
Eq.(12) to show how to deal with grade skew problem as
shown in Fig. 1 under ELO framework. The approach can
be easily extended to other situations in the need of bal-
anced grade distribution.

Substituting (6) and (12) into (11), the expected loss of the
ith document is expressed as:

ELðq; iÞ ¼
Z
Y i

min
p

Z
yi

yiðmax
p0

DCGðp0; Y Þ �DCGðp; Y ÞÞ

dyidY
i;

¼
Z
Y i

Z
yi

yi max
p0

DCGðp0; Y ÞP ðY jXq;DÞdyi
"

�max
p

Z
yi

yiDCGðp; Y ÞP ðY jXq;DÞdyi
#
dY i;

(15)

which is similar to equation (10) except that yi is used to
weight the loss function to put more weights on highly rele-
vant documents.

When using (15) to select documents, we obtain balanced
ELO-DCG algorithms. The balanced two stage ELO-DCG
algorithm is summarized in Algorithm 4. Algorithm 4 first
selects most informative queries as in Algorithm 2; then,
selects the documents for each query by considering both
DCG loss and grade distribution, i.e., selects documents
with most potential to improve DCG and at the same time
puts more preference on the highly relevant document to
mitigate the skew grade distribution problem.

5 EXPERIMENTAL EVALUATION

As a general active learning algorithm for ranking, ELO-DCG
can be applied to a wide range of ranking applications. In this
section, we apply different versions of ELO-DCG algorithms
to web search ranking to demonstrate the properties and
effectiveness of our algorithm. We denote query level, docu-
ment level, and two-stage ELO-DCG algorithms as ELO-
DCG-Q, ELO-DCG-D, and ELO-DCG-QD, respectively.

Fig. 1. Grade distribution for a randomly selected web search data set.
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Algorithm 4. Balanced two Stage ELO-DCG Algorithm

Input: Labeled set L, unlabeled doc U, the number of queries to
be selected nq, the number of documents to be selected for each
query nu.
Output: The selected query-document set D.
Method:
for i ¼ 1; . . . ; N do N ¼ size of the ensemble
Subsample L and learn a relevance function
sij  score predicted by that function on the jth document
in U .

end for
for q ¼ 1; . . . ; Q do Q ¼ number of queries in U
I  documents associated to q
for i ¼ 1; . . . ; N do
di  BDCGðfGðsijÞgj2I Þ

end for
tj  hGðsijÞi
d BDCGðftjgj2I Þ
ELðqÞ  dih i � d

end for
Select nq queries with the highest values ELðqÞ intoQ.
for all q 2 Q do
I  documents associated to q
for all j 2 I do
for i ¼ 1; . . . ; N do
tk  sik; 8k 6¼ j
for p ¼ 1; . . . ; N do
tj  spj
dp  BDCGðfGðtkÞgÞ

end for
gk  GðsikÞ; 8k 6¼ j
gj  hGðsijÞi
sj  hspj i
ELðjÞ  sjð dp

� �� BDCGðfgkgÞÞ
end for
Select nu documents with the highest values of ELðjÞ into
Dq

end for
D ¼ D [ Dq

end for
Return D.

5.1 Data Sets

We use web search data from a commercial search engine.
The data set consists of a random sample of about 10,000
queries with about half million web documents. Those
query-document pairs are labeled using a five-grade label-
ing scheme: {Bad, Fair, Good, Excellent, Perfect}.

For a query-document pair (q; d), a feature vector x is
generated and the features generally fall into the following
three categories. Query features comprise features depen-
dent on the query q only and have constant values across all
the documents, for example, the number of terms in the
query, whether or not the query is a person name, etc. Docu-
ment features comprise features dependent on the docu-
ment d only and have constant values across all the queries,
for example, the number of inbound links pointing to the
document, the amount of anchor-texts in bytes for the docu-
ment, and the language identity of the document, etc.
Query-document features comprise features dependent on
the relation of the query q with respect to the document d,

for example, the number of times each term in the query q
appears in the document d, the number of times each term
in the query q appears in the anchor-texts of the document
d, etc. We selected about five hundred features in total.

We randomly divide this data set into three subsets, base
training set, active learning set, and test set. From the base
training set, we randomly sample three small data sets to
simulate small size labeled data sets L. The active learning
data set is used as a large size unlabeled data set U from
which active learning algorithms will select the most infor-
mative examples. The true labels from active learning set
are not revealed to the ranking learners unless the examples
are selected for active learning. The test set is used to evalu-
ate the ranking functions trained with the selected examples
plus base set examples. We kept test set large to have rigor-
ous evaluations on ranking functions. The sizes of those five
data sets are summarized in Table 1.

5.2 Experimental Setting

For the learner, we use gradient boosting decision tree
(GBDT) [15].

The input for ELO-DCG algorithm is a base data set L
and the AL data set U. The size of the function ensemble
is set as eight for all experiments. ELO-DCG algorithm
selects top m informative examples; those m examples are
then added to the base set to train a new ranking func-
tion; the performance of this new function is then evalu-
ated on the test set. Each algorithm with each base set is
tested on 14 different m, 500, 1,000, 2,000, 4,000, 6,000,
8,000, 10,000, 12,000, 16,000, 24,000, 32,000, 48,000, 64,000,
and 80,000. For every experimental setting, 10 runs are
repeated and in each run the base set is re-sampled to
generate a new function ensemble.

For the performance measure for ranking models, we
select to use DCG-k, since users of a search engine are only
interested in the top-k results of a query rather than a sorted
order of the entire document collection. In this study, we
select k as 10. The average DCG of 10 runs is reported for
each experiment setting.

5.3 Document Level Active Learning

We first investigate document level active learning, since
documents correspond to basic elements to be selected in
the traditional active learning framework. We compare doc-
ument level ELO-DCG algorithm with random selection
(denoted by Random-D) and a classical active learning
approach based on variance reduction (VR) [7], which
selects document examples with largest variance on the pre-
diction scores. Concretely, VR based approach first random
sample data to train multiple models; then, it applies

TABLE 1
Sizes of the Five Data Sets

Data set Number of examples

base set 2k �2,000
base set 4k � 4,000
base set 8k �8,000
AL set �160,000
test set �180,000
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multiple models to the candidate document examples to
obtain multiple prediction scores; finally, it selects the docu-
ments with largest variance on the prediction scores.

Fig. 2 compares the three document level active learning
methods in terms of DCG-10 of the resulting ranking func-
tions on the test set. Those ranking functions are trained
with base data set and the selected examples. X-axis denotes
number of examples selected by the active learning algo-
rithm. For all three methods, the DCG increases with the
number of added examples. This agrees with the intuition
that the quality of a ranking function is positively correlated
with the number of examples in the training set. ELO-DCG
consistently outperforms the other two methods. An possi-
ble explanation is that ELO-DCG optimizes the expected
DCG loss that is directly related to the objective function
DCG-10 used to evaluate the ranking quality; on the other
hand, the prediction score variance from VR is not directly
related to DCG driven objective. In fact, VR performs even
worse than random document selection when the size of the
selected example is small. An advantage of the ELO-DCG
algorithm is its capability to optimize directly based on the
ultimate loss function to measure ranking quality.

5.4 Query Level Active Learning

In this section, we show that query level ELO-DCG algo-
rithm effectively selects informative queries to improve the
learning to rank performance. Since traditional active learn-
ing approaches cannot directly applied to query selection in
ranking, we compare it with random query selection
(denoted by Random-Q) used in practice.

Fig. 3 shows the DCG comparison results. we observe
that for all three base sets, ELO-DCG performs better
than random selection for all different sample sizes (from
500 to 80,000) that are added to base sets. Moreover,
ELO-DCG converges much faster than random selection,
i.e., ELO-DCG attains the best DCG that the whole AL
data set can attain with much less examples added to the
train data.

5.5 Two-Stage Active Learning

In this section, we compare two-stage ELO-DCG algorithm
with other two two-stage active learning algorithms. One is
two-stage random selection, i.e. random query selection fol-
lowed by random document selection for each query. The
other one is a widely used approach in practice, which first

Fig. 2. DCG comparison of document level ELO-DCG, variance reduction based document selection, and random document selection with base sets
of sizes 2,4, and 8k shows that ELO-DCG algorithm outperforms the other two document selection methods at various sizes of selected examples.

Fig. 3. DCG comparisons of query level ELO-DCG and random query selection with base sets of sizes 2,4, and 8k shows that ELO-DCG algorithm
outperforms random selection at various sizes of selected examples.
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randomly selects queries and then select top k relevant
documents for each query based on current ranking func-
tions (such as top k web sites returned by the current search
engine) [24]. In our experimental setting, this approach cor-
responds to randomly query selection followed by selecting
k documents with highest mean relevance scores within
each selected query. We denote this approach as top-K. In
all three two-stage algorithms, we simply fix the number of
documents per query at 15 based on the results from [24].

Fig. 4 shows the DCG comparison results for two-stage
active learning. We observe that among all three base sets,
ELO-DCG performs the best and top-K performs the sec-
ond. This result demonstrates that two-stage OLE-DCG
effectively select most informative documents for most
informative queries. A possible reason that top-K performs
better than random selection is that top-k selects more per-
fect and excellent examples. Those examples contribute
more to DCG than bad and fair examples.

We have observed that ELO-DCG algorithms perform
best in all three active learning scenarios, query level, docu-
ment level, and two stage active learning. Next, we compare
three versions of ELO-DCG with each other.

Fig. 5 shows DCG comparisons of two-stage ELO-DCG,
query level ELO-DCG, and document level ELO-DCG. We
observe that for all three based sets, two stage ELO-DCG
performs best. The reason that two-stage algorithm per-
forms best may root in its reasonable assumption for the
ranking data: queries are independent; the documents are
conditionally independent given a query. On the other
hand, the document level algorithm makes the incorrect
assumption about document independence and may miss
informative information at the query level; the query level
algorithm selects all documents associated with a query,
which are not all informative.

From the above results, we can observe that compared
with the widely used top-K approach in practice, two-stage
ELO-DCG algorithm can significantly reduce the labeling
cost. Table 2 summarizes the cost reduction of two-stage
algorithm compared with top-K approach.

In Table 2, the saturated size means that when the exam-
ples of this size are selected and added back to the base set
to train a ranking function, the performance of the learned
ranking function is equivalent to the ranking function
trained with all active learning data. From the first row of

Fig. 4. DCG comparisons of two-stage ELO-DCG, two-stage random selection, and top-K selection with base set 2,4, and 8k shows that ELO-DCG
algorithm performs best.

Fig. 5. DCG comparisons of two-stage ELO-DCG, query level ELO-DCG, and document level ELO-DCG,with base sets of sizes 2,4, and 8k shows
that two-stage ELO-DCG algorithm performs best.
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Table 2, we observe that for the base set of size 2k, 64k is the
saturated size for two-stage ELO-DCG algorithm and 80k is
the saturated size for top-K approach; hence, 64k selected
examples from two-stage ELO-DCG algorithm is equivalent
to 80k selected examples from top-K approach. This means
that two-stage ELO-DCG algorithm can reduce the labeling
cost by 16k, which is 20 percent of 80k. The largest percent-
age of cost reduced, 64, percent is from base set 8k.

5.6 Balanced Two-Stage Active Learning

In this section, we compare balanced two-stage ELO-DCG
algorithm (denoted as B-ELO-DCG) with normal two-stage
ELO-DCG algorithm.

Fig. 6 shows DCG comparisons of balanced two-stage
ELO-DCG, and normal two stage ELO-DCG. We observe
that for all three based sets, balanced two stage ELO-DCG
performs better. Grade distribution analysis of the exam-
ples selected by two algorithms shows that averagely the
examples selected by balanced ELO-DCG algorithm have
10.1 percent more excellent documents and 5.2 percent
more perfect documents, i.e., the data sets form balanced
ELO-DCG have more balanced grade distributions toward
to highly relevant documents. Balanced ELO-DCG algo-
rithm selects examples with both high potential to improve
DCG and more balanced grade distribution, which helps
learning algorithm to learn better decision boundaries for
identify highly relevant documents; hence, it leads better
DCG performance.

6 CONCLUSIONS AND FUTURE WORK

We propose a general expected loss optimization frame-
work for ranking, which is applicable to active learning

scenarios for various ranking learners. Under ELO frame-
work, we derive novel algorithms, query level ELO-DCG
and document level ELO-DCG, to select most informative
examples to minimize the expected DCG loss. We propose a
two stage active learning algorithm to select the most effec-
tive examples for the most effective queries. We further
extend the proposed algorithm to deal with the typical
skew grade distribution problem in learning to rank. Exten-
sive experiments on real-world web search data sets have
demonstrated great potential and effectiveness of the pro-
posed framework and algorithms.

In future, we will investigate how to fuse the query level
and document level selection steps in order to produce amore
robust query selection strategy. Besides, we will also evaluate
our active learningmethod upon different types of data.
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