
Learning Query and Document Relevance from a
Web-scale Click Graph

Shan Jiang†, Yuening Hu‡, Changsung Kang‡, Tim Daly Jr.‡, Dawei Yin‡,
Yi Chang‡, Chengxiang Zhai†

†Department of Computer Science
University of Illinois at Urbana-Champaign

Urbana, IL, 61801
{sjiang18,czhai}@illinois.edu

‡Yahoo Research
Sunnyvale, CA, USA

{ynhu,ckang,timjr,daweiy,yichang}@yahoo-
inc.com

ABSTRACT
Click-through logs over query-document pairs provide rich
and valuable information for multiple tasks in information
retrieval. This paper proposes a vector propagation algo-
rithm on the click graph to learn vector representations for
both queries and documents in the same semantic space.
The proposed approach incorporates both click and con-
tent information, and the produced vector representations
can directly improve ranking performance for queries and
documents that have been observed in the click log. For
new queries and documents that are not in the click log, we
propose a two-step framework to generate the vector repre-
sentation, which significantly improves the coverage of our
vectors while maintaining the high quality. Experiments on
Web-scale search logs from a major commercial search en-
gine demonstrate the effectiveness and scalability of the pro-
posed method. Evaluation results show that NDCG scores
are significantly improved against multiple baselines by us-
ing the proposed method both as a ranking model and as a
feature in a learning-to-rank framework.

Categories and Subject Descriptors
[Information retrieval]: Information retrieval query pro-
cessing—Query log analysis; [Information retrieval]: Re-
trieval models and ranking—Similarity measures

Keywords
Click-through bipartite graph, vector propagation, vector
generation, Web search, query-document relevance

1. INTRODUCTION
Incorporating user feedback is one of the most effective

ways to improve a search engine. For a commercial search

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGIR ’16, July 17-21, 2016, Pisa, Italy
c© 2016 ACM. ISBN 978-1-4503-4069-4/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2911451.2911531

engine with a large audience, this can be done by logging
user actions – the queries they issued, the results they saw,
the clicks they made, and so on. This behavioral data can
be used to create a training target for a machine learned
ranking function, or turned into features to improve the
performance of the ranking function. In fact, click-based
features are used as one of the primary sources to improve
the ranking quality for popular queries.

However, the click information is sometimes noisy, and the
coverage of clicks is quite limited compared to all possible
relevant query-document pairs, which produces sparsity for
the click-based features [9]. The sparsity and noise problems
impact the overall quality of click-based features, especially
for less popular queries.

To deal with these problems, an effective way is to learn
a vector representation for both queries and documents in
the same space [12, 25, 27]. Traditional methods typically
learn low-rank vectors in a latent space. Though the low
rank embedding of queries and documents has its own ad-
vantages, it also has some weaknesses. For example, it hurts
interpretability and debuggability of the ranking function
because individual dimensions in the latent space are hard to
interpret. In comparison, using word features gives a more
interpretable representation. However, direct text match-
ing methods, e.g. BM25 [22] and the language models [28],
suffer from the lexical gap between queries and documents
which is shown to exist by previous study [20].1 Thus, how
to represent both queries and documents in the same seman-
tic space and explore their relevance based on the click logs,
remains a challenge.

Moreover, we need an approach that can be generalized to
represent the queries and documents that have never been
observed in the search logs. This is especially important
in real applications because new queries and documents are
emerging every day. However, purely click-based features
are limited by the range of previous logs, and improving
their coverage is a challenge.

Finally, though a Web-scale click graph provides us with
unprecedentedly rich information, it also brings in great
challenge of how to consume the entire click log efficiently
rather than focus on a small sample. As a result, we need

1Lexical gap means that the query terms are different from
the corresponding terms in relevant documents in terms of
string matching.

185

an efficient and scalable approach that can be easily applied
to large scale click logs.

To solve all these challenges in a unified framework, this
paper proposes a propagation approach to learn vector rep-
resentation based on both content and click information (Sec-
tion 2). The vector representation learned by our algorithm
can directly improve the ranking performance for queries
and documents that have been observed in the click log.
For queries and documents that are not in the click graph,
which are referred as click-absent queries and documents,
we further propose a two-step vector estimation algorithm
which generates a representation based on their association
with the vectors that are already created by propagation on
the click graph (Section 3). This generalization significantly
improves the coverage of our vectors, which is particularly
important for long-tail queries in web search.

This whole framework is very efficient and scalable, espe-
cially compared to matrix factorization-based methods [12,
25, 27]. Since a search engine click log can grow by many
millions of new entries in a single day, this scalability is
essential. In the experiments (Section 4), we collect click-
through log data from a major commercial search engine,
which contains 25 billion query-document pairs in total, and
demonstrate the effectiveness of our proposed approach used
as an individual ranking model and a feature in the learn-to-
rank framework. More analysis and case study about why
and how the proposed approach improves ranking are dis-
cussed in Section 5.

To summarize, our main contributions include:
• A unified approach, which generates the semantic rep-

resentations for both queries and documents in an ex-
plicit and interpretable way.

• A generalized method, which estimates vector repre-
sentations for any unseen queries and documents.

• A scalable and efficient framework, which is easy to
implement and works effectively in a real commercial
search engine.

2. VECTOR PROPAGATION ON THE
CLICK GRAPH

Click-through data provides a soft indicator of relevance
between queries and documents, and click-based features are
one type of the most important and effective features in
ranking task. However, purely click-based features highly
rely on the users’ behavior, and it sometimes suffers from
sparsity and noise in the click data, especially for less popu-
lar queries. On the other hand, content-based features cap-
ture the intrinsic relevance embedded in the text content,
and they are independent of other resources such as click
logs. However, the lexical gap between queries and doc-
uments and the fact of missing users’ feedback make the
content-based features less effective in real ranking prob-
lems.

This paper bridges the two information resources and pro-
poses a vector propagation algorithm which makes use of
both click and content information to learn the vector pre-
sentation of queries and documents. This algorithm not only
introduces new words from the relevant queries and docu-
ments through the propagation, but also smoothes the term
weights based on the click information. Besides, the sparsity
and noise are also reduced during this process thus better
quality of the vector representations is guaranteed. Once

q1: yahoo finance

q2: yahoo

q3: yahoo mail

d1: www.yahoo.com

d2: mail.yahoo.com

3

5

1

4

Figure 1: An example of click-through bipartite graph.

we obtain the vectors for queries and documents, similarity
functions such as cosine similarity can be applied to compute
the query-document relevance.

2.1 Preliminaries and Notations
Click-through data consists of queries and documents with

their co-click information2. Let Doc be the set of documents
and Query be the set of queries. We construct the click
graph G with the node set V = Doc∪Query. For a document
d ∈ Doc and a query q ∈ Query, if there is at least one co-
click between them, i.e., at least one user clicked on d when
he or she searched for query q, an edge is built between
them. The weight of the edge is set to be the number of
co-clicks. The set of edges in the graph is denoted as E . An
example of the click graph is shown in Figure 1. Documents
are denoted as open circles and labeled by the corresponding
URL, while queries are represented as solid circles.

The adjacency matrix of the graph is denoted as C where
the entry in the i-th row and j-th column (Ci,j) equals to
the weight of the edge between query qi and document dj .
If there is no edge between them, Ci,j is 0.

We denote Q as the matrix where i-th row Qi is the vector
representation of query qi. Q(n) is the query vector matrix
at the n-th iteration. If the vocabulary size is V , then the
size of Q is |Query| × V . Similarly we denote D as the
document vector matrix and its size is |Doc| × V .

2.2 Vector Propagation Algorithm
The goal of this vector propagation algorithm is to learn

the representation of queries and documents in the same se-
mantic space (either the query space or the document space).
It starts with the content information initialized as vectors
on one side of the click graph, and propagates the vectors
to the connected nodes on the other side of the click graph.
Co-clicks between queries and documents are used to weight
the vectors so that the important terms stand out while less
informative terms are gradually filtered out. More details
are introduced as follows.

We first choose one side of the click graph (either side)
and initialize the vectors based on the content information,
e.g., the query words on the query side, or the titles and ab-
stracts on the document side. This initialization keeps the
word-level information in the vectors. Words can be consid-
ered as human-designed features and past studies have re-
peatedly shown that keeping the word-level representation
is very helpful. In traditional content-based models such as
VSM [23], vocabulary from query and document is merged
together. Though it makes the vector representation easier
and more natural, it may also bring in the lexical gap be-
tween queries and documents [20]. Our method starts with

2If a document is clicked by a user for a proposed query, it is
referred as a co-clicked query-document pair in this paper.

186

one vocabulary space, and learns the vectors for queries and
documents based on one consistent vocabulary space (either
query vocabulary or the document vocabulary). Thus the
lexical gap is reduced.

In the next step, vectors are propagated through the click
graph. Our basic idea is to represent queries based on their
relevant documents and vice versa. Queries that are co-
clicked with a lot of common documents should have simi-
lar representations, and documents sharing many co-clicked
queries should also be close in the vector space. Moreover,
the click information is a soft indicator of relevance and the
confidence of relevance is positively correlated to the num-
ber of clicks. Thus, co-clicked pairs that have a higher fre-
quency should dominate the vectors. The propagation starts
from the side where vectors are initialized, then the initial-
ized vectors are weighted by the clicks and propagated to
the connected nodes on the other side of the click graph.
For example, if we start from the query side, the document
vectors are calculated by aggregating all query vectors that
are co-clicked with them. In the next iteration, vectors are
propagated in the opposite direction, and this process is con-
ducted repeatedly until convergence.

We take starting from the query side as an example. In
the initialization, each query is represented by its own words.
Words are weighted in proportion to their frequency and
normalized by the L2 norm. The initialized vector matrix
is denote as Q(0). In the n-th iteration (n ≥ 1), we first

compute document vectors D(n) by a weighted summation
of their co-clicked queries where the weights depend on the
number of clicks. Formally, given the j-th document dj , its

vector representation D
(n)
j is calculated as:

D
(n)
j =

1

||
∑|Query|

i=1 Ci,j ·Q(n−1)
i ||2

|Query|∑
i=1

Ci,j ·Q(n−1)
i (1)

where Q
(n−1)
i is the vector representation for the i-th query

in the (n-1)-th iteration. D
(n)
j is also normalized by L2

norm. Then the query vectors in Q(n) are updated based on
their co-clicked document vectors:

Q
(n)
i =

1

||
∑|Doc|

j Ci,j ·D(n)
j ||2

|Doc|∑
j=1

Ci,j ·D(n)
j (2)

Through this propagation process, we learn the vectors
for both queries and documents using the query vocabulary.
Without the lexical gap, better query-document relevance
can be achieved. Similarly, if we start from the document
side, document vectors (denoted as D(0)) are initialized by
using their content words, and the vector propagation starts
from the document side to the query side in each iteration:

Q
(n)
i =

1

||
∑|Doc|

j Ci,j ·D(n−1)
j ||2

|Doc|∑
j=1

Ci,j ·D(n−1)
j (3)

D
(n)
j =

1

||
∑|Query|

i=1 Ci,j ·Q(n)
i ||2

|Query|∑
i=1

Ci,j ·Q(n)
i (4)

Take the click graph in Figure 1 as an example. If we
start from the query side, Q1, Q2 and Q3 are initialized as
{yahoo: 1√

2
, finance: 1√

2
, mail:0}, {yahoo:1, finance:0, mail:0}

and {yahoo: 1√
2
, finance:0, mail: 1√

2
} respectively. Then

document vectors are derived from the co-clicked queries.
For instance, the vector representation for d1 (D1) is cal-
culated as (3

8
Q1 + 5

8
Q2)/|| 3

8
Q1 + 5

8
Q2||2. If we start from

the document side, we first initialize the document vectors
by their titles: “Yahoo Finance - Business Finance, Stock
Market, Quotes, News” and “Yahoo” for d1 and d2 respec-
tively.3 Then the document vectors are propagated to the
query side and the query vectors are generated in a similar
way. Because of the lexical gap between queries and docu-
ments, the learned vectors starting from different sides are
indeed different, and in fact they complement each other in
the real ranking system. More analysis is in Section 5.

The proposed vector propagation is similar to the impor-
tance propagation in HITS algorithm [14]. In HITS algo-
rithm, mutual reinforcement bonds the authority and hub
scores through the Web link structure, while our propaga-
tion algorithm aims at mutual improvement of query and
document vector representations. Instead of propagating
importance scores, we propagate the feature vectors which
are derived from the text content. In this way, both content
and click information are encoded in the learned vectors.

In practice, we represent each vector in a sparse way (only
keeping the terms with non-zero weights), which helps to in-
crease the computational speed. However, a potential prob-
lem in this propagation algorithm is the rapid growth of the
non-zero entries, which leads to a considerable increase in
time and space consumption in a Web-scale scenario. How-
ever, if we rank the terms in a vector according to their
weights, we can clearly see that the vectors have long tails:
the weights drop significantly after the first few terms, and
the remaining terms in the vector have very small weights
(examples can be found in Section 5.1). Thus we can sim-
ply keep the top K terms with the highest weights for both
query and document vectors in each iteration to further re-
duce both time and space consumption.

3. VECTOR GENERATION FOR CLICK-
ABSENT QUERIES AND DOCUMENTS

Though the vector propagation algorithm proposed in Sec-
tion 2 enables us to get the relevance feature for any query-
document pair in the click graph, it still cannot handle
queries or documents that have no click information. As
a matter of fact, the ability to deal with click-absent queries
and documents is of great importance in real applications,
since we can always see new queries and documents that are
not included in previous logs.

An intuitive way is to use bag-of-words model to generate
their vector representations, e.g., use the query words to rep-
resent the queries, and use the title words to represent the
documents. However, it introduces the lexical gap between
queries and documents that we try to avoid in this paper,
and it is limited to the content words instead of expand-
ing the vectors with additional related terms. Besides, it
also breaks the indirect connections between the click-absent
queries/documents and the documents/queries in the click
graph, thus reweighting cannot be learned from the clicks.

To better estimate the vectors for click-absent queries
and documents, this section proposes a novel and efficient
two-step framework. We first break down queries or docu-
ment titles (depending on from which side we start from in
the vector propagation algorithm) into different units (e.g.,

3Titles are extracted from the HTML sources.

187

ui: yahoo

q1: yahoo finance

q2: yahoo

q3: yahoo mail

d1: www.yahoo.com

d2: mail.yahoo.com/

ui: yahoo

d1: www.yahoo.com

d2: mail.yahoo.com/

3

5

1

4

8

5

Figure 2: An example of unit vector generation. (The black thin lines are the edge of the click graph, while the edges
represented by the gray thick lines indicate the pseudo clicks between units and documents.)

ngrams), and learn a vector representation for each unit
based on the vectors we have already learned from the click
graph. We then learn a weight for each unit by a regression
model, and finally estimate the vectors for the click-absent
queries and documents by a linear combination of the unit
vectors. This framework connects the click-absent queries
and documents to the click graph through the unit vectors
and gets high-quality representations for them, thus enlarges
the coverage of the vectors.

3.1 Extracting Unit Vectors
Vectors learned by the propagation algorithm keep word-

level features, which provides a potential bridge to connect
the click-absent queries and documents with those in the
click graph. Even though we cannot exactly match a new
query or document with an existing one in the search logs,
the key words or phrases of these new queries and documents
may be already contained in the observed queries and doc-
uments. These key terms (such as unigrams, bigrams and
trigrams) can be treated as basic message units in both click-
absent and existing queries and documents, and we can get
these ngram units from the text content. More specifically,
if the propagation starts from the query side, all the queries
are broken into unigrams, bigrams and trigrams. Similarly,
document contents such as titles or abstracts are decom-
posed to ngrams if we use document vocabulary. The set of
units is denoted as U .

The next step is to learn a vector representation for each
unit. In the vector propagation algorithm (Section 2), query
vectors are learned by aggregating document vectors accord-
ing to their co-clicking relationship, and we can learn the
unit vectors in a similar way. Let’s assume the vector prop-
agation starts from the query side and first build up the unit
vectors in the query vocabulary space. For each unit ui in
U , we find all the queries containing the unit ui, and de-
note the set as Oui . We also find all the documents that are
connected to any of these queries, and denote the document
vector set as Kui . Next, we connect ui with vectors in Kui

based on the click information: for the k-th vector in Oui

and the j-th vector in Kui (denoted as Oui(k) and Kui(j)
respectively), if there is a click between their corresponding
query and document, we say that there is a pseudo click be-
tween ui and Kui(j) through Oui(k), denoted as Pi,k,j . The
value Pi,k,j equals to the query-document co-click number
Ck,j . If we aggregate all the pseudo clicks between ui and
Kui(j) over all queries in Oui , we get the pseudo click be-

tween ui and Kui(j) and denote it as Pi,j :

Pi,j =
∑|Oui

|

k=1
Pi,k,j (5)

As the example shown in Figure 2, if ui is “yahoo” and the
propagation starts from the query side, Oui is the set of
queries that contains the unit “yahoo”. In this example,
we have three queries in Oui , which are q1, q2 and q3 re-
spectively. d1 and d2 are found to be co-clicked documents
for these three queries, so their vectors constitute Kui . The
pseudo clicks are built between them and ui with aggregated
weights. If the unit is a bigram or trigram, we only consider
the queries that contain the unit as a bigram or trigram. For
example, if the unit is “yahoo finance”, then queries contain-
ing “yahoo” and “finance” as separate unigrams (e.g., “yahoo
news in finance”) are not included.

Finally, the vector representation of ui (denoted as Ui) is
calculated by a weighted sum of vectors in Kui , normalized
by L2 norm:

Ui =
1

||
∑|Kui

|
j=1 Pi,j ·Kui(j)||2

|Kui
|∑

j=1

Pi,j ·Kui(j) (6)

Similarly, if the vector propagation starts from the docu-
ment side, we extract all the units from the document con-
tent. Then for each unit ui, we find all the documents con-
taining the unit ui and denote the set as Oui , then find all
the queries that are connected to any of these documents and
denote their vectors as Kui . We then can follow the same
process to build up the connections between units and the
query vectors to estimate the unit vectors in the document
vocabulary space.

As we can see from this process, these unit vectors are
generated from the related query or document vectors that
are learned by the propagation algorithm in the click graph,
so click information is also embedded in them.

3.2 Learning Unit Weights
In the next step, we learn a weight per unit to capture

the importance for each unit globally, which is later used
for generation of vectors for click-absent queries and docu-
ments. Here we learn the weights through a linear regression
model, and the vectors where the units originate from are
used as training examples (named as target vectors for con-
venience). The basic idea is to use the linear combination
of unit vectors to approximate the target vectors, and then
minimize the difference between the target vector and the

188

approximated vector which is measured by the square of
Euclidean distance:

min
W

|T |∑
i=1

||Ti −
∑

uj∈Uall
Ti

Wj · Uj ||22 (7)

where T is the set of target vectors and Ti is the i-th vector
in T . If the units originates from queries, T consists of
all the query vectors learned by the propagation algorithm;
otherwise it contains all the document vectors. Uall

Ti
is the set

of all the units (unigrams, bigrams and trigrams, excluding
itself) contained in the corresponding query or document
content of Ti. W is the weight vector with the j-th entry
Wj representing the weight for uj in the unit set U .

3.3 Estimating Vectors
In Section 3.1 and Section 3.2, we introduce how to gener-

ate the unit vectors and weights respectively. Given a new
query or document without any click information, we can
represent it by the weighted combination of unit vectors.

For a click-absent query q, we first decompose it into all
possible units. If a unigram is contained in a bigram, or a
bigram is contained a trigram, it is removed to avoid over-
lapping information. For example, given a new query, “wal-
mart credit card”, assume the set of unigrams, bigrams and
trigrams contained in unit vocabulary includes {“walmart”,
“credit”, “card”, “credit card”}, then we only keep “walmart”
and “credit card” in the unit set. The final unit set which is
decomposed from q by the above rule is denoted as Uq. Then
the query vector qv is calculated as a linear combination of
the unit vectors in Uq:

qv =
∑

ui∈Uq
WiUi (8)

For a click-absent document d, we can estimate its vec-
tor representation in a similar way. Any possible content of
documents can be used, and here we use document titles,
which are concise yet provide key information. We decom-
pose the title of d to a unit set Ud according to the same
rule as mentioned above, and the vector dv is calculated as:

dv =
∑

ui∈Ud
WiUi (9)

Note that this generation algorithm estimates the vectors
either in query vocabulary space or in the document vocab-
ulary space, depending on how the unit vectors are built.
Based on the vector propagation algorithm and the above
vector generation algorithm, we now represent all queries
and documents in the same semantic space. Relevance be-
tween any query-document pair can be measured by similar-
ity functions such as cosine similarity, which is further used
as a feature for ranking.

4. EXPERIMENTS
We apply the proposed method to a Web-scale click graph

from a major commercial search engine. The learned rele-
vance score can be either used directly to rank documents
for a given query or employed as one of the features in a
learning-to-rank framework. We show that the proposed
method helps to improve ranking results in both cases.

4.1 Dataset
We construct the click-through bipartite graph from a ma-

jor commercial search engine’s search log. There are about

25 billion co-clicked query-document pairs, containing about
8 billion unique queries and 3 billion unique documents.

To investigate whether the relevance score learned by our
algorithm can help to improve ranking in a learning-to-rank
framework, we use another dataset that includes 63k queries
and 775k query-document pairs as training examples and
16k queries with 243k query-document pairs as test set. The
relevance score of each pair (“perfect”, “excellent”, “good”,
“fair” or “bad”) is annotated by human annotators. 92.5% of
these testing queries can be found in the search log and the
others do not have click information. 78.9% of the testing
documents are in the search log. For the 21.1% documents
missing in the search log (about 51k documents), 91.7% of
them have titles.

4.2 As an Individual Ranking Model
To give more insight into how well the proposed method

captures the relevance between queries and documents, we
use the relevance scores to rank documents and calculate
NDCG scores to evaluate the performance. The trimming
parameter K in vector propagation algorithm is set as 20.4

We compare our methods against multiple baseline methods:

• VPCG is our vector propagation algorithm proposed
in Section 2, and the generalized version VPCG&VG
also predicts the vectors for the click-absent queries
and documents as in Section 3. QUERY and DOC
denote that the propagation starts from the query or
document side, respectively.

• BM25SD, a better variation of traditional BM25 [22],
uses individual words, ordered and unordered word se-
quences from page content to compute the score [6].

• BM25SD MULT, a linear combination of BM25SD
across multiple fields including page content, anchor
text, and query words for which the document was
clicked.

• CTR, a behavioral feature which measures the ratio
between the impressions and the nevigational clicks in
a sessions for each query-document pair, where a nav-
igational click is defined as the only click in a session,
and a session is defined as some timeout (e.g. 30 min-
utes) between queries for the same user. The lower
bound of wilson confidence interval for this ratio in
multiple sessions is used as the final feature value.

• WMD, a word embedding-based framework using the
Word Mover’s Distance [15] to measure the query-
document relevance, based on a word embedding vec-
tor set trained from Google News [19].5

As shown in Table 1, our methods VPCG and VPCG&VG
in general achieve the best performance. VPCG QUERY
performs even better than VPCG DOC, most likely because
titles sometimes contain noisy words or are not descriptive of
page content. However, VPCG QUERY and VPCG DOC
capture the query-document similarity from different view-
points and complement each other, which is further dis-
cussed in Section 5. The generalized version VPCG&VG QUERY
4Multiple experiments are done to evaluate the sensitivity
of the selection of K, but it turns to be not very sensitive,
thus we use K = 20 in this paper.
5The Google News word vectors are available in https://
code.google.com/p/word2vec/

189

Table 1: Performance as an individual ranking model.

Feature NDCG@1 NDCG@3 NDCG@5 NDCG@10

BM25SD 0.4373 0.4937 0.5460 0.6542
BM25SD MULT 0.6132 0.6346 0.6668 0.7464

CTR 0.5769 0.5941 0.6238 0.7064
WMD 0.4585 0.5145 0.5641 0.6674

VPCG QUERY 0.6268 0.6498 0.6797 0.7509
VPCG&VG QUERY 0.6344* 0.6618* 0.6948* 0.7687*

VPCG DOC 0.5648 0.6209 0.6623 0.7382
VPCG&VG DOC 0.5668 0.6268 0.6717 0.7509

Two-tailed t-test is done for paired data where each pair is
VPCG&VG QUERY and any of the other methods, and * in-
dicates p-value < 0.01 for all tests.

and VPCG&VG DOC further improve the results of VPCG
QUERY and VPCG DOC respectively, because the feature
coverage is improved. The CTR feature used here is a very
accurate predictor of relevance, but it is only available for
query-document pairs that have been observed in the log, so
it does not perform well on the click-absent ones.

4.3 As a Feature in a Learning-to-rank Model
A typical industrial learning-to-rank setting builds pow-

erful nonlinear models based on a large set of high quality
features [7]. Indeed, these models can often combine many
weak features to outperform a single strong feature [26]. It
is therefore challenging to create a new feature that signifi-
cantly improves the overall model performance. Here we use
a variant of the gradient boosting machine proposed in [11]
to implement a learning-to-rank framework with over 2,400
features.6

We denote all the 2,400+ basic features as “Base”. This
basic feature pool contains an immense variety of features,
including CTR, BM25SD and their variations, etc. We then
extend the feature pool by adding new features, and the
performances of the learning-to-rank model trained based
on different feature pools are shown in Table 2. “Base0” is a
subset of the standard feature pool which excludes CTR and
BM25SD MULT. “Base + WMD” means the standard fea-
ture pool plus WMD feature. “Base + VPCG” extends the
feature pool by adding VPCG QUERY and VPCG DOC,
and“Base + VPCG&VG”means adding VPCG&VG QUERY
and VPCG&VG DOC to the feature pool.

As shown in Table 2, removing the powerful features CTR
and BM25SD MULT does not change the model perfor-
mance much, since the remaining features in the feature pool
have already contributed similar inputs to the ranking sys-
tem. The result is just slightly increased by adding WMD.
This is likely because WMD introduces a notion of semantic
similarity between different words that is not present in most
text matching features. In general, the differences between
the performance of “Base0”, “Base” and “Base + WMD” are
all very marginal.

By contrast, we do observe a significant improvement in
overall model performance after adding our features to the
pool. Our features make good use of both click and con-
tent information, and bring in new information which is not
presented in the existing feature set. It is interesting that
the performance difference between VPCG&VG and VPCG

6For both space and confidentially reasons, we cannot here
define the complete set of features.

Table 2: Performance as a feature in a learning-to-ranking
framework.

Feature pool NDCG@1 NDCG@3 NDCG@5 NDCG@10

Base0 0.6872 0.7024 0.7288 0.7925
Base 0.6862 0.7014 0.7281 0.7923

Base + WMD 0.6881 0.7023 0.7291 0.7934
Base + VPCG 0.7068 0.7207 0.7470 0.8080

Base + VPCG&VG 0.7096 0.7256* 0.7506* 0.8108*

Two-tailed t-test is done for paired data where each pair is “Base
+ VPCG&VG” and any of the other methods, and * indicates
p-value < 0.01 for all tests.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

10

20

30

40

50

60

70

80

90

100

VPCG&VG DOC

VPCG&VG QUERY

CTR

BM25SD MULT

Ranking of features

Im
p

o
rt

a
n
ce

sc
o
re

Figure 3: Importance score of the top 10 features

is narrowed in the learning-to-rank framework compared to
when using them as individual ranking models (Table 1).
This is because the learning-to-rank framework is able to
rely on other features when the “VPCG” feature is missing.
Another reason is that only a small portion (about 7.5%)
of our test queries are click-absent, limiting the impact of
the VG method on this data set. However, we do find click-
absent queries where the ranking is significantly improved by
using the VG method. More detailed discussion is provided
in Section 5.

To further investigate the impact of different features,
we calculate the relative importance score for all the fea-
tures [11], where the most influential feature is assigned a
score of 100 and the estimated scores for others are scaled ac-
cordingly. The distribution of the relative importance scores
for the top 15 features are shown in Figure 3. We are not
able to provide details about the features for confidential-
ity reasons, but we can still conclude that our features in-
deed play an important role in the retrieval system, since
VPCG&VG DOC and VPCG&VG QUERY rank as the top
two best features. CTR and BM25SD MULT rank as the
fourth and fifth respectively. The importance scores drop
dramatically between the second and the third one, while
the difference between other pairs are much smaller, indicat-
ing the superiority of our features. This is further evidence
that our features significantly improve the performance both
as a single feature and in the learning-to-rank models.

190

BM25SD BM25SD_MULT

CTR WMD

VPCG&VG_QUERY VPCG&VG_DOC

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0 100 200 300 400 500 0 100 200 300 400 500
Sample Ranking

Fe
at

ur
e

Va
lu

e
Perfect Excellent Good Fair Bad

Figure 4: Separability of different features.

4.4 Separability of Features
In Section 4.2 and Section 4.3, we show significant im-

provement on NDCG scores by our methods in all exper-
iment settings. In this section, we look into more details
about how our features work to distinguish different docu-
ments according to their relevance to a given query.

As mentioned in Section 4.1, each document is labeled
with one of the five degrees of relevance, namely “perfect”,
“excellent”, “good”, “fair” and “bad”. To better evaluate the
features, we measure the “separability” of the features at
these five labels: we randomly sample 500 tuples (〈query,
url, feature value〉) for each of the five labels from the test
dataset, sort the tuples by their feature values, and plot
them in Figure 4. Each point (x,y) in this figure corre-
sponds to a tuple where X-coordinate is its ranking and
Y -coordinate is its feature value. For the convenience of
illustration, BM25SD and BM25SD MULT are normalized
by its maximal value so that it is scaled between 0 and 1.
Note that the normalization does not impact the ranking.

We can see that CTR separates “perfect” from others, and
WMD distinguishes “bad” from others. BM25SD is good at
identifying “excellent”, but its ability of distinguishing oth-
ers are not as good as the enhanced version BM25SD MULT.
Compared to the baseline methods, both VPCG&VG QUERY
and VPCG&VG DOC have a much stronger separability
over all the five labels. Especially, VPCG&VG QUERY is
better at distinguishing “perfect”, “excellent”, “good” and
“fair” from “bad”, while VPCG&VG DOC is better at seper-
ating “perfect”, “excellent” and “good” from “fair” and “bad”;

and VPCG&VG QUERY has a slightly better seperabil-
ity among “perfect”, “excellent” and “good”, which explains
why VPCG&VG QUERY performs better as a single fea-
ture while the learning-to-rank framework benefits from the
combination of them.

5. DISCUSSION
To get a better understanding about the vectors gener-

ated by our method, we study some query vectors in details
and analyze how they influence the ranking result. Besides,
we also further evaluate the vector generation algorithm for
click-absent queries and documents, and illustrate how the
generated vectors help to improve the ranking quality.

5.1 Latent Effect of Vector Propagation
The main change of query and document vectors made by

our propagation method lies in two aspects: the introduc-
tion of latently related words and the re-weighting of vector
terms. Introducing related words helps to explain the query
or document better and re-weighting makes the key terms
stand out, which facilitates tasks like disambiguation and
query intent understanding.

Table 3 shows several examples of the learned query vec-
tors (vector propagation starts from query side). We can see
that keywords such as“eagles”, “album”and“lyrics”can help
us to distinguish the query relevant to the song named“hotel
california” from an alike query “hotel california palm springs
hotel” which is about a real hotel. In the third example, the
meaning of “dtd amc” is hard to figure out even for a human
user who is not familiar with the background knowledge.
Actually “dtd” means “Downtown Disney” and the query is
asking about AMC theaters in Downtown Disney. In this ex-
ample, informative keywords such as “disney”, “downtown”,
“theater” and “movie” are introduced in the learned vector.
As shown in the table, ranking model trained without fea-
ture generated by the vector propagation algorithm (Base)
performs very badly on this query (two of the top three are
“bad”). When adding our feature, the result gets much bet-
ter: both the top two retrieved documents are “good” and
the third one is “fair”.

5.2 Propagation Starting from Different Side
Our proposed vector propagation algorithm is very flex-

ible to start from either query or document side, denoted
as VPCG QUERY and VPCG DOC respectively. To study
the difference between the two features and how they com-
plement each other, we take the query “choise fm” as an ex-
ample (Table 4). “choise fm” is an urban music radio station
owned by Global Radio and anchored by an FM operation
in London, and it is now changed to “capital xtra”. Be-
cause this query is the old name of the music radio station,
if we start from the query side, our algorithm propagates
the old information “choise fm” to the document side and
learns larger weights for “choice” and “fm”. Though the re-
lationship between“choise fm”and“capital xtra” is captured
in the vector, it has much smaller weights for “capital” and
“xtra”. Thus the top three ranking results are all about
“choise fm”, and it fails to rank the perfect URL “http:
//www.capitalxtra.com/” in top 3. However, if we start
from the document side, the document title includes the
new name “capital xtra” and our algorithm propagates such
information to the query side “choise fm”. Thus the query
vector from VPCG DOC not only captures the relationship

191

Table 3: Case Study: Introduction of new words and reweighting helps ranking

Example of learned vectors
Query Vector
hotel california
eagles

hotel:0.675, california:0.667, eagles:0.300, album:0.057, song:0.053, lyrics:0.041, meaning:0.030,
what:0.022, cover:0.022, youtube:0.017, about:0.016, band:0.010, video:0.010, to:0.005, songs:0.004,
tyga:0.003, wiki:0.003,list:0.002, covers:0.002, art:0.002

hotel california
palm springs
hotel

palm:0.596, springs:0.582, hotel:0.358, california:0.329, hotels:0.223, ca:0.138, resorts:0.021,
spring:0.016, best:0.007, tripadvisor:0.006, eagles:0.005, trip:0.005, viceroy:0.005, resort:0.005,
palms:0.004, advisor:0.003, marriott:0.003, lyrics:0.002, riviera:0.002, meaning:0.002

dtd amc amc:0.707, disney:0.475, downtown:0.414, island:0.158, theater:0.146, movie:0.121, the-
aters:0.121, pleasant:0.089, anaheim:0.072, pleasure:0.067, 24:0.066, orlando:0.059, movies:0.027,
12:0.024, walk:0.023, theatres:0.018, yelp:0.016, ca:0.016, dine:0.014, district:0.007

Ranking Results for Query “dtd amc”
Ranking Base Base + VPCG
1 http://acronyms.thefreedictionary.com/

DTDS
http://www.yelp.com/biz/
amc-downtown-disney-12-ca-anaheim

2 http://www.mydreamsofdisney.com/2014/01/
saving-mr-banks-amc-fork-screen/

http://www.dadsguidetowdw.com/downtown-disney.
html

3 http://www.thefreedictionary.com/DTDS http://www.mydreamsofdisney.com/2014/01/
saving-mr-banks-amc-fork-screen/

Table 4: Case Study: The vector representations from VPCG QUERY and VPCG DOC complement each other.

Query Vectors for Query “choise fm”
VPCG QUERY choice:0.714, fm:0.666, radio:0.148, choicefm:0.110, london:0.085, nevis:0.039, capital:0.033,

xtra:0.027, 3:0.024, choicefm1053:0.019, station:0.019, uk:0.016, 105:0.014, music:0.012,
choicefm105:0.012, playlist:0.008, choiceradio:0.006, 3fm:0.0045, extra:0.004, 1:0.004

VPCG DOC xtra:0.446, capital:0.446, urban:0.439, dance:0.438, uk:0.426, choice:0.112, skn:0.079, times:0.079,
ltd:0.079, fm:0.041, radio:0.028, music:0.025, listen:0.024, online:0.020, 3:0.020, com:0.016, choiceradio:0.013,
107:0.011, 105:0.011, your:0.009

Ranking Results for Query “choice fm”
Ranking Base + VPCG QUERY Base + VPCG QUERY + VPCG DOC

1 http://en.wikipedia.org/wiki/Choice FM http://www.capitalxtra.com/
2 http://www.choicefmnz.com/ http://en.wikipedia.org/wiki/Choice FM
3 http://tunein.com/radio/Choice-FM-1053-s89470/ https://www.facebook.com/choicefm

Table 5: Performance of vector generation algorithm

Method Similarity

BOW 0.4833
Unigram vector + equal weight 0.5368

Unit vector + equal weight 0.5927
VG 0.6057

between “choise fm” and “captial xtra”, and learns more ac-
curate weights for “capital” and “xtra”. As a result, with the
help from both VPCG QUERY and VPCG DOC, our model
is able to rank the perfect URL “http://www.capitalxtra.
com/” as the top 1 result. Similarly, VPCG QUERY may
capture more accurate query intent than VPCG DOC for
some queries, and due to space limit, we do not list more ex-
amples here. In general, VPCG QUERY and VPCG DOC
complement each other and together improve the ranking
results as shown in Section 4.

5.3 Evaluation of Vector Generation Algorithm
The goal of the vector generation method proposed in Sec-

tion 3 is to get a good vector estimation for queries and
documents that have no click information. In Section 4.2
and Section 4.3, we have already shown that those gener-
ated vectors are indeed helpful for ranking. Here we further
look into these generated vector representations to see how
well they approximate the target vectors.

We use the query vectors generated by the vector propaga-

tion algorithm starting from the query side as an example for
the evaluation. The set is divided into two subsets, namely
training set and test set. The training set is used to learn
the unit vectors and their corresponding weights, based on
which vectors for the test set are generated by the vector
generation algorithm. The vectors learned by the vector
propagation algorithm are used as ground truth. The evalu-
ation metrics is the average of cosine similarity between the
groundtruth vector and the vector generated by methods
that estimate the vectors in other alternative ways.

We compare our method “VG” against several baselines,
and the results are shown in Table 5. Here “BOW” is the
bag-of-words model. “Unigram vector + equal weight” uses
a linear combination of the vectors for each unigram with
equal weights. For example, the query vector for “yahoo
finance” is calculated as Q(“yahoo”) + Q(“finance”) where
Q(“yahoo”) and Q(“finance”) are vectors for query “yahoo”
and “finance” which are learned by the vector propagation
algorithm. “Unit vector + equal weight” uses the unit vec-
tors we introduce in Section 3. It decomposes queries into a
set of units in the same way as “VG” does, but assigns equal
weight to each unit instead.

From Table 5, we can see that methods making use of
existing query vector information (“Unigram vector + equal
weight”, “Unit vector + equal weight”and“VG”) outperform
bag-of-words model. Using unit vectors works better than
using original vectors for unigram. “VG” brings in further

192

Table 6: Case Study: Unit vector helps to improve ranking for click-absent queries

Unit vectors for Query “how long is into the storm”
Unit Weight Vector

how long is 0.363 how:0.375, long:0.320, contagious:0.167, 5k:0.044, heat:0.039, pregnancy:0.037, eye:0.037,
pink:0.036, flu:0.036, dog:0.035, dogs:0.034, does:0.030, cold:0.028, good:0.023, light:0.022,
you:0.022, strep:0.022, to:0.022, many:0.020, throat:0.020

is into the 0.562 into:0.570, woods:0.303, wild:0.161, mccandless:0.118, movie:0.085, christopher:0.061, mystic:0.055,
chris:0.055, storm:0.040, rncm:0.032, musical:0.028, appropriate:0.025, children:0.025, kids:0.024,
van:0.020, morrison:0.020, how:0.019, rated:0.015, r:0.015, why:0.015

into the storm 1.038 storm:0.665, into:0.641, movie:0.159, 2014:0.050, watch:0.041, online:0.040, reviews:0.039,
free:0.034, trailer:0.030, torrent:0.024, black:0.017, sky:0.017, cast:0.012, imdb:0.011, review:0.010,
full:0.010, tornado:0.009, rotten:0.008, tomatoes:0.008, dvd:0.007

Ranking Results for Query “how long is into the storm”
Ranking Base + VPCG Base + VPCG&VG

1 http://www.rottentomatoes.com/m/into the storm
2014/

http://www.rottentomatoes.com/m/into the storm
2014/

2 http://www.ign.com/articles/2014/08/07/
into-the-storm-review

https://en.wikipedia.org/wiki/Into the Storm (2014
film)

3 http://science.nasa.gov/science-news/
science-at-nasa/2001/ast16aug 1/

http://www.ign.com/articles/2014/08/07/
into-the-storm-review

improvement compared to assigning equal weights to units.
In general, our proposed generalization algorithm provides
the most accurate approximation of the ground truth vector.

5.4 Query Vector Generation in Ranking
In previous sections, we have shown the quantitative anal-

ysis of the vector generation algorithm, including its perfor-
mance in ranking and the quality of the estimated vectors.
In this section, we continue our discussion about how it helps
to improve ranking by illustrating a query example “how
long is into the storm”, which is about the length of a movie
“Into the Storm”. This query is not in the search log so we
can only use the vector generation method.

To generate the query vector, “how long is into the storm”
is decomposed into three units, namely “how long is”, “is
into the” and “into the storm”, whose vectors are given in
Table 6. The keyword “movie” is added to the unit vector
for “into the storm” with a high weight, which increases the
relevance scores of movie-related documents. Besides, our
regression model successfully captures that “into the storm”
is the most influential unit in this query and gives the high-
est weight to it. In this way, the generated query vector
is more likely to be connected with documents about the
corresponding movie. In our experiment, the learning-to-
rank framework trained without VG (Base + VPCG) ranks
a science news from NASA which is not relevant at all as
a top result (number three). With the help of VG (Base +
VPCG&VG), we get more reasonable results, where all the
top three documents are about the movie (Table 6).

6. RELATED WORK
The most straightforward way to exploit the click log from

a search engine is to aggregate statistics such as click prob-
ability and dwell time by (query, document) pairs and use
them as features in a learning-to-rank framework, as de-
scribed by Agichtein et al. in [1].

To deal with the noise and sparsity problem in these fea-
tures, there are two basic approaches. One solution is to
cast it as a smoothing problem, as in [9], [13], and [29].
An alternative way is to learn a semantic representation of
queries and documents, either in vocabulary space or in a
latent space, as in [12], [25], and [27]. One advantage of the

semantic representation approach is its flexibility. It is eas-
ier to incorporate other useful information in the learning of
the semantic representation. Besides, the relevance between
queries and documents only depends on the representation,
so similar documents always get close relevance scores, which
reduces the bias caused by the raw click-through data. The
semantic approach is the one adopted in this paper.

It is common to represent a click log as a graph with edges
representing clicks, an early example being Baeza-Yates and
Tiberi’s work [3]. Our approach is most similar to the label
propagation technique of [16]. However, instead of requiring
extrinsic labels or features, we propagate parts of the content
information (i.e., query or document title) itself.

The semantic click models that we are aware of either
make use of modeling techniques that can be difficult to
scale to billions of samples, such as statistical machine trans-
lation [12], and SVD [27], or else have very many hyperpa-
rameters that are difficult to tune [12, 25]. By contrast, our
method is strikingly simple and exceedingly scalable. It also
has the advantage of producing a representation – a small
set of weighted terms from queries or documents – that is
amenable to human inspection.

Besides ranking, click-through data can be utilized for var-
ious tasks in information retrieval. Click-through history
records user behavior from which user’s information need
can be discovered [24]. It also provides clues to discover
potential relations between queries, and can be used to fa-
cilitate tasks such as query clustering [4] and query sugges-
tion [2, 10, 17, 18]. Click-through data can also be explored
for document representation and organization. In [21], the
authors represent documents in the query vocabulary space,
where TFIDF is used for weighting. Compared to their
method, ours improves both the query and document vector
representation by involving more iteractions between them.

7. CONCLUSION
This paper presents a unified approach to learn query-

document relevance by utilizing both click and content in-
formation. For queries and documents in the click graph,
we propagate the content information from either side on
the click-through bipartite graph and represent both queries

193

and documents as vectors in the same semantic space. For
queries and documents without click information, their vec-
tor representations are generated by connecting them with
the vectors learned from the click graph based on the con-
tent information. This whole process expands the vector
representations with relevant new words through the prop-
agation, and smoothes the term weights based on the click
information. Besides, the sparsity and noise are also reduced
during this process thus better quality and larger coverage
of the vectors is guaranteed. The proposed approach works
efficiently on a Web-scale click graph. The experimental
results show the effectiveness of the proposed method in a
ranking task. It stands out from thousands of features in
a learning-to-rank framework, which is a nontrivial achieve-
ment in real practice.

Besides ranking, one potential application of our method
is query and document expansion. The learned vectors usu-
ally consist of related terms propagated from their neighbors
in the click graph, which can be further applied to improve
automatic expansion of queries and documents in the search
task.

8. REFERENCES
[1] E. Agichtein, E. Brill, S. Dumais, and R. Ragno.

Learning user interaction models for predicting web
search result preferences. In Proceedings of SIGIR,
pages 3–10, 2006.

[2] R. Baeza-Yates, C. Hurtado, and M. Mendoza. Query
recommendation using query logs in search engines. In
Proceedings of Workshop at EDBT, pages 588–596,
2005.

[3] R. Baeza-Yates and A. Tiberi. Extracting semantic
relations from query logs. In Proceedings of SIGKDD,
2007.

[4] D. Beeferman and A. Berger. Agglomerative clustering
of a search engine query log. In Proceedings of
SIGKDD, pages 407–416, 2000.

[5] M. Bendersky, D. Metzler, and W. B. Croft. Effective
query formulation with multiple information sources.
In Proceedings of WSDM, pages 443–452, 2012.

[6] A. Broder, E. Gabrilovich, V. Josifovski,
G. Mavromatis, D. Metzler, and J. Wang. Exploiting
site-level information to improve web search. In
Proceedings of CIKM, pages 1393–1396, 2010.

[7] O. Chapelle and Y. Chang. Yahoo! learning to rank
challenge overview. Journal of Machine Learning,
2011.

[8] K. Collins-Thompson and J. Callan. Query expansion
using random walk models. In Proceedings of CIKM,
pages 704–711, 2005.

[9] N. Craswell and M. Szummer. Random walks on the
click graph. In Proceedings of SIGIR, pages 239–246,
2007.

[10] H. Deng, M. R. Lyu, and I. King. A generalized co-hits
algorithm and its application to bipartite graphs. In
Proceedings of SIGKDD, pages 239–248, 2009.

[11] J. H. Friedman. Greedy function approximation: A
gradient boosting machine. Annals of Statistics,
29:1189–1232, 2000.

[12] J. Gao, X. He, and J. Nie. Clickthrough-based
translation models for web search: from word models
to phrase models. In Proceedings of CIKM, 2010.

[13] J. Gao, W. Yuan, X. Li, K. Deng, and J. Nie.
Smoothing clickthrough data for web search ranking.
In Proceedings of SIGIR, 2009.

[14] J. M. Kleinberg. Authoritative sources in a
hyperlinked environment. JACM, 46(5):604–632, 1999.

[15] M. J. Kusner, Y. Sun, N. I. Kolkin, and K. Q.
Weinberger. From word embeddings to document
distances. In Proceedings ICML, 2015.

[16] X. Li, Y.-Y. Wang, and A. Acero. Learning query
intent from regularized click graphs. In Proceedings of
SIGIR, pages 339–346, 2008.

[17] H. Ma, H. Yang, I. King, and M. R. Lyu. Learning
latent semantic relations from clickthrough data for
query suggestion. In Proceedings of CIKM, pages
709–718, 2008.

[18] Q. Mei, D. Zhou, and K. Church. Query suggestion
using hitting time. In Proceedings of CIKM, pages
469–478, 2008.

[19] T. Mikolov, K. Chen, G. Corrado, and J. Dean.
Efficient estimation of word representations in vector
space. In Processings of Workshop at ICLR, 2013.

[20] C. Müller and I. Gurevych. A study on the semantic
relatedness of query and document terms in
information retrieval. In Proceedings of EMNLP, pages
1338–1347, 2009.

[21] B. Poblete and R. Baeza-Yates. Query-sets: using
implicit feedback and query patterns to organize web
documents. In Proceedings of WWW, pages 41–50,
2008.

[22] S. E. Robertson, S. Walker, S. Jones,
M. Hancock-Beaulieu, and M. Gatford. Okapi at
trec-3. Trec, 1994.

[23] G. Salton, A. Wong, and C.-S. Yang. A vector space
model for automatic indexing. Communications of the
ACM, 18(11):613–620, 1975.

[24] X. Shen, B. Tan, and C. Zhai. Context-sensitive
information retrieval using implicit feedback. In
Proceedings of SIGIR, pages 43–50, 2005.

[25] Y. Shen, X. He, J. Gao, L. Deng, and G. Mesnil.
Learning semantic representations using convolutional
neural networks for web search. In Proceeding of
WWW, 2014.

[26] K. M. Svore and C. J. Burges. A machine learning
approach for improved bm25 retrieval. Proceedings of
CIKM, 2009.

[27] W. Wu, H. Li, and J. Xu. Learning query and
document similarities from click-through bipartite
graph with metadata. In Proceedings of WSDM, pages
687–696, 2013.

[28] C. Zhai and J. Lafferty. A study of smoothing
methods for language models applied to ad hoc
information retrieval. In Proceedings of SIGIR, pages
334–342, 2001.

[29] M. Zhukovskiy and T. Khatkevich. An optimization
framework for propagation of query-document features
by query similarity functions. In Proceedings of CIKM,
2015.

194

