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In social media analysis, one critical task is detecting a burst of topics or buzz, which is reflected by

extremely frequent mentions of certain keywords in a short time interval. Detecting buzz not only provides
useful insights into the information propagation mechanism, but also plays an essential role in preventing

malicious rumors. However, buzz modeling is a challenging task because a buzz time-series often exhibits

sudden spikes and heavy tails, where most existing time-series models fail. In this paper, we propose novel
buzz modeling approaches which capture the rise and fade temporal patterns via Product Lifecycle (PLC)

model, a classical concept in economics. More specifically, we propose to model multiple peaks in buzz

time-series with PLC mixture or PLC group mixture, and develop a probabilistic graphical model (K-
MPLC ) to automatically discover inherent lifecycle patterns within a collection of buzzes. Furthermore, we

effectively utilize the model parameters of PLC mixture or PLC group mixture for burst prediction. Our
experimental results show that our proposed methods significantly outperform existing leading approaches

on buzz clustering and buzz type prediction.
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1. INTRODUCTION

Social media is growing at an explosive rate, and hundreds of millions of users gener-
ate vast amounts of contents on various social media web sites, such as Twitter and
Tumblr. One critical problem in social media analysis is to effectively model temporal
human bevavioral patterns over time from data [Cui et al. 2016]. More specifically,
modeling buzz events, which are reflected by frequent mentions of certain key words
in a short time interval, such as new iPhone or Hurricane Sandy, is in particular im-
portant problem for captureing temporal human behavioral patterns. Since the buzz
events are closely related to human activities, effectively modeling buzzes could help
us track mass attention, obtain public opinions, or forecast users’ reactions to a partic-
ular event in the near future.

Buzz modeling is an extremely challenging problem since many buzz events are un-
foreseeable (e.g., earthquakes or hurricanes), while others may involve human inter-
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(a) Time-series of Euro 2012. (b) Time-series of Aurora Colorado.

Fig. 1: Buzz time-series examples.

ventions. As a result, a buzz time-series, which consists of the number of mentions for
each time unit, often exhibits sudden spikes and heavy tails. Thus, it is difficult to rep-
resent a buzz time-series using traditional time-series models [Blischke and Murthy
2000]. Existing buzz modeling methods employ simple time-series models (e.g., uni-
variate models), and explore additional feature cues (such as sentiment, spreading
measures and controversialist), to predict whether a certain topic can become viral
[Choi and Varian 2009; Guerini et al. 2011; Lerman and Ghosh 2010]. These methods
achieve success to a certain extent, but few of them explicitly capture the inherent
temporal patterns of buzzes. Effective buzz models, which not only can capture those
sudden spikes and heavy tails patterns but also can differentiate true spikes from
jagged noise in a time-series, are in great need.

One important challenge in pursuit of effective buzz models is how to find distinct
temporal patterns within a set of buzz time-series. For example, as seen in Figure 1(a),
the Euro 2012 event attracted more and more frequent mentions when it came close
to its final match day, a sudden increase of frequency happened when the final match
started, and the large volume was maintained for a couple of hours during the final
match, after which the mention volume dropped dramatically in just a few hours on
social media, forming a sharp tail. In contrast, for the sudden breaking news of a
gun shooting at Aurora Colorado in 2012, as seen in Figure 1(b), we observe that a
huge amount of frequent mentions appeared all of a sudden, and the public’s atten-
tion dropped slowly in the next 24 hours, forming a heavy tail. 1 On both sub figures,
X-axis indicates the time axis in hours, and Y-axis means the density for the number
of mentions on social media. Intuitively, these two events have quite distinct temporal
patterns. Therefore capturing the temporal patterns and modeling the inherent struc-
tures of these temporal patterns can provide us useful insights for information prop-
agation [Sun and Tang 2011] and time-series based prediction [Johan Bollen 2011;
Conover et al. 2011; O’Connor et al. 2010; Takahashi et al. 2013] in social media.

In this paper, we propose to model rise-and-fade temporal shapes using product
lifecycle (PLC) models [Levitt 1965]. PLC was originally introduced by economists to
model the life span of a product: introduction to the market (initial sales), growth (sud-

1Note that on popular social media platforms, user’s interest switches quickly, and there are much more
users in day time than after middle night. Therefore, a asymmetrical rise-and-fade temporal shape with a
sudden rise while spanning many more hours is considered following a sudden-spike-and-heavy-tail pattern.
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den increase of sales), equilibrium (maturity phase defined by approximately constant
sales) and decline (when the sales decrease dramatically). In Figure 1, we can observe 4
different stages, which are segmented with dotted lines. In general, for different types
of buzz events, the growth and equilibrium stages might be relatively short, while the
decline stage varies. Moreover, a buzz sequence often has multiple peaks, and the num-
ber of peaks is unknown in advance. To handle a time-series with multiple peaks, we
propose two novel approaches based on PLC models: (i) we model each buzz time-series
with a mixture of PLC models, then propose an efficient L1-regularized lasso [Tibshi-
rani 1996] based approach to achieve a sparse solution for the PLC mixture model; (ii)
we also model each rise-and-fade segment in time-series as a group of PLC models, and
model each buzz time-series with multiple peaks as a mixture of PLC group models,
then propose an efficient group lasso [Yuan and Lin 2006] based approach to achieve its
sparse solution. After that, to discover the underlying patterns in a collection of buzz
time-series, we develop a probabilistic graphical model, K-Mixture of Product Lifecy-
cle (K-MPLC), to automatically group buzz time-series based on their PLC mixture
parameters or PLC group mixture parameters. Finally, we propose a buzz type pre-
diction approach, which uses the parameters of PLC mixture or PLC group mixture
as its the feature vector. The experimental results show that our proposed approaches
outperform existing leading approaches on both buzz clustering task and buzz type
prediction task.

The major contributions of this paper include:

— Leveraging product lifecycle to model the temporal patterns of buzz events.
— Proposing PLC mixture model and PLC group mixture model to systematically model

the possible multiple peaks in a buzz time-series and achieve sparse solutions for
both models.

— Proposing a probabilistic graphical model to discover the inherent clusters within a
collection of buzzes.

Preliminary version of this work appeared in [Chang et al. 2014]; here we propose
the PLC Group Lasso in addition to the PLC Lasso and include a more detailed ex-
perimental section that addresses the effectiveness of the proposed method in buzz
clustering. Moreover, we include the buzz type prediction tasks in Section 7.

In the rest of the paper, after introducing related work in section 2, we first formulate
the problems in section 3, then propose PLC mixture model and PLC group mixture
model to model each time-series in Section 4; we propose a probabilistic graphical
model to cluster different time-series in Section 5; Section 6 and 7 cover buzz clustering
experimental results and buzz type prediction experimental results respectively; we
conclude our paper in the last section.

2. RELATED WORK

Our work is related to time-series modeling, time-series clustering, and buzz prediction.
Below, we review some important related work in each subarea.
Time-series modeling: To model the temporal patterns of online content, Matsubara
et al. [Matsubara et al. 2012] propose an algorithm to model the rise and fade patterns
of influence propagation. Hong et al. [Hong et al. 2011] attempt to model the time
decay of topics on Twitter with Gamma function. Furthermore, the temporal informa-
tion of online forums [Gruhl et al. 2005], blogspace [Kumar et al. 2003], and online
groups [Kumar et al. 2010] has been explored and mined under different scenarios,
and spatiotemporal patterns of subtopics have been investigated by [Mei et al. 2006].
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Another line of research would be to use survival analysis [Yu et al. 2015; Zhang et al.
2016]. The survival analysis is in particular useful for modeling individual human ac-
tivity pattern which follows burstly dynamics with heavy tailed distribution. However,
most of the existing methods can only deal with single spike signal. Thus, existing
time-series modeling methods are not suited for buzz events with multiple spikes.

An approach for dealing with multiple spikes is to use Hawkes process [Hawkes
and Oakes 1974]. Crane and Sornette propose to use a power law distribution as a
function for buzz time-series [Crane and Sornette 2008]. However, this needs to set
spike locations manually in Hawkes process, which is not practical in real applications.

Another useful approach is to model occurance of spikes using infinite-state automa-
tion approach [Kleinberg 2003]. However, the method uses spike locations as input,
and thus it is not possible to directly apply the infinite-state automation approach for
raw time-series data.

There are few previous studies to model time-series of topics with product lifecycle
models, and the product lifecycle models are mainly investigated by economists [Blis-
chke and Murthy 2000; Isaic-Maniu and Voda 2008; PETRESCU 2009]. There is
some data mining work related to product lifecycle: classical PLC models are lever-
aged to cluster seasonality patterns for retail industry [Kumar et al. 2002]; Haider
et al. [Haider et al. 2012] explore discriminative clustering for market segmentation
tasks, which combines market segmentation with different group of users.
Time-series clustering: Time-series clustering has been an active research topic in
recent years, and various time-series clustering algorithms are proposed such as batch
mode clustering [Rakthanmanon et al. 2011; Li and Prakash 2011], incremental clus-
tering [Lin et al. 2004], and anytime clustering [Zhu et al. 2012]. One of the important
component of time-series clustering is to choose a distance metric, and Dynamic Time
Warping (DTW) and Complexity-Invariant Distance (CID) are the most widely used
metrics [Zhu et al. 2012; Batista et al. 2011]. Clustering algorithms have been applied
to various types of time-series data, including snippets within long time-series [Rak-
thanmanon et al. 2011], different time-series streams [Li and Prakash 2011], and
multiple time-series matrix [Jiang et al. 2012]. However, for extremely noisy buzz
time-series, DTW scores tend to be inaccurate, and thus clustering performance can
be degraded.

The most similar work to ours is that of Yang and Leskovec [Yang and Leskovec
2011], in which the K-spectral centroid (K-SC) algorithm is proposed to group similar
time-series via aligning peaks, shifting over time-axis, and scaling over frequency-axis.
The K-SC algorithm can cluster time-series that can be aligned by shifting and scaling
operations, but fails for sharp or heavy-tailed temporal sequences. Moreover, if two
time-series share similar peak shapes but differ in the intervals between the peaks, K-
SC cannot identify these two time-series as the same cluster through simple shifting
or scaling.
Buzz prediction: Buzz prediction from social media data is a challenging problem.
This problem is studied for predicting stock market changes [Johan Bollen 2011], data
mining for political opinions [O’Connor et al. 2010; Conover et al. 2011], and market-
decision making [Takahashi et al. 2013]. In [Matsubara et al. 2012], prediction of the
future burst using SpikeM was proposed. In this approach, they predict the future rise
and fade pattern of burst signal from a partially observed buzz time-series. Overall,
existing methods mainly focus on predicting rise and fade pattern of a time-series. In
contrast, we will focus on burst prediction tasks, which aim to classifying the shape
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and the number of buzz (burst type) in a time-series. To the best of our knowledge,
there is few burst prediction research in social media and this is the first paper to
address the burst type prediction tasks.

3. PROBLEM STATEMENT

We denote a time-series y = [y1, . . . , yT ]> ∈ RT , where T refers to the length of time-
series, and > denotes the matrix transpose. We denote a set of N time-series Y =
[y1, . . . ,yN ] ∈ RT×N . The final goal of this paper is to model buzz time-series, and it
can be divided into three sub-problems.

Buzz time-series modeling. The problem is formally stated as: given a buzz time-
series y, we aim to model it with L rise and fade patterns, and each pattern is repre-
sented with a set of parameters Θl.
Buzz clustering. The problem is formally stated as: given a set of buzz time-series
Y , we aim to leverage its buzz modeling parameters to cluster N time-series into K
clusters.
Buzz type prediction. The problem is formally stated as: for each buzz time-series
y, we aim to leverage its partial information y = [y1, . . . , y

′
T ], T ′ < T and correspond-

ing buzz modeling parameters to predict y belongs to which of the K clusters.

The buzz time-series modeling is related to feature extraction tasks from raw signal.
Thus, once we extract useful features from buzz time-series, we can use the extracted
features for the buzz type clustering and prediction tasks. In this paper, we focus on
the two applications (clustering and buzz type prediction), but we can use the proposed
buzz modeling technique for other applications in future.

4. MODELING BUZZES WITH A MIXTURE OF PRODUCT LIFECYCLE MODELS

In this section, we first introduce the concept of product lifecycle (PLC) model; next,
we propose to fit each buzz time-series with a mixture of PLCs, and estimate the PLC
mixture model using a lasso based method; then we propose to fit each time-series with
a mixture of PLC groups, and estimate the PLC group mixture model using a group
lasso based method.

4.1. Product Lifecycle Models

The concept of Product Lifecycle (PLC) was originally proposed in economics in the
1960s [Levitt 1965]. The classical view of PLC assumes 4 phases to cover the life span
of a product: Introduction, Growth, Equilibrium and Decline. Introduction refers to low
growth rate of sales as the product is newly launched in the market; Growth implies
that the public gains awareness of the product and consumers come to understand its
benefits and accept it, so that a company can expect a period of rapid sales growth;
Equilibrium corresponds to the product reaching maturity, so that the sales growth
slows and sales volume eventually peaks and stabilizes; Decline indicates that the
product enters into decline, as sales and profits start to fall because the market has
become saturated, the product has become obsolete, or customer tastes have changed.
As an important research topic, many different versions of PLC models are summa-
rized in [Blischke and Murthy 2000].

To model the long decay trend of the decline stage of a product, Isaic-Maniu and
Voda [Isaic-Maniu and Voda 2008] proposed to use the Gamma distribution as a PLC
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model. The probability density function of Gamma distribution is:

f(t;α, β) =
βα

Γ(α)
tα−1e−βt, (1)

where t ≥ 0, α > 0 is the shape parameter, β > 0 is the rate parameter, and the Gamma
function Γ(α) is defined as:

Γ(α) =

∫ ∞
0

tα−1e−tdt.

As compared to other distribution functions, such as the Gaussian distribution, the
Gamma distribution can model a sudden rise and long decay trend in the decline stage
of a PLC. Note that our method is not limited to the Gamma distribution, and it can
be extended with other base distribution functions, such as Alpha distribution [Isaic-
Maniu and Voda 2008], Weibull distribution [Bauckhage et al. 2013], which were lever-
aged to model temporal dynamics. Moreover, we propose a flexible buzz fitting ap-
proach in Section 4.3, where the model does need to specify a specific distribution for
a product lifecycle.

4.2. PLC Lasso

Given a buzz topic, we count its mentions on a given social media channel during a
pre-determined time interval (e.g., an hour), and generate a time-series of this topic
over a number of intervals during an observation window. Since a buzz sequence may
consist of several obvious peaks, it could be modeled with multiple PLC models. As the
number of peaks is not known in advance, we model a buzz time-series with a mixture
of PLCs as:

f(t;w,α,β,µ) =

L∑
`=1

w`k(t;α`, β`, µ`), (2)

k(t;α, β, µ) =

{
Z−1(t− µ)α−1e−β(t−µ) (t ≥ µ)
0 (Others)

,

where L is the number of PLC models, w = [w1, . . . , wL]> denotes the weight vector, >
denotes the matrix transpose, α = [α1, . . . , αL]> and β = [β1, . . . , βL]> are the vectors of
Gamma distribution parameters, µ = [µ1, . . . , µL]> refers to locations of PLC models,
and Z is the normalization factor.

Another similar approach for dealing with multiple spikes time-series is to utilize
Hawkes process [Hawkes and Oakes 1974; Crane and Sornette 2008]. The difference
with respect to the original Hawkes process is that the spike locations need to be
set manually in the original formulation (i.e., µ` is set by human), while our model
considers spike locations as model parameters to be identified. For a buzz sequence,
since it is usually hard to know spike locations, our formulation is better suited than
the existing Hawkes process based modeling. Nevertheless, since spike locations are
unknown, the mixture PLC model estimation is more challenging than the estimation
of Hawkes process parameters.

Let us denote buzz time-series as y = [y1, . . . , yT ]>, where T refers to the length
of time-series. Note, in this paper, we assume that time-series are normalized (i.e.,∑T
t=1 yt = 1), so that it can be modeled by probability density functions. Then, the

optimization problem of fitting the buzz time-series using a mixture of PLC models
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Fig. 2: (a) The Basis function with α = 1.0, β = 0.2, and µ = 36. (b) The Flipped Basis
function with α = 1.0, β = 0.2, and µ = 36.

can be formulated as:

min
w,α,β,µ

T∑
t=1

(yt − f(t;w,α,β,µ))2

s.t. α` > 0, β` > 0, w` > 0, µ` > 0, ` = 1, 2, . . . , L.

We can solve this optimization problem by using gradient descent. However, since this
optimization problem is non-convex, it tends to lead to poor locally optimal solutions.

To deal with the non-convexity, we first relax the problem to a convex optimization
problem and then propose a lasso [Tibshirani 1996] based approach, making it possible
to obtain a global solution. The idea of the lasso based approach is to select L PLC mod-
els from a large number of PLC candidates. More specifically, we first define TMαMβ

basis functions, where Mα and Mβ are the number of candidate values for α and β, so
that each basis function corresponds to a PLC model with fixed α and β parameters
placed at µ. The total number of basis functions is TMαMβ , since a PLC model can
be located at any of T positions. As we observe that many of buzz time-series on so-
cial media follow the sudden-spike-and-heavy-tail patterns, we experimentally set the
shape parameter α to be 1 and the rate parameter β to be [0.1, 0.2, . . . , 1.0]. Note that,
we may be able to model a rise pattern by setting α > 1. However, when setting α > 1,
the shape of the Gamma distribution becomes too smooth to model a sudden-spike pat-
terns. Thus, we experimentally set α = 1. In Figure 2(a), we show the basis function
with α = 1.0 and β = 0.1 at µ = 10.

Then, we solve the following optimization problem:

min
v
‖y −Kv‖2 + λ‖v‖1 (3)

s.t. v` ≥ 0, ` = 1, 2, . . . , TMαMβ ,

where v ∈ RTMαMβ is the model parameter and K ∈ RT×TMαMβ is the pre-computed
Gamma distribution functions:

Kt,µ×i×j =

{
Z−1
ij (t− µ)α̃i−1e−β̃j(t−µ) (t ≥ µ)

0 (Others)
.

In the above formula, Zij = max({(t − 1)α̃i−1e−β̃j(t−1)}Tt=1) is the normalization fac-
tor, α̃i, i = 1, . . . ,Mα and β̃j , j = 1, . . . ,Mβ are pre-defined Gamma parameters, µ is
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the location index of a PLC model (t− µ indicates the shift of a PLC along x-axis), and
‖v‖1 is the L1 regularizer to obtain a sparse solution. Since the optimization problem
of Eq.(3) is convex with respect to v, Eq.(3) can be solved by using a state-of-the-art
lasso optimization solver, and in this paper, we employ it with the dual augmented La-
grangian (DAL) based approach [Tomioka et al. 2011]. Since we use the L1 regularizer,
we can select a small number of non-overlapped basis functions.

After the lasso fitting, we select L PLC models by ranking the estimated lasso pa-
rameter v̂. Since each weight v̂` is related to a basis Gamma distribution function,
we can obtain L Gamma distribution function parameters and their location indexes
without further optimization. It may be possible to choose L PLCs by controlling the
regularization parameter λ, however this may require running lasso several times,
which tends to be computationally expensive. Therefore, we first obtain J PLC models
(J > L) using a small regularization parameter, and then select L PLC models from
them.

After fixing individual PLC parameters with lasso, we solve the following quadratic
programming (QP) problem to obtain the corresponding weight w for each PLC model:

min
w

‖y − K̃w‖2, s.t. w` ≥ 0,

L∑
i=1

wi = 1,

where K̃ ∈ RT×L is the selected L basis functions from K. We call this entire lasso
based fitting framework as PLC Lasso.

In Figures 3(a1)-(c1), we illustrate several fitted buzz time-series obtained by the
PLC Lasso. We also computed root squared mean error (RSME) between original and
fitted curves. As can be observed, our proposed method can successfully fit different
buzz time-series. Notice in Figure 3(c1) that the fitted curve generated by the lasso
based method successfully captures the true peaks of the given time-series while dis-
carding the remaining jagged noise.

4.3. PLC Group Lasso

The PLC Lasso implicitly assumes that a buzz consists of a sharp-rise-and sudden-
fade shape, and it is not suited for modeling slow-rise patterns. This is due to using
a Gamma distribution for modeling all types of lifecycle patterns. To cope with this
issue, we further propose a more general buzz modeling framework called the PLC
Group Lasso. More specifically, we model each buzz by a mixture of basis functions as:

g(t;w,α,β, µ) =

b∑
k=1

wkk(t;αk, βk, µ),

where k(t,α,β, µ) is the basis function, µ is the location of the pattern, w is the weight
vector for the pattern, and γ` is the parameters for the `-th basis function. Since we
represent a lifecycle pattern by a mixture of basis functions, we can represent complex
lifecycle patterns.
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Method Figure PLC Weight PLC Shape PLC Locations

Index w1 w2 w3 τ σ
PLC (a1) 0.0786 0.1141 0.8073 1.0 0.344
Lasso (b1) 0.7395 0.0996 0.1608 3.31 0.4342

(c1) 0.5505 0.2237 0.2258 1.0 9.8399
PLC (a2) 0.998 0.001 0.001 1.7493 0.0001
Group (b2) 0.7344 0.2646 0.001 5.4341 0.6246
Lasso (c2) 0.6117 0.2126 0.1757 2.8211 9.3327

(d) Feature values of each time-series derived by PLC Lasso and PLC Group Lasso
respectively.

All time-series Buzz time-series
Method L = 2 L = 3 L = 4 L = 2 L = 3 L = 4
PLC Lasso 0.0118 0.0097 0.0082 0.0126 0.0109 0.0099
PLC Group Lasso 0.0116 0.0103 0.0097 0.0107 0.0103 0.0101

(e) The RMSE of the PLC Lasso and the PLC group Lasso.

Fig. 3: Illustrative examples of lasso based fitting. We use the real buzz collected from
Twitter timeline. (a1)-(c1): PLC Lasso fitting results. (a2)-(c2): PLC Group Lasso fitting
results. (d): Feature Values of Corresponding Methods. (e): The RMSE of the PLC Lasso
and the PLC group Lasso for the Twitter timeline data. The ”All data” includes in
total 534 time-series, while the ”Buzz time-series” includes 58 time-series which are
systematically extracted from the entire 534 time-series by checking max(y)−min(y) >
0.3.

Then, entire time-series can be modeled as:

f(t;W ,Γα,Γβ,µ) =

L∑
`=1

g(t;w`,α`,β`, µ`)

=

L∑
`=1

b∑
k=1

w`,kk(t;α`,k, β`,k, µ`) (4)
ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 2, Article 20, Publication date: November 2016.



20:10 Y. Chang et al.

where L is the number of rise and fade patterns, µ` is the location of `-th pattern,
W = [w1, . . . ,wL]> ∈ Rb×L, w` ∈ Rb, Γα, and Γβ denote the set of weight vectors,
the set of α and the set of β, respectively. Note, Eq.(4) is a generalization of Eq.(2), as
b = 1, these two equations are the same. Moreover, we also use the flipped version of
the Gamma basis functions to represent slow rise pattern (See Figure 2(b)).

The optimization problem of fitting the time-series by a mixture of lifecycle models
can be given as

min
W ,Γα,Γβ,µ

T∑
t=1

(yt − f(t;W ,Γα,Γβ,µ))2

s.t. wk,` > 0, µk > 0, k = 1, 2, . . . , L.

Similar to the PLC Lasso, we first relax the problem to a convex optimization prob-
lem. Specifically, we first fix the model parameters of basis functions α and β by using
a prior knowledge of rise and fade patterns and represent each time-series by T mix-
tures (T > L):

f(t;W ) =

T∑
`=1

b∑
k=1

w`,kk(t; α̃k, β̃k, µ = `)

=

T∑
`=1

w>` k(t; α̃, β̃, µ = `),

where k(t;α,β, µ = `) = [k(t;α1, β1, µ = `), . . . , k(t;αb, βb, µ = `)]> and α̃ and β̃ are
fixed parameters. Here, we use the same parameters α̃ and β̃ for all PLC models.

In this model, since we place each rise and fade pattern model at every time t, they
are highly overlapped each others over time. However, a spiking time-series tends to
be sparse, that is, only a few w parameters are non-zero. To this end, we employ the
group sparsity constraint for fitting.

Then, the final optimization problem can be written as:

min
W

T∑
t=1

(yt −
T∑
p=1

w>p k(t; α̃, β̃, µ = p))2 + λ

T∑
p=1

‖wp‖2 (5)

s.t. w`,p ≥ 0, ` = 1, 2, . . . , b, p = 1, 2, . . . , T,

where
∑T
p=1 ‖wp‖2 is the group regularizer and λ is the regularization parameter. The

group regularizer consists of L2-regularizer for w and L1 regularizer between groups
‖w1‖2, ‖w2‖2, . . . , ‖wT ‖2. That is, the estimated parameter w tends to be dense within
the group, and only a few groups (i.e., w) take non-zero values. Since the peaks are
sparsely located in a temporal sequence, the group regularizer is an appropriate choice.

Since the optimization problem of Eq.(5) is convex with respect to W , Eq.(5) can be
solved by using a state-of-the-art group lasso optimization solver. In this paper, we also
employ the dual augmented Lagrangian (DAL) [Tomioka et al. 2011]. Since we use the
group regularizer, we can select a small number of rise and fade patterns. We call this
entire group lasso based fitting framework as PLC Group Lasso.

PLC Group Lasso does not need to specify a distribution for a PLC, and fitting with a
PLC group can be more accurate than fitting with single PLC model. In this paper, we
set α candidates to 1 and β candidates to [0.1, 0.2, . . . , 1.0] for each PLC basis function.
In Figures 3(a2)-(c2), we illustrate the same buzz time-series and their fitted results
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by PLC Group Lasso, together with root squared mean error (RSME). Comparing with
Figures 3(a1)-(c1), we observe that PLC Group Lasso tends to outperform PLC Lasso
in fitting different buzz time-series. Figures 3(d) shows the RMSE comparison between
the PLC Lasso and the PLC Group Lasso. The ”All time-series” setup uses in total 534
time-series, while the ”Buzz time-series” setup uses 58 time-series which are systemat-
ically extracted from the entire 534 time-series by checking max(y)−min(y) > 0.3. For
the ”All time-series” setup, the performance of the PLC Lasso tends to be better than
the one of the PLC Group Lasso. Since the Twitter data includes non-buzz data in the
534 time-series, the performance of the both methods tends to be random. However,
overall, both the PLC Lasso and the PLC Group Lasso perform well. For the ”Buzz
time-series” setup, the PLC Group Lasso tends to outperform the PLC Lasso. Thus, for
modeling buzz time-series, the PLC Group Lasso is more suited than the PLC Lasso.

5. CLUSTERING BUZZES USING LIFECYCLE MODELS

According to Section 4, we can successfully model each time-series either as a mixture
of L PLC models using PLC Lasso, or as a mixture of PLC groups using group lasso,
then represent the sequence as a set of model parameters. In this section, we first
propose three types of features for characterizing buzz time-series. Then, in order to
discover underlying similar patterns in a set of buzz time-series, we propose a novel
probabilistic graphical model, K-Mixture of Product Lifecycle (K-MPLC), to cluster N
time-series based on their PLC parameters.

5.1. Feature Extraction

We obtain estimated model parameters w, α, β, and µ for each buzz time-series using
the PLC Lasso or PLC Group Lasso method. However, some of those parameters may
not be useful for buzz clustering. For example, if buzz time-series are not aligned ac-
cording to their peak positions, location of each PLC or each PLC group varies, and it
may not be possible to obtain meaningful clusters using absolute PLC or PLC group
locations. Thus, in this paper, we propose three types of effective and robust features
for characterizing buzz time-series.
PLC weight parameter: To capture the shape information of a time-series, we use
the normalized weight parameters obtained by PLC Lasso or PLC Group Lasso fitting
ŵ. The number of weight parameters depends on the number of PLC models or PLC
groups.
PLC shape parameter: we propose the following feature to discriminate sharp-tailed
from heavy-tailed buzz sequences. For PLC Lasso, we use:

τ =
1

βimax

,

where imax is the index of the largest PLC with respect to weight w, and this feature is
designed to discriminate time-series in Figures 3(a1) from 3(b1); for PLC Group Lasso,
we compute:

τ =
1

|Simax |
∑

`∈|Simax |

ŵimax,`
βimax,`

,

where imax is the index of the largest PLC group with respect to weight w, and S is the
set of indices of non-flipped Gamma parameter which decides whether the temporal
pattern is sharp-tailed or heavy-tailed.
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Standard deviation of PLC locations: we propose the following feature to discrim-
inate buzz time-series with single peak from multiple peaks. For PLC Lasso, we lever-
age

σ =

√√√√ 1

L

L∑
k=1

ŵk(µk − µ′)2,

where µ1, . . . , µL are locations of PLCs and µ′ =
∑L
k=1 ŵkµk is their weighted mean.

Note that, since we want to focus on PLCs with large weight parameters, we use the
weighted variant of standard deviation. For PLC Group Lasso, we use the same for-
mula as above, to compute the standard deviation of all PLC group locations.

In Figures 3(d), we illustrate the extracted feature values via PLC Lasso or PLC
Group Lasso approach from the same temporal sequences, assuming each time-series
is modeled with a mixture of 3 PLC models or a mixture of 3 PLC groups.

5.2. Clustering Buzzes using K-MPLC

To discover the underlying similar patterns of buzz time-series, we propose a proba-
bilistic graphical model, K-Mixture of Product Lifecycle (K-MPLC), to cluster N time-
series into K groups. Throughout this paper, we assume K is known.

Suppose that we are given N buzz time-series and their corresponding parameters
W = [w1, . . . ,wN ] ∈ RL×N , τ ∈ RN , and σ ∈ RN . Given distinct characteristics over
different parameter vectors, we use a Dirichlet distribution to model the weight vector
w as its sum needs to be 1. Since τ and σ take positive values, we use the Gamma
distribution to model them separately. The graphical model we propose is shown in
Figure 4.

Specifically, the probability for each instance is:

p(w,τ,σ|π,Θ,a,b,a′,b′)=

K∑
k=1

πkp(w|θk)p(τ |ak, bk)p(σ|a′k, b′k).

Here, π = [π1, . . . , πK ]> are the mixture weights, and

p(w|θk) = C(θk)

L∏
i=1

wθki−1
i ,

p(τ |ak, bk) =
bakk

Γ(ak)
τak−1e−bkτ ,

p(σ|a′k, b′k) =
b′k
a′k

Γ(a′k)
σa

′
k−1e−b

′
kσ

are Dirichlet and Gamma distributions, C(θ) =
Γ(

∑L
i=1 θi)

Γ(θ1)Γ(θ2)...Γ(θL) , and Γ(a) =∫∞
0
ta−1e−tdt.
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Fig. 4: Graphical Model of K-MPLC.

In this paper, we use maximum likelihood estimation to estimate the model param-
eters. Specifically, the optimization problem for the proposed model can be given as:

max
π,Θ,a,b,a′,b′

N∑
j=1

log p(wj ,τj ,σj |π,Θ,a,b,a′,b′)

s.t.
K∑
k=1

πk = 1, θik > 0, ak > 0, bk > 0, a′k > 0, b′k > 0.

In this paper we use the expectation-maximization (EM) algorithm to solve this prob-
lem. The complete likelihood function of the proposed model is given as:

p(W , τ ,σ,Z|π,Θ,a, b,a′, b′)

=

K∏
k=1

N∏
j=1

[πk · C(θk)

L∏
i=1

wθki−1
ij · bk

ak

Γ(ak)
τak−1
j e−bkτj

· b
′
k
a′k

Γ(b′k)
σ
a′k−1
j e−b

′
kσj ]zkj ,

where Z is the latent variable of the mixture model.
Then, the expectation of complete log-likelihood function (a.k.a., Q function) can be

given as:

Q , EZ [log p(W , τ ,σ,Z|π,Θ,a, b,a′, b′)]

=

K∑
k=1

N∑
j=1

{γkj log πk + γkj logC(θk)

+γkj(θk − 1)

L∑
i=1

logwij + γkjak log bk − γkj log(Γ(ak))

+γkj(ak − 1) log(τj)− γkjbkτj + γkja
′
k log b′k

−γkj log(Γ(a′k)) + γkj(a
′
k − 1) log(zij)− γkjb′kzij}, (6)

where γkj = E[zkj ] is the posterior probability.
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E-step: The E-step is to compute posterior probability as:

γkj =
πkp(wj |θk)p(τj |ak, bk)p(σj |a′k, b′k)∑K
`=1 πkp(wj |θ`)p(τj |a`, b`)p(σj |a′`, b′`)

. (7)

M-step: M-step is to use maximum likelihood estimation to update each parameter
over Q function. Due to the complexity of the Q function, the M-step contains several
sub steps, if a sub step contains a close form, we will update it directly; otherwise, it re-
quires iterations until it converges. In order to update the parameter θk in the Dirichlet
distribution, we use maximum likelihood estimation of Q function with respect to θk.
However, maximum likelihood estimation of Dirichlet distribution is not available in
closed-form, and thus we apply an iterative approach for parameter estimation [Minka
2000]. The basic idea is gradient ascent, which iteratively steps along positive gradi-
ent directions of Q function until convergence (Notice that C(θ) =

Γ(
∑L
i=1 θi)

Γ(θ1)Γ(θ2)...Γ(θL) ). The
gradient ascent with respect to θ is computed as:

∂Q

∂θki
=

N∑
j=1

{γkjψ(

L∑
i=1

θki)−γkjψ(θki) + γkj log(wij)},

where ψ(w) = ∂ log Γ(w)
∂w is the digamma function.

Then, we update each θki until convergence as:

dki = d
(old)
ki + η

∂Q

∂dki
, (8)

where η > 0 is the step size parameter. For choosing the step size of each gradient, we
may use a line search method known as Armijo’s rule [Patriksson 1999] .

Next, we show the maximum likelihood estimation of Gamma distribution. The gra-
dient of the Q function with respect to ak is given as:

∂Q

∂ak
=

N∑
j=1

γkj

{
log(bk)− 1

Γ(ak)

∂Γ(ak)

∂ak
+ log(τj)

}
.

Since there is no closed form solution, we use a gradient ascent approach to update ak
and bk as:

ak = a
(old)
k + η

∂Q

∂ak
, bk =

∑N
j=1 γkjak∑N
j=1 γkjτj

. (9)

Similary, since the probability density function for σ is also Gamma, we can user a
gradient ascent approach to update a′k and b′k as:

a′k = a
′(old)
k + η

∂Q

∂a′k
, b′k =

∑N
j=1 γkja

′
k∑N

j=1 γkjσj
. (10)

Next, we maximize the Q function with respect to π. Since we need to take the sum-
to-one constraint into account, we use a Lagrange multiplier λ as:

Q+ λ

(
K∑
k=1

πk − 1

)
.

ACM Transactions on Knowledge Discovery from Data, Vol. 11, No. 2, Article 20, Publication date: November 2016.



Lifecycle Modeling for Buzz Temporal Pattern Discovery 20:15

Taking the derivative of the above equation with respect to πk and equating it to zero,
we have

πk =
1

N

K∑
k=1

γkj . (11)

In summary, E-step is corresponding to Eq.(7), and M-step is corresponding to Eq.(8-
11). Finally, we cluster the jth buzz time-series based on the posterior probability as:

k̂j = argmax
k

γkj . (12)

6. BUZZ CLUSTERING EXPERIMENTS

In order to cluster multiple time-series into several groups, it is natural for us to con-
sider K-means algorithm and Gaussian mixture model (GMM) [Bishop and Nasrabadi
2006] as two baseline approaches. In addition, we compare the proposed methods with
the following representative methods:

— K-SC: Yang and Leskovec [Yang and Leskovec 2011] proposed K-SC algorithm2,
which is the state-of-the-art algorithm for buzz time-series clustering. K-SC is pro-
posed to group similar time-series via aligning peaks, shifting over time-axis, and
scaling over frequency-axis. K-SC can cluster time-series that can be aligned by shift-
ing and scaling operations, but fails for sharp or heavy-tailed temporal sequences.
Moreover, if two time-series share similar peak shapes but differ in the intervals
between the peaks, K-SC cannot identify these two time-series as the same cluster
through simple shifting or scaling.

— SpikeM: SpikeM3 [Matsubara et al. 2012], which is the state-of-the-art algorithm for
buzz time-series modeling, is considered another strong baseline. As SpikeM does not
handle time-series clustering, we concatenate all parameters extracted by SpikeM as
features for GMM, and we denote it as SpikeM+GMM.

— DTW+Spectral: We also compare with a DTW-based anytime clustering algo-
rithm4 [Zhu et al. 2012], which is denoted as DTW+Spectral, whose basic idea is
first to generate a DTW matrix to measure the non-metric distance between any two
time-series, then apply a spectral clustering algorithm on the DTW matrix.

Given two buzz modeling approaches proposed in this paper, PLC Lasso and PLC
Group Lasso, we could combine each of them with K-MPLC to handle the buzz clus-
tering task, and note them as PLC Lasso + K-MPLC and PLC Group Lasso + K-MPLC
respectively. In our experiments, for PLC Lasso approach, we set α to be 1 and β can
take values of [0.1, 0.2, . . . , 1.0]; similarly, for PLC Group Lasso approach, we set α to
be 1 and β candidates to [0.1, 0.2, . . . , 1.0] to represent the basis PLC functions as well.
In order to differentiate the contribution of buzz modeling methods (e.g. PLC Lasso or
PLC Group Lasso) from K-MPLC algorithm, we also combine the extracted features
with GMM for clustering, which are denoted as PLC Lasso + GMM and PLC Group
Lasso + GMM respectively. All experiments in this section are based on 10-fold cross
validation, and those data points with big circles on different figures indicate that this
proposed method outperforms all baseline approaches statistically significantly.

2http://snap.stanford.edu/data/ksc.html
3http://www.cs.cmu.edu/∼yasuko/SRC/spikeM.zip
4https://sites.google.com/site/anytimeclustering/
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Fig. 5: Illustrative examples of two synthetic datasets.

ARI NMI
K-Means 0.034 0.232
GMM 0.0111 0.0308
K-SC 0.001 0.017
PLC Lasso + K-MPLC 1.0 1.0
PLC Group Lasso + K-MPLC 1.0 1.0

Table I: Clustering results on synthetic dataset 1. (Bold font indicates the proposed
methods outperform all baseline approach statistically significantly)

6.1. Datasets

Synthetic Datasets: For proof of concept, we build two synthetic datasets as follows.
We first generate the first synthetic dataset to verify whether our proposed method can
successfully discriminate time-series with single sharp peaks from curves with single
heavy-tailed peaks. This dataset consists of two clusters: in cluster 1, we randomly
generate 50 single sharp peak time-series based on the mixture of PLC models Eq.(2),
whose α1 follows a uniform distribution of [1.8,2.0], β1 follows a uniform distribution
of [0.8,1.2], and µ1 follows a uniform distribution of [1,30]; while in cluster 2, we ran-
domly generate 100 single heavy-tailed peak time-series, whose α2 follows a uniform
distribution of [1.8,2.0], β2 follows a uniform distribution of [0.2,0.4], and µ2 follows
a uniform distribution of [1,30]. Figure 5 (a) shows 20 sample time-series in the syn-
thetic dataset 1, where different color indicate corresponding cluster labels. Next, we
generate the second synthetic dataset to verify whether the K-MPLC algorithm can
successfully cluster time-series shifted along x-axis into the same group. The dataset
contains 3 clusters, which are obtained from 3 distinct base time-series, and each time-
series is generated by a mixture of 3 PLC models. We shift each base time-series along
the x-axis, and generate another 9 time-series, which belong to the same cluster. In
total, we generate a synthetic dataset with 30 time-series, which belong to 3 clusters.
Figure 5 (b) shows 15 sample time-series of the synthetic dataset 2, and different colors
indicate corresponding cluster labels.
Social Media Datasets: To evaluate the effectiveness of our proposed methods, we
build two benchmark datasets from social media as follows. We first selected thou-
sands of high frequency search queries as candidate buzz topics, and collected tweets
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ARI NMI
K-Means 0.6678 0.6442
GMM 0.5812 0.6229
K-SC 0.7403 0.7103
PLC Lasso + K-MPLC 1.0 1.0
PLC Group Lasso + K-MPLC 1.0 1.0

Table II: Clustering results on synthetic dataset 2. (Bold font indicates the proposed
methods outperform all baseline approach statistically significantly)

containing those keywords using Twitter API 5 from June 22nd to August 8th, 2012.
Then, we generated a time-series for the topic within a time window, considering the
number of mentions of a topic per hour. If the number of mentions at time t in a topic
is 10 times higher than the average mention numbers in the past 48 hours, we regard
the topic at that time as a buzz topic. According to [Kwak et al. 2010; Chang et al.
2014], hot topics on social media lose their attraction quickly, therefore, we select a
time window of 72 hours, and obtain a 72-dimension time-series y for each buzz topic.
Finally, we collected one general buzz dataset and one sports buzz dataset. The gen-
eral buzz dataset contains 534 buzz time-series: most of them are celebrity names,
such as Michael Phelps and Tyler Perry; the rest are event names, such as Euro 2012
and UFC 148. The sports buzz dataset contains 124 buzz time-series, and all of buzz
topics are sports celebrity names, such as Alex Morgan, Larry Bird, Dennis Rodman,
and these 2 datasets have some overlapping. In our experiments, temporal sequences
are not aligned according to their peaks. That is, the data set used in this paper is a
more challenging dataset than the one used for K-SC [Yang and Leskovec 2011]. All
time-series in both datasets are manually labeled into 5 clusters based on their distinct
temporal shapes: time-series containing single sharp peak are labeled as 1; sequences
with single heavy-tailed peak are labeled as 2; curves with double sharp peaks are
labeled as 3; time-series containing double peaks (at least one is heavy-tailed) are la-
beled as 4; time-series with more than 3 peaks are labeled as 5. Figure 8 shows one
representative time-series from each cluster.

6.2. Evaluation Metrics

In this paper, we use two widely used clustering evaluation metrics: Adjusted Rand In-
dex (ARI) and Normalized Mutual Information (NMI)[Kaufman and Rousseeuw 2005],
and both metrics are the larger the better.

— Adjusted Rand Index (ARI): Rand Index (RI) is to measure the accuracy of clus-
tering result, given the clustering ground truth:

RI =
TP + TN

TP + FP + TN + FN
,

where TP is the number of true positives, TN is the number of true negatives, FP is
the number of false positives, and FN is the number of false negatives. The adjusted
Rand index (ARI) is the corrected-for-chance version of the Rand index, which is
based on the contingency table. ARI is defined as

ARI =
Index− ExpectedIndex

MaxIndex− ExpectedIndex
,

5http://apiwiki.twitter.com/
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where it ranges from -1 to 1.
— Normalized Mutual Information (NMI): Let us denote C be the set of clusters

obtained from the ground truth and C ′ be the clustering result. Their mutual infor-
mation MI(C,C ′) is defined as follows:

MI(C,C ′) =
∑

ci∈C,c′j∈C′

p(ci, c
′
j) · log

p(ci, c
′
j)

p(ci) · p(c′j)
,

where p(ci) and p(c′j) refer to the probability of a data point belonging to cluster ci
and c′j , and where p(ci, c′j) is the joint probability. The normalized mutual information
(NMI) is defined as

NMI(C,C ′) =
MI(C,C ′)

max(H(C), H(C ′))
,

where H(C) and H(C ′) refers to the entropy of C and C ′. After normalization, the
NMI score ranges from 0 to 1.

6.3. Experiments on Synthetic Datasets

To demonstrate the effectiveness of our proposed methods, we first evaluate them us-
ing synthetic datasets. Table I shows clustering results on the synthetic dataset 1.
As can be observed, K-MPLC combining with either PLC Lasso or PLC Group Lasso,
obtain perfect result on this dataset. K-means and GMM perform poorly, since both
algorithms cannot group similar curves if they are not aligned along x-axis. For K-SC,
when curves from two different clusters have different shapes yet similar shapes after
re-scaling, simply shifting along x-axis or scaling along y-axis is not sufficient for K-SC
to group those time-series into the right clusters.

Table II shows clustering results on the synthetic dataset 2, where K-MPLC combin-
ing with either PLC Lasso or PLC Group Lasso, achieve perfect result as well. These
synthetic experimental results clearly illustrate that K-MPLC can discriminate sharp
peaks from heavy-tailed peaks and group time-series with multiple peaks correctly.

6.4. Experiments on General Buzz Dataset

Figure 6 (a) represents the clustering results of different algorithms on the general
buzz dataset. It clearly shows that PLC Group Lasso + K-MPLC performs the best
among all algorithms, while PLC Lasso + K-MPLC performs the second best, and
both improvements are statistically significant. K-SC and DTW+Spectral perform well
among existing methods, and their results are comparable with PLC Lasso + GMM or
PLC Group Lasso + GMM, which also indicates the contribution of K-MPLC model.

To further compare the proposed algorithm with other baseline approaches, we
would like to evaluate them on more datasets. However, since building a real dataset
from social media web sites is really expensive and time-consuming, we change the
number of existing cluster labels to obtain more experimental results.

— 4-label clustering ground truth: we combine the sequences originally labeled as
3 and 4 into the same cluster, while the remaining is the same.

— 3-label clustering ground truth (different number of peaks): we combine the
sequences originally labeled as 1 and 2 into one cluster, combine the sequences origi-
nally labeled as 3 and 4 into another same cluster, and leave the remaining the same.
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(a) Clustering results on 5-label ground truth.
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(b) Clustering results on 4-label ground truth.

ARI (K=3) NMI (K=3)
0

0.1

0.2

0.3

0.4

0.5

0.6

A
R

I 
&

 N
M

I 
(t

h
e
 l
a
rg

e
r 

th
e
 b

e
tt
e
r)

 

 

K−means

GMM

K−SC

SpikeM+GMM

DTW+Spectral

Lasso+GMM

Lasso+K−MPLC

GroupLasso+GMM

GroupLasso+K−MPLC

(c) Clustering results on 3-label ground truth.
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(d) Clustering results on 2-label ground truth.

Fig. 6: Clustering results on General Buzz Dataset with different Labels. (Big circles
indicate the proposed method outperforms all baseline approach statistically signifi-
cantly)

— 2-label clustering ground truth (Single peak vs. multiple peaks): we combine
the sequences originally labeled as 1 and 2 into one cluster, and combine the se-
quences originally labeled as 3, 4 and 5 into the other cluster.

Comparing with Figure 6 (a)-(d), overall, the observations are quite consistent: PLC
Group Lasso + K-MPLC always performs the best, and PLC Lasso + K-MPLC per-
forms the 2nd best, and all improvements are statistically significant; although PLC
Lasso + GMM and PLC Group Lasso + GMM also make some improvements, but not
always statistically significant; DTW+Spectral and K-SC perform well among existing
approaches, and the DTW based approach is relatively more robust than K-SC on our
datasets. Notice that, with decreasing of cluster numbers K, the difficulty of cluster-
ing also decreases. In our experiment, the absolute evaluation metrics of PLC Group
Lasso + K-MPLC is increasing (ARI is 0.3921 when K = 5, and ARI is 0.5145 when
K = 2), which also shows the effectiveness of our proposed method. On the other hand,
K-SC and DTW+Spectral perform worse when K is smaller, such as K = 2. One possi-
ble reason is that one of two clusters consists of single sharp peak and single fat peak
sequences. More specifically, for K-SC and DTW+Spectral, the distance between single
sharp peak and single fat peak sequences can be larger than the one between single
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Fig. 7: Clustering Results on General Buzz Dataset with Different PLC or PLC group
Numbers . (Big circles indicate the improvement is statistically significant comparing
with different PLC or PLC group numbers)

sharp peak and multiple peaks sequences, and thus single peak and multiple peaks
tends to be clustered together.

Figure 7 illustrates the clustering results with different PLC numbers L using PLC
Lasso + K-MPLC or different PLC Group numbers using PLC Group Lasso + K-MPLC.
Interestingly, modeling each sequence with a mixture of 3 PLC models consistently
outperforms that of using 2 or 4 PLC models, although the outperforming is not always
statistically significant. One possible explanation is that in our general buzz dataset,
as the ground truth is to differentiate curves with 1 peak or 2 peaks from 3 or more
peaks, representing each time-series as a mixture of 3 PLC models is the most ap-
propriate, while leveraging 4 PLC models might bring in more noisy information, and
leveraging 2 PLC models are least robust; however, when using PLC Group Lasso, as
each rise-and-fade pattern is represented by a group of basis PLC models, and differ-
ent basis PLC models in different PLC groups are more likely overlapped, which bring
more noisy information for the buzz clustering task, as a result, PLC Group Lasso
performs best when group number is 2.

6.5. Experiments on Sports Buzz Dataset

To investigate the relationship between clustering algorithms and buzz topical con-
tent, we evaluate K-MPLC on the sports buzz dataset, which consists of 124 sports
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Table III: Buzz topic examples in each cluster.

#Topics Representative Sports Buzz Topics
cluster 1 52 (20) Alex Morgan, Anderson Silva, Ben Gordon, Jason Terry,

Liu Xiang, Perry Jones III, Ray Allen, Silas Redd, ...
cluster 2 29 (7) Hope Solo, Jason Kidd, Nastia Liukin, Steve Nash,

Tyler Clary, Venus Williams ...
cluster 3 9 (8) Asafa Powell, Matt Grevers, Usain Bolt,

Zara Phillips ...
cluster 4 20 (10) David Beckham, Larry Bird, Michael Johnson,

Michael Phelps, Oscar Pistorius ...
cluster 5 14 (7) Dennis Rodman, Jeremy Lin, Kobe Bryant,

Lance Armstrong, Brett Favre ...
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Fig. 8: Time-series example of each cluster.

buzz time-series, and all of them are sports celebrity names. As part of the dataset
was collected during the London 2012 Olympics, i.e., there is a large number of
Olympics related celebrities included. We explicitly labeled all sports buzz topics as
Olympics topics or non-Olympics topics, and 52 out of 124 sports buzz topics are about
Olympics celebrities. Comparing with Olympics buzz topics with non-Olympics buzz
topics, 48.1% of Olympics buzz topics have 2 or more peaks, while only 25.0% of non-
Olympics buzz topics have 2 or more peaks, which is due to the intensity of Olympics
event: an athlete needs to compete several time (e.g., semi-final, final), and sometimes
in multiple categories (e.g., different swimming events). As a result, Olympics celebri-
ties tends to attract more mentions or discussions.

Table III shows the number of topics and samples of topics in each cluster center
obtained by K-MPLC, where the number in the bracket in the second column indicates
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(b) Prediction on Sports Buzz Dataset.

Fig. 10: Prediction Experimental Results. (Big circles indicate the proposed method
outperforms two baseline approach statistically significantly)

the number of Olympics topics in that cluster. As can be seen, the cluster 4 and 5 con-
tain more superstar sports celebrities than cluster 1 or 2, which indicates the number
of buzz peaks is somehow correlated with celebrity popularity.

Figure 8 shows one representative time-series from each cluster, where the topics
names are also listed in each sub figure. For example, Figure 8 (e) illustrates the oc-
currence of Dennis Rodman within a 72-hour period. Figure 9 illustrates the cluster-
ing results of different algorithms on the sports buzz dataset, where the observation is
generally consistent to the clustering results on the general buzz dataset.

7. BUZZ TYPE PREDICTION EXPERIMENTS

Prediction based on time-series data extracted from social media is a challenging task,
which is mainly used to predict stock market changes [Johan Bollen 2011] or politi-
cal opinions [O’Connor et al. 2010; Conover et al. 2011]. Unlike stock market predic-
tion, whose focus is to precisely predict the stock price value in the next adjacent time
stamp, we try to predict whether there will be a burst in the near future. Our moti-
vation is that there exists several major temporal shapes of attention of social media
content [Yang and Leskovec 2011], therefore, as long as we can successfully classify a
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buzz time-series belonging to which major temporal shapes based its partial segment,
we could also effectively predict burst. As a consequence, we cast the buzz type pre-
diction challenge as a classification problem: given our existing labeled datasets for
buzzes clustering, we predict what is the label of each unknown buzz topics via cross
validation. For example, given a partially observed time-series, if it is classified as cat-
egory 1 (single sharp peak), it is less likely to attract a new burst in the next a few
hours; while it is classified as category 5 (3 or more peaks), a new burst is more likely
to be predicted in the near future. For those buzzing events, due to the dramatic vol-
ume change over time, most traditional time-series models, such as Auto-Regressive
model [Blischke and Murthy 2000] or Birth-death process [Latouche and Ramaswami
1999] fail to generate a reliable prediction.

In this section, we try to solve the buzz type prediction task within a supervised
learning framework. Given the whole sequence of each time-series data, we divide
each sequence into 2 segments: past segment and future segment. For training data,
both past and future segments are observed, while for testing data, only past segment
is observed. We treat the past segment as a vector of features, the ground truth of
the training data as the learning target, and we train a model; in testing, given an
observed segment, the supervised learning model can be used to make a prediction. In
this paper, we use logistic regression [Bishop and Nasrabadi 2006] as the supervised
learning algorithm. As a baseline, we use each time-series as a feature vector; we also
use SpikeM parameters extracted from each past segment as a feature vector; for our
proposed method, we use the PLC Lasso parameters or PLC Group Lasso parameters
extracted from each past segment as a feature vector.

Figure 10 illustrates the buzz type prediction results on both datasets using leave-
1-out cross validation, and those data points with big circles indicate that our pro-
posed method outperforms both baseline approaches statistically significantly. It is
clear the PLC Group Lasso approach performances the best. When the full time-series
(72 hours) is observed, the prediction accuracy on General Buzz Dataset is 0.6348,
while the prediction accuracy on Sports Buzz Dataset is 0.6694; when the 60 hours
partial time-series are observed, the prediction accuracy on General Buzz Dataset is
0.6273, while the prediction accuracy on Sports Buzz Dataset is 0.6371; when the
36 hours partial time-series are observed, the prediction accuracy on General Buzz
Dataset is 0.5000, while the prediction accuracy on Sports Buzz Dataset is 0.5081. In
the other words, although different buzz events might be independent each other, their
time-series follow several patterns and such patterns can be predicted via supervised
learning approach. Given partial observed testing data, the overall accuracy is close to
the accuracy with fully observed testing data. As the General Buzz Dataset contains
more temporal sequences than the Sports Buzz Dataset, more data points based on
General Buzz Dataset are statistically significantly better than baseline approaches.
Notice in Figure 10(b), the prediction result using PLC Lasso is not monotonic in-
creasing. One possible reason is due to the noisy data, and we will improve the buzz
prediction in future work.

8. CONCLUSION AND FUTURE WORK

In this paper, we presented our study to model the sudden spikes and heavy-tailed pat-
terns of buzz events on social media with product lifecycle models (PLC). Specifically,
we model a time-series with PLC mixture model or PLC group mixture model, and
propose an efficient lasso or group lasso based optimization approach for parameter
estimation. Then, we proposed a novel probabilistic graphical model to cluster buzz
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time-series with similar temporal patterns into the same group based on the features
obtained from PLC mixture model or PLC group mixture model. The novelty of our
proposed approaches is that it can effectively distinguish time-series with sharp peaks
from time-series with heavy-tailed peaks, which is in practice a favorable property in
buzz time-series clustering. Through evaluation on two buzz datasets, our proposed
method significantly outperforms the current state-of-the-art algorithms for both buzz
clustering and buzz type prediction tasks.

Our work can be extended as follows. First, in this paper, we only deal with a seg-
ment of time-series within a fix size of time window. Second, we will leverage PLC
models to split a long time-series into different segments, and combine with social
media content to mine more interesting findings.
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