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ABSTRACT
Query auto-completion (QAC) plays an important role in assisting
users typing less while submitting a query. The QAC engine gen-
erally offers a list of suggested queries that start with a user’s input
as a prefix, and the list of suggestions is changed to match the up-
dated input after the user types each keystroke. Therefore rich user
interactions can be observed along with each keystroke until a user
clicks a suggestion or types the entire query manually. It becomes
increasingly important to analyze and understand users’ interac-
tions with the QAC engine, to improve its performance. Existing
works on QAC either ignored users’ interaction data, or assumed
that their interactions at each keystroke are independent from oth-
ers. Our paper pays high attention to users’ sequential interactions
with a QAC engine in and across QAC sessions, rather than users’
interactions at each keystroke of each QAC session separately. An-
alyzing the dependencies in users’ sequential interactions improves
our understanding of the following three questions: 1) how is a
user’s skipping/viewing move at the current keystroke influenced
by that at the previous keystroke? 2) how to improve search en-
gines’ query suggestions at short keystrokes based on those at latter
long keystrokes? and 3) facing a targeted query shown in the sug-
gestion list, why does a user decide to continue typing rather than
click the intended suggestion? We propose a probabilistic model
that addresses those three questions in a unified way, and illustrate
how the model determines users’ final click decisions. By compar-
ing with state-of-the-art methods, our proposed model does suggest
queries that better satisfy users’ intents.

Categories and Subject Descriptors:
I.2.6 [Artificial Intelligence]: Learning; H.3.3 [Information Stor-
age and Retrieval]: Information Search and Retrieval; J.4 [Com-
puter Applications]: Social and Behavioral Sciences

General Terms: Algorithm, Experimentation, Performance

Keywords: hidden Markov model, variational Inference, query
auto-completion
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1. INTRODUCTION
Query auto-completion (QAC) has been widely used in modern

search engines to reduce users’ effort to submit a query by predict-
ing the users’ intended queries. The QAC engine generally offers
a list of suggested queries that start with a user’s input as a prefix,
and the list of suggestions is changed to match the updated input
after the user types each character. Let us suppose that a user is go-
ing to submit a query q to the search engine, and the user types the
prefix of the query q of length i as q[1..i] sequentially. The QAC
engine will return the corresponding suggestion list after the user
types each character, until the user clicks the suggestion q from
the list or presses return, ending the interaction with the QAC en-
gine. Usually, even for submitting the same query q, different users
may have different interactions with the QAC engine, which are
shown from their different sequential behaviors. For example, user
ua chooses the suggestion q at position 5 after typing 3 characters,
while user ub chooses the suggestion q at position 1 after typing
5 characters. In order to better improve users’ search experience,
it becomes increasingly important to analyze users’ sequential be-
havior with the QAC engine, to understand users’ real preferences
and then improve the performance of QAC.

Recently, many studies have been proposed to address the QAC
problem in different perspectives, including designing more ef-
ficient indexes and algorithms [2, 20, 11], leveraging context in
long term and short term query history [1], investigating the time-
sensitive aspect of QAC [19, 21], learning to combine more person-
alized signals [18], etc. Despite of those numerous works on QAC,
most of them only utilize the information of submitted queries and
associated prefixes, thus lose details of how users’ interact with
the QAC engine, such as the suggested query lists of each prefix
before query submission, users’ query typing speed, and so on. Re-
cently, a high-resolution QAC dataset was collected from PC (per-
sonal computer) and mobile phones [15], where each keystroke of
users and clicks were recorded. A two-dimensional click model
was trained on this high-resolution QAC dataset, revealing users’
behaviors such as horizontal skipping bias and vertical position
bias. However, this work assumed that users’ behaviors at different
keystrokes are independent in order to simplify the model estima-
tion, which results in information loss.

Our work, on the other hand, attempts to capture three types of
relationship between users’ behaviors at different keystrokes that
are ignored or failed to model until now: 1) State transitions be-
tween skipping and viewing. The study on high-resolution query
log data revealed that a user may choose to either view or skip
the suggestion list at each keystroke in a QAC session. It already
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explored how users’ interactions with QAC engine at the current
keystroke, such as typing speed and whether the end of current pre-
fix is at word boundary, influence users’ decisions on skipping or
viewing. However, besides those factors, we believe that such de-
cisions should also be influenced by their decisions on skipping or
viewing at the previous keystroke. For instance, imagine a user u
has 5 sequential skipping moves in one QAC session and 2 sequen-
tial skipping moves in another QAC session, the chance becomes
higher for the same user to stop and view the suggestion list at the
current keystroke after 5 sequential skipping moves. On the other
hands, if the same user has already viewed too many keystrokes
continuously but finds no intended query, it becomes more likely
that he/she may skip the next one; 2) Users’ real preference of
suggestions. For each keystroke, the associated users’ real pref-
erence is hard to be detected from the current suggested query
list alone. On the other hand, we need to utilize the rankings of
suggested query lists of latter keystrokes together with users’ fi-
nal click choices to re-rank the suggested queries in the list of the
current keystroke. Intuitively, a clicked query, i.e. the user’s in-
tended query, should get a higher rank not only at the keystroke
he/she makes the click, but also at previous keystrokes where this
query appears, despite that it is not clicked at that time; and 3)
User-specific cost between position clicking and typing. Some
users prefer typing than viewing and clicking, while others don’t.
Consequently, users’ click choices are not only affected by their in-
tent, but also by the position where the intended query is shown and
their preference of clicking that position over typing the remaining
keystrokes. For instance, a user that prefers clicking will probably
click an intended query the first time it is shown to him/her, despite
that it may be shown in a low position; while another user focuses
on typing his/her intended query despite that the query already ap-
pears in the suggestion list, until it is ranked at the top position, or
even worse, he/she will type the entire query manually without any
intent to click the suggestions.

To model these three aspects, we propose a probabilistic model,
which is a combination of three parts that address each separately.
The hidden Markov model part takes the skipping and viewing
choices as two different states, and assumes the transition between
keystrokes is influenced by users’ interactions with the QAC en-
gine at that keystroke. The logistic regression part weighs a set of
our designed user-specific relevance features that imply users’ own
preference on each prefix-query pair, which is expected to capture
users’ real preference. The Dirichlet prior part estimates the ra-
tio between position-biased clicking and typing costs. Those three
parts together determine the probability that a user clicks a cer-
tain suggested query located at a certain position of the suggested
query list of a certain keystroke in a QAC session. We develop a
mean-field variational inference algorithm to learn the parameters
that optimize the data likelihood.

We evaluate our method on high-resolution QAC logs collected
from a commercial search engine on both PCs and mobile phones.
We compare the performance of our model with some alternative
probabilistic models and state-of-the-art QAC algorithms. Experi-
mental results show that the proposed method can predict queries
that better satisfy users’ search intent. Moreover, the learned model
provides us insights into the relationship between users’ behaviors
at different keystrokes.

In a nutshell, the major contributions of this paper include:
1. We explore the relationship between users’ behaviors at dif-

ferent keystrokes in each QAC session, which existing works
failed to model;

2. We propose a new probabilistic model that combines three
parts to model each aspect of the relationship between users’

behaviors at different keystrokes, and make them together ef-
fectively predict users’ click actions on high-resolution QAC
logs; and

3. We propose a generic model whose parameters are shared
by all users, instead of using user-specific parameters, which
sharply reduces the number of parameters to learn, and is
suitable for new users.

The rest of the paper is organized as follows. We first introduce
related work in Section 2, after that we formally define our prob-
lem and introduce the proposed model in Section 3. In Section 4,
we develop a fast mean-field variational inference algorithm to op-
timize the solution. We then describe and report the experimental
evaluations in Section 5, and finally present our conclusions and
future work in Section 6.

2. RELATED WORK
Query Auto-Completion (QAC). The main objective of QAC

is to predict users’ intended queries and assist them formulate a
query while typing. The most popular QAC algorithm is to sug-
gest completions according to their past popularity. Generally, a
popularity score is assigned to each query based on the frequency
of the query in the query log from which the query database was
built. This simple QAC algorithm is called MostPopularComple-
tion (MPC), which can be regarded as an approximate maximum
likelihood estimator [1].

Several QAC methods [1, 19, 18, 21] were proposed to extend
MPC from various aspects. Bar-Yossef and Kraus [1] introduced
the context-sensitive QAC method by treating users’ recent queries
as context and taking into account the similarity of QAC candi-
dates with this context for ranking. But there is no consensus of
how to optimally train the relevance model. Shokouhi [18] em-
ployed learning-based strategy to incorporate several global and
personal features into the QAC model. However, these methods
only exploit the final submitted query or simulate the prefixes of
the clicked query, which do not investigate the users’ interactions
with the QAC engine.

In addition the above models, there are several studies address-
ing different aspects of QAC. For example, [19, 21] focused on the
time-sensitive aspect of QAC. Other methods studied the space ef-
ficiency of index for QAC [2, 11]. Duan and Hsu [7] addressed the
problem of suggesting query completions when the prefix is mis-
spelled. Kharitonov et al. [13] proposed two new metrics for offline
QAC evaluation, and [12] investigated user reformation behavior
for QAC.

The QAC is a complex process where a user goes through a se-
ries of interactions with the QAC engine before clicking on a sug-
gestion. As can be seen from the related work, little attention has
been paid to understand the interactions with the QAC engine. Un-
til recently, Li et al. [15] created a two-dimensional click model
to combine users’ behaviors with the existing learning-based QAC
model. The study assumed users’ behaviors at different keystrokes,
even for the consecutive two keystrokes, are independent in order to
simplify the model estimation, which results in information lose. In
this paper, we attempt to directly model and leverage the relation-
ship between users’ behaviors, so as to improve the performance of
QAC.

Click Models. This work is related to click models. In the field
of document retrieval, the main purpose for modeling users’ clicks
is to infer the intrinsic relevance between the query and document
by explaining the positional bias. The position bias assumption
was first introduced by Granka et al. [9], stating that a document
on higher rank tends to attract more clicks. Richardson et al. [17]

124



attempted to model the true relevance of documents by imposing
a multiplicative factor. Later examination hypothesis is formalized
in [5], with a key assumption (Cascade Assumption) that a user
will click on a document if and only if that document has been
examined and it is relevant to the query. In addition, several exten-
sions were proposed, such as the User Browsing Model (UBM) [8],
the Bayesian Browsing Model [16], the General Click Model [23]
and the Dynamic Bayesian Network model (DBN) [4]. Despite the
abundance of click models, these existing click models cannot be
directly applied to QAC without considerable modification. The
click model most similar to our work is [22], which models users’
clicks on a series of queries in a session. However, because of the
main difference between QAC and document retrieval, our model
is very different from [22].

3. PROBLEM DEFINITION
In this section, we first introduce the concept of the high-

resolution QAC log, and then propose appropriate models to predict
how likely a user will click a certain query at a certain location in a
QAC session.

3.1 A High-Resolution QAC Log
Traditionally, the search query log only includes the submitted

query and its associated search results, while it does not contain the
sequential keystrokes (prefixes) users typed in the search box, as
well as their corresponding QAC suggestions. In order to better an-
alyze and understand real users’ behaviors, a high-resolution QAC
log is introduced and analyzed in [15], which records users’ inter-
actions with a QAC engine at each keystroke and associated system
respond in an entire QAC process. For each submitted query, there
is only one record in a traditional search query log. However, in the
high-resolution QAC log, each submitted query is associated with
a QAC session, which is defined to begin with the first keystroke a
user typed in the search box towards the final submitted query. The
recorded information in each QAC session includes each keystroke
a user has entered, the timestamp of a keystroke, the corresponding
top 10 suggested queries to a prefix, the anonymous user ID, and
the final clicked query.

Let us take a toy example to briefly introduce how a user interacts
with a QAC engine and makes the final click in an entire QAC ses-
sion. As shown in Figure 1, a QAC session contains S keystrokes
and each keystroke has a suggested query list of lengthD.1 A QAC
session ends at the keystroke where the user clicks a query in the
suggested query list, or when the prefix at that keystroke is exactly
the query the user enters into the search engine. Among the S ×D
slots in each QAC session, where each slot qij is indexed by the i-
th position at the j-th keystroke, a user clicks at most one of them,
although the user intended query may appear in many slots. Since
users’ clicked queries are usually their intended queries, appropri-
ate modeling of users’ click actions can be a good solution of the
QAC problem. The ideal QAC engine should be able to rank the
user intended query higher with less keystrokes or short prefixes.
In this work, we leverage such a QAC log data to get a better un-
derstanding of user’s sequential behavior in the QAC process.

3.2 Assumptions on QAC User Behavior
We view the QAC problem, which predicts a user’s intended

query, as the problem of predicting the query the user will click.
Unlike existing works on query auto-completion, which paid no
attention to those non-clicked suggested queries at the keystrokes
before users’ make clicks, or failed to straightforwardly analyze

1We experiment with real-world QAC logs where D = 10.

and reveal the difference between click cases and non-click cases,
our paper proposes a model which predicts the most likely slot a
user will click in each QAC session by capturing the relationship
between users’ behaviors at different keystrokes.

To predict how likely a user will click a certain slot, there are
mainly three issues we need to solve:

• Whether the user has viewed the slot;

• Whether the query shown on the slot satisfies the user’s in-
tent; and

• Whether the user is willing to click the slot.

We use Figure 2 to illustrate how the above three issues together
determine users’ click choices among all potential slots. Figure 2
shows a QAC session which contains S(=4) columns/keystrokes,
and each keystroke contains D(=4) positions, thus makes a total
number of 16 potential slots to click. Among those 16 potential
slots, the queries in 12 of them do not satisfy the user’s intent, thus
the user will not click it anyway. On the other hand, the user’s
intended query appears in the other four slots, where each keystroke
contains one appearance. The user viewed the suggested query lists
at both the first and second keystrokes, however, the intended query
is ranked at a relatively low position, which the user failed to pay
attention to, or thought this position costs him/her too much effort
to click, thus he/she didn’t click it. At the third keystroke, although
the intended query is ranked at the top position, the user didn’t view
this suggestion, thus he/she missed the information and failed to
click. Finally, at the last keystroke, the user viewed it, found his/her
intended query lies at the top position, and then he/she clicked that
query.

3.3 Modeling Clicks in QAC
In the following, we show how to better address the above is-

sues by taking the relationship between users’ behaviors at differ-
ent keystrokes into account. We also introduce some analysis con-
ducted on the real-world high-resolution QAC log, to show why
our proposed ideas are reasonable.

Skipping or viewing a keystroke? Existing works [2, 1] mostly
failed to address the first (and the third) issue since they lack the
information of users’ interactions with a QAC engine before mak-
ing a click, i.e., the high-resolution QAC log. Generally, it is as-
sumed that a user makes a decision to either viewing or skipping
at each keystroke, which depends only upon the user’s interaction
with the QAC engine at that keystroke. Based on its definition that
“skipping behavior happens when the final clicked query is ranked
within top 3 in the suggestion list of any of the prefixes except the
final prefix” as introduced in [15], we count the sequential appear-
ance of skipping and viewing states statistically on a real-world
high-resolution QAC log collected from a commercial search en-
gine, and find that 78.4% of the states are followed the same type
of states. Thus the transitions between skipping and viewing states
are not random, and the error of inferring state type based only
upon user behavior at that keystroke can be significant. Thus, our
paper, on the other hand, assumes that the user’s decision will also
be influenced by his/her decision at the previous keystroke besides
his/her interaction. As shown in Figure 1, we use a hidden Markov
model to capture such influence, and take viewing and skipping as
K = 2 states. We assume that T state transition rules exist in the
observed QAC logs, where each rule is actually a probability ma-
trix corresponding to a certain type of viewing/skipping behavior.
Users’ interactions with the QAC engine, such as typing speed and
reaching word boundary, at the current keystroke influence their
choice of transition rules at this keystroke. For instance, for a fast
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Figure 1: A Toy Example of a QAC Session in High-resolution QAC logs. Yellow tag highlights the query a user finally clicks, red tag
highlights the user’s intended query he/she doesn’t click. Black dot line represents the dependency between users’ skipping/viewing states captured
by Markov process, and blue line denotes the influence of suggested query lists of latter keystrokes together with users’ final click choices to the raise
of the ranking of intended queries in the list of the current keystroke.

typing user, the probability of transition from skipping to skipping
can be very small. When a user reaches a word boundary, he is
very likely to follow the transition rule where the probability of
transition from skipping to viewing is significant. Assuming T user
interaction patterns lie in the entire QAC log, and each user inter-
action pattern ω′t corresponds to one state transition rule δt, at each
keystroke, we analyze a user’s interaction with the QAC engine
and find which interaction pattern it belongs to, then choose ac-
cordingly the corresponding move transition rules. We use features
introduced in [15] to describe users’ interactions with the QAC en-
gine, and denote those interaction features as X ′.

How to capture users’ intent? We adopt logistic regression
(LR) to model how likely a query satisfies a user’s intent under
the current prefix. Existing works [15] already demonstrated a set
of relevance features, which characterize the relevance between a
certain prefix-query pair, to be effective in predicting the user’s in-
tent given certain prefixes. However, we find those features not
enough due to two drawbacks: 1) those features mainly reflect the
general interest of majority of users, and care little about users’
personal history and preference; and 2) those features rarely imply
the relationship between different prefixes, which makes them dif-
ficult to utilize users’ preference of queries in the suggested lists
of other keystrokes to improve the ranking at the current keystroke.
As shown in Figure 1, a user’s intended query, should get a higher
rank at previous keystrokes where this query appears, despite that
it is not clicked at that time. Actually, the real-world QAC log
shows that 29.4% of users’ submitted queries (this number counts
redundant appearances) have been submitted more than 3 times by
a user, while among those queries, only 18.4% of them has been
submitted multiple times by more than 25% of users, i.e. different
users favorite different query sets. Thus, besides existing features,
we also employ a set of user-specific relevance features, which are
designed to capture users’ personal preference of queries and their
corresponding relationship with keystrokes.

We summarize these search behavior features in Table 2. Our
features generally originate from statistical counting of users’ inter-
actions with the QAC engine in their own historical sessions. For
each user, given a certain query, we measure the number of times
the same query has been clicked by that user in the past (denoted as
Query Clicks). For users who have some queries daily issued, such
as “facebook” or “youtube”, this feature is capable of predicting

Figure 2: How Users Choose to Click Suggested Queries.

Table 1: User-Specific Relevance Features
Feature x Description
Query Length The average length of queries a user

clicked.
Query Word Num-
ber

The average number of words in queries
that a user clicked.

Query Clicks The number of clicks a user makes on the
current query.

Prefix/Query Ratio The percentage of the appearance of PQLR
of the current prefix-query pair in the his-
tory.

his intent at the first few keystrokes. We also measure the average
length of queries the user has clicked in the past (denoted as Query
Length), the average number of words in queries that a user clicked
(denoted as Query Word Number). In addition, we define the ratio
between the length of a prefix and that of a query as Prefix/Query
Length Ratio (PQLR), and calculate the distribution of the associ-
ated PQLR of queries the user clicked in the past. For each new
coming query, we estimate the percentage of the appearance of the
associated PQLR in the user’s history (denoted as Prefix/Query Ra-
tio). PQLR is supposed to capture a user’s preference of typing
when taking the query length into consideration.

Clicking a position or continue typing? In addressing the third
issue, we find it very necessary to take a user’s tendency of viewing
and clicking a certain position or continuing typing into consid-
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Table 2: Major Notations
Symbol Description
S The number of keystrokes in a QAC session.
D The number of suggested queries at a keystroke.
x The relevance features.
x′ The interaction features.
β The bias of viewing and clicking each position.
z Whether a query is clicked.
ω Feature weights of the relevance features.
δt, ω′t The t-th move transition pattern and the associated

user interaction pattern.

eration. On the real-world QAC log, we find that when a user’s
intended query (the click this user finally clicks in a QAC session)
is ranked within the top 2 positions, 37.6% of them will be clicked
by users. On the other hand, if this intended query is ranked out of
the top 2 positions, only 13.4% of them will be clicked by users.
Furthermore, such tendencies can be very different for different
groups of users. For mobile users, 42.9% of intended queries will
be clicked if they are ranked within the top 2 positions, otherwise,
23.0% of them will be clicked. While for PC users, 35.1% of in-
tended queries will be clicked if they are ranked within the top 2
positions, otherwise, 11.7% of them will be clicked. Here we can
clearly find that on mobile, users are more likely to make clicks
when their intended queries appear on the suggestion lists, even if
they are ranked at low positions, while PC users prefer typing, since
typing on PC is much more convenient than on mobile.

We use a D-dimensional Dirichlet prior α to learn the relative
cost ratio of viewing and clicking a certain position against typ-
ing. Such a prior allows each user m to have distinguished posi-
tion bias βm in the preference of viewing and clicking than typing.
Users who prefer clicking than typing will have a higher average
clicking/typing cost ratio (CTCR) than users who prefer typing than
clicking. The gaps of CTCR between high position and low posi-
tion of users who rarely click suggested queries in low positions are
generally larger than those of users who tend to click their intended
queries the first time they are suggested no matter how lower their
positions are.

Let us consider a typical scenario where M users issue M cor-
responding query sequences, where for each user m, the QAC log
records Nm QAC sessions. The n-th QAC session of user m con-
tains Sm,n keystrokes, where each keystroke containsD suggested
queries. In total, each QAC session has S×D potential slots where
a user can click, and we use zm,n,s,d = 1 to denote that a user
clicks the slot ranked d at the s-th keystroke, and zm,n,s,d = 0 oth-
erwise. We also use xm,n,s,d to denote the relevance feature of a
prefix-query pair, where the prefix is at the s-th keystroke and the
query is ranked d at that keystroke. Then given the weights ω of
those relevance features, we can derive the relevance score of each
suggestion as ωxm,n,s,d. In addition, we use x′m,n,s to denote a
user’s interaction with the QAC engine at the s-th keystroke.

Based on our proposed solution of the listed three issues and
above definitions, finally, we present our generative model as fol-
lows:

• For each user m, draw a D dimensional membership vector
βm ∼ Dirichlet(α).

• For each move transition pattern t, draw a move transition
matrix δt ∼ Dirichlet(α′), where each pattern is associated
with a user interaction pattern ω′t.

Figure 3: RBCM Flowchart.

• For the n-th query issued by userm, and for the prefix at step
s,

– Draw the user’s move transition pattern membership
πm,n,s ∼ Multinomial(θ), where θ is the prior dis-
tribution of move transition pattern membership.

– Draw the user’s interaction with the QAC engine
through x′m,n,s ∼ Gaussian(ω′πm,n,s

, σ).

– Draw the user’s next move, which is either type or view,
Ym,n,s ∼ Multinomial(δπm,n,s−1,Ym,n,s−1). If we
have Ym,n,s = 1, continue to type; otherwise, stop and
view the results.

– For each position d in the suggestion list of the cur-
rent prefix, draw the user’s clicked suggestion through
zm,n,s,d ∼ Multinomial(LR(βm,dωxm,n,s,d)). If
we have zm,n,s,d = 1, select the suggestion in posi-
tion d to click, then go to the n+1-th query; otherwise,
continue to type, i.e., go to the next prefix.

Notice that the proposed model is a combination of three parts that
address the listed issues respectively. We name this probabilistic
model as relationship-based click model (RBCM). To better illus-
trate the generative process of the proposed RBCM model, we show
the flowchart of user behaviors in Figure 3.

Under our RBCM model, the joint probability of the click
information Z = {{zm,n}Nm

n=1}, the relevance features X =

{{xm,n}Nm
n=1}, the user interaction features X ′ = {{x′m,n}Nm

n=1}
and latent variables {β1:M , π, Y } can be written as follows:

p(Z,X,X′, β1:M , Y, π, δ|α, α′, ω, ω′, θ)

=
∏

m,n,s,d

P (zm,n,s,d|xm,n,s,d, βm,d, ω, Ym,n,s)

×
∏
m,n,s

P (Ym,n,s|Ym,n,s−1, δ, πm,n,s−1)P (x′m,n,s|πm,n,s−1, ω
′)

×
∏
m,n,s

P (πm,n,s|θ)
∏
t

P (δt|α′t)
∏
m

P (βm|α).

4. INFERENCE
In this section, we derive a mean-field variational Bayesian in-

ference algorithm for our proposed RBCM model.

4.1 Variational Inference
Under the RBCM model, given observations of both click in-

formation Z = {Zm} =
{
{zm,n}Nm

n=1

}
, the relevance features

X , and the user interaction features X ′, the log-likelihood for the
complete data is given by logP (Z,X,X ′|α, α′, ω, ω′, θ). Since
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this true posterior is hard to infer directly, we turn to variational
methods [3, 14], whose main idea is to posit a distribution over the
latent variables with variational parameters, and find the settings of
the parameters so as to make the distribution close to the true pos-
terior in Kullback-Leibler (KL) divergence. Our paper chooses to
introduce a distribution of latent variables q specified as the mean-
field fully factorized family as follows:

q(Y, π, β1:M , δ|ρ, φ, γ1:M , η) =
∏
m

q2(βm|γm)
∏
t

q2(δt|ηt)

×
∏
m

∏
n

∏
s

q1(Ym,n,s|ρm,n,s)q1(πm,n,s|φm,n,s)

where q1 is a multinomial, q2 is a Dirichlet, and {ρ, φ, γ1:M} are
the set of variational parameters. We optimize those free parame-
ters to tight the following lower bound L′ for our likelihood:

log p(Z,X,X
′|α, α′, ω, ω′, θ) ≥ −Eq [log q(Y, π, β, δ|ρ, φ, γ1:M , η)]

+ Eq

[
log p(Z,X,X

′
, β, Y, π, δ|α, α′, ω, ω′, θ)

]
. (1)

Under a coordinate descent framework, we optimize the lower
bound as in Eqn (1) against each variational latent variable and the
model hyper-parameter. For variational latent variables, we have
the following process
• update rules for γ’s as:

γm,d = αd +
∑
n

∑
s

log
(
1 + exp

(
zm,n,s,dωmxm,n,s,d

))
;

• update rules for ρ’s as:

ρm,n,s,k=1 ∝ exp

(
−
∑
d

zm,n,s,d − bm,n,s,1

)
;

ρm,n,s,k=2 ∝ exp

(
bm,n,s,2 −

∑
d

log

(
1 + exp

(
zm,n,s,d

−ωmxm,n,s,d

[
Φ(γm,d)− Φ

(∑
d

γm,d

)])))
.

where

bm,n,s,k =
∑
k′

∑
t

φm,n,s,t

[
Φ(ηt,k′,k)− Φ

(∑
k′′

ηt,k′,k′′

)]

+
∑
k′

∑
t

φm,n,s+1,t

[
Φ(ηt,k,k′ )− Φ

(∑
k′′

ηt,k.k′′

)]

• update rules for φ’s as:

φm,n,s,t ∝ exp

∑
k,k′

ρm,n,s,kρm,n,s+1,k′

[
Φ(ηt,k,k′ )

−Φ

(∑
k′′

ηt,k,k′′

)]
−

1

2σ2

∥∥x′m,n,s − ω′t∥∥22
)

• update rules for η’s as:

ηt,k,k′ = α′t +
∑
m

∑
n

∑
s

φm,n,s,t
∑
k,k′

ρm,n,s,kρm,n,s−1,k′

4.2 Learning
We use a variational expectation-maximization (EM) algorithm

[6] to compute the empirical Bayes estimates of the Dirichlet hyper-
parameters α and α′ in our RBCM model. This variational EM al-
gorithm optimizes the lower bound as in Eqn (1) instead of the real
likelihood, and iteratively approximates the posterior by fitting the

variational distribution q and optimizes the corresponding bound
against the parameters.

In updating α, we use a Newton-Raphson method, since the ap-
proximate maximum likelihood estimate of α doesn’t have a closed
form solution. The Newton-Raphson method is conducted with a
gradient and Hessian as follows:

∂L′

∂αd

= N

(
Ψ

(∑
d

αd

)
−Ψ(αd)

)
+
∑
m

(
Ψ(γm,d)−Ψ

(∑
d

γm,d

))
,

∂L′

∂αd1
αd2

= N

(
I(d1=d2)Ψ

′
(αd1

)−Ψ
′
(∑

d

αd

))
.

Similar update rules can be derived for α′.
On the other hand, to obtain the approximate maximum likeli-

hood estimation of ω, we employ the stochastic gradient descent
to update ω in each interaction based on the observed click data z,
relevance features x, and the inferred latent variables ρ and γ. On
the other hand, the approximate maximum likelihood estimation of
ω′ will lead to the following update rule,

ω′t =

∑
m

∑
n

∑
s φm,n,s,tx

′
m,n,s∑

m

∑
n

∑
s φm,n,s,t

.

Our variational inference algorithm, named RBCM, can be in-
terpreted intuitively in the following way. The CTCR distribution
γ of each user is determined by both the topic prior and the accu-
racy that the learned weights of relevance features predict users’ in-
tended queries. Users’ viewing/skipping states ρ at each keystroke
is determined by the influence from users’ states at the previous
keystroke and that from users’ states at the next keystroke. The
state transition at each keystroke is determined by the transition
prior, users’ interaction patterns at that keystroke, and users’ states
at that keystroke and the keystroke before that. The probability of
the interaction of a user m at the s-th keystroke in the n-th QAC
session belonging to interaction pattern k is jointly determined by
the state transition between the current and the next keystroke and
the user’s interaction at the current keystroke.

In our mean-field variation inference algorithm, the computa-
tional cost of inferring variational variables isO(N∗S̄∗T+M∗D),
where S̄ is the average number of keystrokes in a QAC session,
and N =

∑
mNm is the total number of QAC sessions in the

entire high-resolution QAC log. The computational cost of the es-
timation of Dirichlet hyper-parameters is O(M ∗D). The compu-
tational cost of the estimation of weights of relevance features is
O(N ∗ S̄ ∗D), while the cost of the estimation of user interaction
patterns is O(N ∗ S̄ ∗ T ). Thus the total computational cost of our
algorithm is O(N ∗ S̄ ∗ (T + D)). Since T and D are both small
constants, we can view the computational cost as linear in the total
number of keystrokes in all sessions in the QAC log.

5. EXPERIMENTS
We evaluated our RBCM model on real-world data sets, and

compared the performance with the following baselines: three al-
ternative probabilistic models that only use two parts of the pro-
posed model and four state-of-the-art QAC algorithms:
Alternative-A: This model does not use the hidden Markov model
to capture the state transition of skipping/viewing moves. The state
of skipping/viewing is determined by users’ interactions with the
QAC engine only.
Alternative-B: This model avoids using user-dependent features
in the logistic regression part to capture users’ real preference of
suggested queries. It only utilizes user-independent features in the
logistic regression part.
Alternative-C: This model avoids using a Dirichlet prior to
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model users’ CTCR. Instead, it assumes users have no pref-
erence in clicking different positions as well as typing, i.e.,
the probabilities of clicking any positions and typing are all
equal, and user’s clicked suggestion is drawn via zm,n,s,d ∼
Multinomial(LR(ωxm,n,s,d)).
MPC [1, 18]: This method, named MostPopularCompletion, is a
widely used baseline in Query Auto-Completion, and employed as
one main feature in many QAC engines.
UBM [8]: This User Browsing Model proposes a number of as-
sumptions on user browsing behavior that allows the estimation of
the probability of observing a document. It depends on statistical
counting of prefix-query pairs, thus unable to predict unseen prefix-
query pairs.
BSS [10]: This Bayesian Sequential State model uses a probabilis-
tic graphical model to characterize the document content and de-
pendencies among the sequential click events within a query with
a set of descriptive features. This is a content-aware model, which
is able to predict unobserved prefix-query pairs.
TDCM [15]: This is a two-dimensional click model which em-
phasizes two kinds of user behaviors. It consists of a horizontal
model, which explains the skipping behavior, and a vertical model
that depicts the vertical examination behavior.

5.1 Real-world Data
We conducted extensive experiments on two real-world high-

resolution QAC logs that collected from a commercial search en-
gine. The first data set, which we name LargeQAC, contains high-
resolution QAC logs from May 2014 to July 2014. The collection
consists of a sample of 7.4 million QAC session from about 40,000
users over a 3-month period. We randomly selected a subset of ac-
tive users who submitted over 500 QAC sessions during this period,
and collected their corresponding search activities, including the
anonymized user ID, query string, timestamp, and the clicked URL.
As a result, we collected 3,954 users with 2.6 million queries, and
their activities span from 22 days to 3 months. According to differ-
ent platforms (PC or mobile phones), we split the entire dataset into
two subsets. One is PC, which contains 1.6 million QAC sessions,
while the other is mobile phones, which contains 1.0 million QAC
sessions.

The second data set is also collected from a commercial search
engine. We name this data SmallQAC to distinguish it from the
previous one. This data set is constituted of random sampled high-
resolution QAC logs dating from Nov 2013 to Jan 2014. The log
contains 125 thousand QAC sessions from PCs. Since existing
QAC algorithms utilizing high-resolution QAC logs have already
shown rich results on the QAC log, we utilize both data sets to
evaluate our proposed model and compare with the state-of-the-art
methods in the following section.

5.2 Experimental Results
Model Fitness. This section evaluates the fitness of our proposed
model on real-world data, and compares our model with proba-
bilistic model based methods. We split the data based on the time
information: the QAC sessions occurred in the first 90% of the time
period are used as the training data, while the remaining 10% used
as the test data. Table 3 shows the log predictive likelihood on ses-
sions falling in the final 10% of the total time of QAC log data. Ac-
cording to Table 3, RBCM fits the real-world data better than the
three alternative probabilistic models and TDCM. This illustrates
that in the proposed RBCM model, all three parts play an important
role in capturing the relationship between users’ behaviors at dif-
ferent keystrokes. Alter-A performs the worst among all three alter-

native probabilistic models, which shows the importance of using
the Markov process to model the state transition between skipping
and viewing. Alter-B performs the best among three alternative
probabilistic models, which shows that user-specific features do not
fully utilize the relationship between users’ behaviors. The reason
may be that, even when the relevance features and their associated
weights fail to reflect users’ real preference of suggested queries,
the other two parts of the proposed model can reduce the harm
of those mispredictions by inferring reasonable skipping/viewing
states and user-specific CTCR. TDCM performs the worst, since it
fails to utilize the relationship between users’ behaviors from any
aspects.
Query Auto-Completion. To evaluate the effectiveness of the
proposed model in suggesting users intended queries in each QAC
session, we compare the proposed model with both alternative
probabilistic models and state-of-the-art QAC algorithms. All
compared methods re-rank the suggested queries at each keystroke
and compete to rank the intended query as high as possible. In
the proposed RBCM model, we use the relevance model part
LR(βωx) to re-rank the suggested queries. We employ the Mean
Reciprocal Rank (MRR) as the relevance measurement, which is a
widely used evaluation metric in measuring QAC performance [1,
18, 15],

MRR =
1

|Q|
∑
q∈Q

1

rankq
,

where Q is the set of queries a user finally submitted, and rankq
denotes the rank of the query q in the suggested query list.

Notice that among the suggested query lists of all keystrokes,
those lists that do not contain users’ finally submitted queries are
removed from our experimental analysis. Since our experiments
are conducted on high-resolution QAC data, we report both the av-
erage MRR score of all keystrokes, and the average MRR of the
last keystroke only, since this is the keystroke where the user’s click
occurs. Notice that existing works which didn’t make use of high-
resolution QAC logs usually used the MRR of the last keystroke
to measure their performance. In the following experiments, the
whole dataset is divided evenly into a training set and a test set for
different settings.

Figure 4 compares the proposed model with alternative proba-
bilistic models and state-of-the-art QAC algorithms by MRR. We
can observe that RBCM performs the best among all compared ap-
proaches, and outperforms existing QAC algorithms by over 6%,
for all the data sets and different settings. The advantage of RBCM
over Alter-A illustrates the necessity of modeling the transition be-
tween skipping and viewing. The learned transition rules work for
both existing users and new coming users, thus can provide better
query suggestions for new coming users than TDCM, which mod-
els no relationship between users’ behaviors at different keystrokes.
In addition, the three alternative probabilistic models generally
perform better than existing QAC algorithms. Such phenomenon
demonstrates the effectiveness of making use of the relationship
between users’ interactions in different keystrokes in solving the
QAC task. Essentially, appropriate modeling of such relationships
together makes the proposed model much better than those alterna-
tive baselines. In specific, the advantage of Alter-B over TDCM
illustrates that for those unseen prefix/query pairs, the proposed
model can also achieve a sound performance, which attributes to
the skipping/viewing transition and the user-specific preference of
position clicking and typing captured by the proposed model. Be-
sides our proposed model and its alternatives, TDCM performs bet-
ter than the rest of existing QAC algorithms, which we attribute to
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Table 3: Log Predictive Likelihood on Real-world Data
Model/Data set Platform RBCM Alter-A Alter-B Alter-C TDCM

LargeQAC PC -185.37 -192.83 -189.43 -191.84 -208.65
LargeQAC Mobile -177.95 -187.64 -184.91 -185.50 -195.04
SmallQAC PC -206.32 -218.14 -214.98 -216.69 -234.83
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Figure 4: Performance Comparison of QAC Methods.

the usage of high-resolution QAC logs. BBS outperforms UBM
since it adopts the content-aware relevance model. MPC performs
the worse, since it pays little attention to users’ behaviors in QAC
logs. By comparing with the performance using all the keystrokes
and last keystroke only, we find that the advantages of the proposed
model are ever more significant when measured by MRR@All. It
indicates that the proposed model can recommend user intended
queries higher when only a few keystrokes have been typed.
State Transition of Skipping/Viewing. Based on the state transi-
tion matrices and the corresponding user interaction patterns that
learned by the proposed RBCM model from real world QAC logs,
we provide a detailed analysis on the difference of transition rules
between skipping/viewing and the associated user interaction pat-
terns. Among all learned state transition rules, we pick two of them
which differ the most in probability. Figure 5 shows the state tran-
sition rules and their corresponding user interaction patterns, where
each block is the transition probability from the previous state (ver-
tical) to the current state (horizontal). Intuitively, we find Figure
5(a) represents skipping users, i.e., users who prefer skipping than
viewing, as these users have a much higher probability to skip at
the current keystroke no matter the previous state is skipping or
viewing, while Figure 5(b) represents viewing users, i.e., users who
prefer viewing than skipping, because these users are more likely
to switch to the viewing state from previous skipping or viewing
status. Notice that skipping and viewing users only refer to the
tendency of users’ at each keystroke. A user who always skips sug-
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Figure 5: State Transition of Skipping/Viewing.

gested query lists will behave like skipping user consistently, while
a user who has no habit in querying may alternatively switch be-
tween skipping and viewing users from time to time.

From Figure 5, we find that no matter what the state of the cur-
rent keystroke is, skipping users are more likely to skip the sug-
gested query list of next keystroke than viewing users. On the con-
trary, viewing users are more likely to view the suggested query
list of next keystroke than skipping users under all circumstances.
We also find that no matter which type a user belongs to, if he/she
already viewed the suggested query list of the current keystroke,
he/she will be more likely to skip the next keystroke than that un-
der the situation where he/she skipped the current keystroke. More-
over, the corresponding user interaction patterns of different state
transition rules appear quite different. Skipping users generally
have faster typing speed, and come across less word boundaries,
and enter more navigational queries.
Users’ Real Preference of Suggested Queries. We use this series
of experiments to discuss how our designed user-specific features
enable the proposed model to understand users’ real preference of
suggested queries. We compare the proposed model with Alter-B
on the QAC task measured by MRR, so as to illustrate the impor-
tance of using user-specific features. From Figure 6, we find that
the proposed model performs better than Alter-B in recommend-
ing users’ queries that satisfy their intent. In addition, we list a
subset of learned weights of those designed user-specific features
in Figure 7. From here, we can find that the history of queries
that a user clicked plays a very important role in predicting the fu-
ture queries he/she will click, especially when certain prefixes are
given. Meanwhile, the length of the queries a user used to click is
a significant signal for learning users’ real preference of queries in
the suggested query lists. The reason can be that such a signal im-
plies users’ clicking habit from some aspects. A skipping user who
always clicks long queries will probably ignore his/her intended
queries shown to him/her, before he/she enters enough number of
keystrokes. Under such situation, the signal of query length will
be capable of capturing users’ real preference at keystrokes with
short prefixes, which enables the proposed model to rank the in-
tended queries at higher positions than those shorter queries. On the
other hand, when a user has no preference in clicking long queries,
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Figure 6: Comparison of RBCM with Alter-B.
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Figure 7: Weights of Relevance Features Learned by RBCM.
Indice of selected user-specific relevance features: 1-Query
Clicks, 2-Query Length, 3-Prefix/Query Ratio, 4-Query Word
Number. The values of weights are scaled to the range of [0, 1]
to clarify the comparison of relative importance of different
features.

this signal will not take effect, and the proposed model will recom-
mend popular queries according to the frequency of the occurrence
of prefix-query pairs. Such suggested queries are usually not that
much longer than the given prefixes.
User-specific Cost Between Position Clicking and Typing.
Based on the latent variable γ learned by the proposed model, we
analyze the specific cost balance between position clicking and typ-
ing of different users. We select two subsets of users: one named
typing user, which is formed by the top 20% users with the high-
est average click positions, and another, clicking user, is formed
by the bottom 20% users with the lowest average click positions.
We calculate the averaged CTCR of both two subsets of users, sep-
arately, and plot the results in Figure 8. From here, we find that
the learned CTCR γ’s of typing users and clicking users have very
different distributions. Although users from both subsets are most
likely to click the top query of a suggested query list, clicking users
also occasionally click queries located at the middle positions of a
suggested query list, while typing users rarely click those positions.

Furthermore, we try to distinguish the difference between typ-
ing user&clicking user and viewing user&skipping user. We select
the top 20% users with the largest percentage of viewing states ,
and the bottom 20% users with the smallest percentage of skipping
states. We compared the selected subsets of typing users with skip-
ping users, and the selected subset of clicking users with viewing
users. Table 4 shows the overlaps of the two pairs of compared
subsets. According to Table 4, we find that there exists overlap be-
tween typing users and skipping users, clicking users and viewing
users. For users sharing the same tendency of skipping/viewing
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Figure 8: User-Specific Clicking/Typing Cost Ratio.

Table 4: Overlap between typing user-skipping user pair and
clicking user-viewing user pair

Overlap Percentage
typing user∩skipping user 34.2%
clicking user∩viewing user 22.7%

state choices, the difference of users in choosing clicking and typ-
ing becomes smaller. Skipping and typing are two reasons that a
user does not click his/her intended query when it appears. Skip-
ping users are more likely to click upper position queries, but this
is not always true. A user who owns a high typing speed may not
only prefer skipping than viewing but also prefer typing than click-
ing. However, he/she may also click the intended query the first
time he/she views it.
Case Study of Query Auto-Completion. Now we show a few
examples that illustrate how RBCM recommends users queries
that better satisfy user intent by capturing the relationship between
users’ behaviors at different keystrokes. Figure 9 shows a QAC ses-
sion where a user finally submitted “star wars”, which is the user’s
intended query in this session. From Figure 9, we can find that
the proposed model generally ranks users’ intended queries higher
than TDCM, especially at keystrokes with shorter prefixes. For
example, with the prefix “st”, RBCM ranks the intended query at
the position 3 while TDCM ranks it at the position 10. The rea-
son is that the proposed model utilizes the user’s preference of
the clicked queries at the last keystroke to improve its ranking at
shorter keystrokes in the future by modeling the relationship be-
tween users’ behaviors at different keystrokes. Our designed rel-
evance features show that the query “star wars” has been issued
many times by this user. Thus, although for the entire user col-
lection, the generally frequencies of the appearances of “star wars”
are relatively low given short prefixes, such as “st” or “sta”, the
proposed model ranks this query at the higher position for the spe-
cific user than other users who rarely search “star wars”. We also
notice that queries of similar intent, such as “star wars the old re-
public” and “star wars episode 7” are also ranked higher by our
proposed model than by TDCM, which emphasizes that our model
can better capture users’ personal interests. Actually, through the
analysis of the historical log of this particular user, we can find that
he/she is a science fiction fan, which explains why our model also
ranks “star trek” higher than TDCM. Thus we can conclude that
appropriate modeling of such relationships is critical for predicting
users’ intended queries given short prefixes.
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Figure 9: Case Study: The position of list queries from top
to down shows the ranking of suggested queries predicted by
TDCM, while the number tagged with # behind each query
shows its ranking given by the proposed model. The yellow box
highlights the user’s intended query, and the green box high-
lights queries satisfy similar user intent. Notice that “|” is the
cursor.

6. CONCLUSION AND FUTURE WORK
In this paper, we have presented a probabilistic model to solve

the query auto-completion (QAC) task by capturing the relationship
between users’ behaviors at different keystrokes in high-resolution
QAC logs. The proposed model integrates three parts, each ad-
dressing a single aspect of the above relationship, and illustrates
how the three parts together determine users’ final click decisions.
We have applied the proposed model to predict users’ intended
queries on real world high-resolution QAC logs collected from a
commercial search engine, and compare it with several alternative
approaches. Experimental results show that the improvements of
our proposed model are consistent, and our model achieves the best
performance. In future work, it would be interesting to consider
more complex relationships between users’ behaviors at different
keystrokes. For instance, we could increase the number of states
from simply skipping or viewing to viewing to a certain position
d, which enables a more precise modeling of users’ behaviors in
QAC.
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