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Abstract

The explosive popularity of microblogging services encour-
ages more and more online users to share their opinions,
and sentiment analysis on such opinion-rich resources has
been proven to be an effective way to understand public
opinions. On the one hand, the brevity and informality of
microblogging data plus its wide variety and rapid evolu-
tion of language in microblogging pose new challenges to
the vast majority of existing methods. On the other hand,
microblogging texts contain various types of emotional sig-
nals strongly associated with their sentiment polarity, which
brings about new opportunities for sentiment analysis. In this
paper, we investigate propagation-based sentiment analysis
for microblogging data. In particular, we provide a propagat-
ing process to incorporate various types of emotional signals
in microblogging data into a coherent model, and propose a
novel sentiment analysis framework PSA which learns from
both labeled and unlabeled data by iteratively alternating a
propagating process and a fitting process. We conduct ex-
periments on real-world microblogging datasets, and the re-
sults demonstrate the effectiveness of the proposed frame-
work. Further experiments are conducted to probe the work-
ing of the key components of the proposed framework.

1 Introduction

Nowadays microblogging services such as Twitter, Tum-
blr [6] and Chinese microblogging website Weibo are in-
creasingly used by online users to share and exchange opin-
ions, providing rich resources to understand public opinions.
For example, in [3], a simple model exploiting Twitter sen-
timent and content outperforms market-based predictors in
terms of forecasting box-office revenues for movies; public
mood as measured from a large-scale collection of tweets
obtains an accuracy of 86.7% in predicting the daily up and
down changes in the closing values of the DJIA [5]. There-
fore sentiment analysis for such opinion-rich resources has
attracted increasing attention in recent years [8, 26, 31, 12].

Two categories of methods are extensively studied for
sentiment analysis: supervised methods and unsupervised
methods [23, 15]. Supervised methods build a classifier
trained on manually labeled data [24], while unsupervised
methods, such as the lexicon-based methods, determine the
sentiment of texts based on a sentiment lexicon [30, 20].
These methods have been successfully applied to various do-
mains such as product and movie reviews [24, 10]. However,
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both of them become difficult when handling microblogging
data. First, informal and abbreviated language is widely used
in microblogging and rapidly evolves. To adapt to changes
in language use, supervised methods need new labeled train-
ing data, while unsupervised lexicon-based methods also re-
quire human efforts to update the sentiment lexicons. Both
are time and labor consuming. Second, microblogging texts
are short and often do not provide sufficient statistical infor-
mation. Due to the large feature space and the brevity of
microblogging data, supervised methods need more labeled
data [16], while short microblogging texts lack sufficient ag-
gregation information to measure their overall sentiment for
the unsupervised lexicon-based methods [11]. The combi-
nation of these two distinct characteristics of microblogging
data manifests a new research challenge for sentiment anal-
ysis and calls for adaptive methods with less manual efforts.

It is common to have a microblogging dataset with a
small number of labeled data and a large amount of unlabeled
data. In addition to providing context information for labeled
data such as changes in language use [26], unlabeled data in
microblogging contains various types of emotional signals.
Microblogging texts are not created independently and there
exist sentiment correlations, which can be explained by sen-
timent consistency [1] and emotional contagion [9]. In the
physical world, people often use gestures and facial expres-
sions to indicate their emotions. Similarly, in microblogging,
users develop visual cues such as emoticons that are strongly
associated with their emotional states. When users adopt
emoticons, they are effectively associating the text with an
emotional state [17]. The availability of unlabeled data with
emotional signals brings about new opportunities for senti-
ment analysis and enables the development of frameworks
by exploiting both labeled and unlabeled data.

These unique properties of microblogging data motivate
the development of a propagation-based sentiment analysis
framework. In essence, we investigate - (1) how to ex-
ploit various types of emotional signals in microblogging
data; and (2) how to take advantage of labeled and unla-
beled data with emotional signals for sentiment analysis.
Providing solutions to these two questions results in a novel
propagation-based sentiment analysis framework PSA. The
proposed framework iteratively alternates two processes - a
propagating process and a fitting process. Our main contri-
butions are summarized below:

• Provide a propagating process to incorporate various
types of emotional signals into a coherent model;

• Propose a propagation-based sentiment analysis frame-
work which makes use of both labeled and unlabeled



data with emotional signals by iteratively alternating a
propagating process and a fitting process;

• Evaluate the proposed framework PSA extensively in
two real-world microblogging datasets to understand
the working of PSA.

2 The Proposed Semi-supervised Sentiment Analysis
Framework

Before going into the details of our framework, we first intro-
duce some important notations used in this paper. Let T =
{t1, t2, . . . , tN} and D = {d1, d2, . . . , dm} be the microblog
set and the dictionary respectively, where N is the number of
microblogs and m is the size of the dictionary. The matrix
representation of T is X = [x1,x2, . . . ,xN ] ∈ R

m×N . As-
sume that there are n microblogs in X labeled. Let X =
[XL,XU ] where XL ∈ R

m×n is the labeled set and XU ∈
R

m×(N−n) is the unlabeled set. Let C = {C1, C2, . . . , Cc}
be the set of sentiment classes where c is the number of
classes. There are two common choices for c in the literature
including c = 2, i.e., {C1 = negative, C2 = positive},
and c = 3, i.e., {C1 = negative, C2 = neutral, C3 =
positive}. Y ∈ R

c×n is the label indicator matrix for la-
beled data where Yji = 1 if the i-th microblog belongs to
the j-th class, and 0 otherwise.

Microblogs are not created in isolation [26, 12]. We can
exploit social theories such as sentiment consistency [1] and
emotional contagion [9] to construct a microblog-microblog
sentiment correlation network. For example, via hypothe-
sis testing, [12] demonstrates that the sentiments of two mi-
croblogs created by the same user in a short time window
are likely to be similar. We construct a microblog-microblog
network Rtt based on these social theories where Rtt

ij = 1
if the sentiments of ti and tj may be correlated, zero other-
wise. Similarly, words in microblogging texts are also not
independent and their sentiment polarity may be correlated.
For example, two words appearing frequently in the same
set of microblogs are likely to share similar sentiment po-
larity [11]. We construct a word-word network Rww where
Rww

ij = 1 if di and dj may be correlated, zero otherwise.
More details about how to construct these two networks will
be further discussed in the experiment section. We use Rtw

to denote the microblog-word bipartite graph where Rtw
ij de-

notes the frequency of dj in ti. Microblogs, words and their
relations are demonstrated in the top subgraph of Figure 1
where microblogs may contain emoticons, and some words’
sentiment polarity can be indicated by existing lexicons.

In this paper, we propose a novel propagation-based
sentiment analysis framework PSA for microblogging data,
which is demonstrated in Figure 1. The framework includes
two processes - a propagating process and a fitting pro-
cess. The propagating process propagates the classification
results and emotional signals such as emoticons via word-
word, microblog-word and microblog-microblog relations as
shown in the top subgraph of Figure 1; while the fitting pro-
cess learns a classifier to fit both the label information and
propagation results as shown in the bottom subgraph of Fig-
ure 1. We will iteratively alternate the propagating process
and the fitting process until convergence. More details about
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Figure 1: The Proposed Framework.

these two processes will be discussed in the following sub-
sections.

2.1 The Propagating Process A microblog is likely to be
positive if it contains many words with positive sentiment,
and connects to other microblogs with positive sentiment;
meanwhile a word is likely to be positive if it associates with
many microblogs with positive sentiment, and correlates
to other words with positive sentiment, which can also be
applied to other sentiment classes such as negative and
neutral. These observations reveal the mutual reinforcement
principle among sentiments of microblogs and words, which
paves a way for us to model the propagating process.

Let pi ∈ R
c and qj ∈ R

c denote the sentiment of the
i-th microblog ti and the j-th word dj , respectively. With
the mutual reinforcement principle, the propagating process
can be formulated as,

pi = α

∑N

k=1 R
tt
ikpk

∑N

k=1 R
tt
ik

+ (1− α)

∑m

k=1 R
tw
ik qj

∑m

k=1 R
tw
ik

,

qj = β

∑m

k=1 R
ww
jk qk

∑m

k=1 R
ww
jk

+ (1− β)

∑N

k=1 R
tw
jkpk

∑N

k=1 R
tw
kj

,(2.1)

where the sentiment of a microblog (or a word) is an ag-
gregation of the sentiment of its correlated microblogs (or
presented microblogs) and contained words (or correlated
words). Via Eq. (2.1), the sentiment is propagated in word-
word, microblog-word and microblog-microblog relations.
That is why we call this process the propagating process. α
and β are two parameters to control the contributions from
microblog-microblog relations and word-word relations re-
spectively. We empirically find that α = β = 0.4 works
well in this paper. The initialization of the propagation pro-
cess will be presented in Algorithm 1.

One important issue about the propagation process is
how to initialize pi and qj . For tis and djs, we usually
will use the classification results and the learnt classifier
from the fitting process to perform initialization, which will
be discussed in the following subsections. However, there
are other types of emotional signals such as emoticons and
existing sentiment lexicons available for some microblogs
and words. Next we will discuss how to incorporate these
types of emotional signals in the propagation process.



Incorporating Emoticons : Users in microblogging usu-
ally use emoticons to indicate their sentiment, and emoticons
in microblogs are strong indicators of the sentiment of mi-
croblogs [11]. We use Ek to denote the set of microblogs
from unlabeled data with emoticons of Ck, and pi will be

set as (

k−1
︷ ︸︸ ︷

0, . . . , 0, 1,

c−k
︷ ︸︸ ︷

0, . . . , 0). For example, assume that c = 2
and we use E1 and E2 to denote sets of microblogs with neg-
ative and positive emoticons from unlabeled data, respec-
tively. Since tweets with positive emoticons (or negative
emoticons) are very likely to be positive (or negative) [11],
for the i-th microblog ti with emoticon information, we ini-
tialize the sentiment pi as

pi =

{

(1, 0), if ti ∈ E1
(0, 1), if ti ∈ E2 .(2.2)

To capture emoticon information in ti, we fix pi during the
propagating process instead of being updated by Eq. (2.1).

Incorporating prior knowledge from lexicons : There
are existing lexicons to indicate the sentiment polarity of
words that can be used as prior knowledge to improve
sentiment analysis performance. We use Ek to denote the set
of words with the sentiment of Ck indicated by the sentiment

lexicons, and qj will be set as (

k−1
︷ ︸︸ ︷

0, . . . , 0, 1,

c−k
︷ ︸︸ ︷

0, . . . , 0). Similar
to incorporating emoticon information, we fix the sentiment
of the j-th word qj during the propagating process if dj is in
the lexicons.

The significance of the propagating process is two-fold.
First, it provides a unified way to incorporate various types of
emotional signals such as sentiment correlations, emoticons
and lexicons. Second, via the propagating process, sentiment
from emotional signals and label information in the fitting
process can be propagated to unlabeled data, which allows
us to learn from unlabeled and labeled data. Next we will
introduce the fitting process.

2.2 The Fitting Process In the fitting process, our frame-
work will learn a classifier to fit both label information and
propagation results from the propagating process. In this pa-
per, we assume that there is a linear classifier to classify the
sentiment of microblogs W ∈ R

m×c and the fitting process
can be formulated as,

min
W≥0

F (W) = l(W⊤XL,Y) + λT

N∑

i=1

d(pi,W
⊤xi)

+ λW

m∑

j=1

d(qj ,Wj) + λ‖W‖1,

(2.3)

where l(·, ·) is a loss function and popular choices include
square loss, logistic loss and hinge loss. d(·, ·) is a distance
metric. Wj is the j-th row of W. Next we give more details
about Eq. (2.3).

In Eq. (2.3), the first term is to fit the label information
Y. The second term is to fit the propagation results for

microblogs from the propagation process. Since the second
term is to fit the propagation of microblogs, we name it as
tPropagation and λT is introduced to control its contribution.
To understand tPropagation better, we divide the set of
microblogs T into three subsets, T = {T L, T E , T U} where

T L and T E denote microblogs with labels and emoticons
respectively, and T U is the remaining microblogs. Then
tPropagation can be rewritten as

N∑

i=1

d(pi,W
⊤xi) =

∑

tℓ∈T L

d(pℓ,W
⊤xℓ)

+
∑

tj∈T E

d(pj ,W
⊤xj) +

∑

tk∈T U

d(pk,W
⊤xk),

(2.4)

where by minimizing Eq. (2.4), tPropagation can

• propagate the label information in the propagating pro-
cess, which is ensured by the first term in Eq. (2.4);

• capture the emoticon information in microblogs since
the second term in Eq. (2.4) forces the predicted senti-
ment of tj close to pj which is fixed to model emoticon
information in microblogs; and

• make two processes consistent by forcing the sentiment
obtained by these two processes close through the third
term in Eq. (2.4).

By adding non-negative constraint on W, we can use
Wjk to indicate the importance of the j-th word (dj) to the
k-th sentiment class Ck, which allows us to use the third term
to fit the propagation results of words. The third term is to
fit the propagation of words, we name it as wPropagation
and λW is employed to control its contribution. We can use
a similar way to understand wPropagation in Eq. (2.3). We
divide the dictionary D into two subsets where DL denotes
words in the lexicons and DU is the set of remaining words
in D. Then wPropagation in Eq. (2.3) can be rewritten as

m∑

j=1

d(qj ,Wj) =
∑

dℓ∈DL

d(qℓ,Wℓ) +
∑

dk∈DU

d(qk,Wk),

(2.5)

where by minimizing Eq. (2.5), wPropagation can

• incorporate prior knowledge from existing lexicons by
forcing the learned sentiment polarity of words close to
that in the lexicon by the first term in Eq. (2.5); and

• make two processes consistent by forcing the sentiment
polarity obtained by these two processes close.

Compared to traditional text data, microblogging data
is informal and noisy. There may exist irrelevant words for
sentiment classification, which are difficult to filter during
preprocess and may confuse the classifier learning process.
For example, some words may be irrelevant to all classes
in C, and we should eliminate the their effects, while other



words might be only important to some classes in C. An
entity of W, Wjk, denotes the importance of the j-th word
in the k-th sentiment class Ck. Therefore if a word dj is
totally irrelevant, we should learn a W whose j-th row is
zero; while if dj is only important to ck, we should learn a
W whose entities in the j-th row are zero except the k-th
entity. These intuitions suggest that W is likely to be sparse.
We add ℓ1-norm on W where ‖W‖1 controls the capacity
of W and also ensures that there are many zero entities in
W, resulting in a sparse solution. The sparsity of W is
controlled by the parameter λ.

2.3 Our Algorithm With the details of the propagating
process and the fitting process, our algorithm is presented in
Algorithm 1. We briefly review Algorithm 1 below. In line
1, we use the available labeled data to initialize W, which
will be used to initialize pi and qj . From line 2 to line 6,
we initialize pi according to whether ti contains emoticons
or not, and from line 7 to line 11, we initialize qj based on
whether dj is included in the lexicons or not. From line 13 to
line 18, we perform the sentiment propagating process. Note
that the sentiment of microblogs with emotions and words
in the lexicons will be fixed during the propagating process.
In line 19, we perform the fitting process and more details
to solve F (W) are presented in the following subsection.
Finally we use the learned classifier W to update pi and qj

for the next propagation process. From Algorithm 1, we can
see the significance of alternating the propagating and fitting
processes - the propagating process allows the fitting process
to learn from both labeled and unlabeled data with various
types of emotional signals, while the fitting process in turn
provides supervision information to guide the propagating
process.

2.4 Optimizing F (W) In this subsection, we seek a way
to optimize F (W). It is easy to verify that F (W) is convex
and non-differentiable. F (W) can be rewritten as

F (W) = f(W) + λ‖W‖1,

f(W) = l(W⊤XL,Y) + λT

N∑

i=1

d(pi,W
⊤xi)

+ λW

m∑

j=1

d(qj ,Wj),(2.6)

where f(W) is convex and differentiable, while ‖W‖1 is
convex and non-differentiable, which render the problem
non trivial. We adopt the proximal gradient decent method to
solve the problem due to its optimal convergence rate [13],
which alternates a gradient step and a proximal step,

In the t+ 1-th gradient step,

Vt+1 = Wt −
1

θt
f

′

(Wt),(2.7)

In the t+ 1-th proximal step,

Wt+1 = πG(Vt+1),(2.8)

Algorithm 1 The Proposed Propagation-based Sentiment
Analysis Framework.

Input: X, Y, {α, β, λT , λW , λ}
Output: The Classifier W

1: Initialize W = argminW≥0 l(W⊤XL,Y)
2: if ti with emoticon information then
3: Initialize pi based on its emoticon information
4: else
5: Initialize pi = W⊤xi

6: end if
7: if dj in sentiment lexicons then
8: Initialize qj based on the lexicons
9: else

10: Initialize qj = Wj .
11: end if
12: while Not convergent do
13: for ti ∈ T L ∪ T U do

14: Update pi = α
∑N

k=1
Rtt

ikpk∑
N
k=1

Rtt
ik

+ (1− α)
∑m

k=1
Rtw

ik qj∑
m
k=1

Rtw
ik

,

15: end for
16: for dj ∈ DU do

17: Update qj = β
∑m

k=1
Rww

jk qk∑
m
k=1

Rww
jk

+(1−β)
∑N

k=1
Rtw

jkpk
∑

N
k=1

Rtw
kj

,

18: end for
19: Update W = argminW F (W)
20: Update pi = W⊤xi and qj = Wj .
21: end while

where πG(V) is the Euclidean projection of V onto the
convex set of G, defined by W as

πG(Vt+1) = min
W≥0

‖W −Vt+1‖2F +
λ

θt
‖W‖1.(2.9)

It can be further decomposed into m separate sub-
problems as

Wi
t+1 = min

Wi≥0
‖Wi −Vi

t+1‖22 +
λ

θt
‖Wi‖1,(2.10)

where Wi
t+1, Wi and Vi

t+1 are the i-th row of Wt+1, W
and Vt+1, respectively. It has a closed form solution as
below,

Wi
t+1 = max(Vi

t+1 −
λ

θt
, 0).(2.11)

This process can be further accelerated by Nesterov’s
method [19]. We construct a linear combination of Wt and
Wt+1 to update Ut+1 as

Ut+1 = Wt +
αt − 1

αt+1
(Wt+1 −Wt),(2.12)

where the sequence {αt} is conventionally set to be αt+1 =
1+

√
1+4α2

t

2 . More details can be found in [13]. The optimiz-

ing algorithm for F (W) is presented in Algorithm 2.



Algorithm 2 Optimizing F (W)

Input: XL, Y, λ, α1 = 1
Output: W

1: Initialize θ0 and W1

2: while Not convergent do

3: Ut = Wt−1 +
αt−1−1

αt
(Wt −Wt−1)

4: Vt+1 = Ut − 1
θt
f

′

(Ut)

5: if f(πG(Vt+1)) > fθt(πG(Vt+1),Ut) then
6: θt = γθt
7: end if
8: Set Wt+1 = πG(Ut − 1

θt
f

′

(Ut))
9: Set θt+1 = θt

10: Set αt+1 = 1+
√
1+4αt

2
11: Set t = t+ 1
12: end while

In Algorithm 2, fθt(Wt+1,Ut) is defined as,

fθt(Wt+1,Ut) = f(Ut) + 〈f ′

(Ut),Wt+1 −Ut〉

+
1

θt
‖Wt+1 −Ut‖2F(2.13)

3 Experiments

In this section, we conduct experiments to evaluate the ef-
fectiveness of the proposed framework PSA. Follow a com-
mon convention [8, 26, 12], we first evaluate the proposed
framework with c = 2, i.e., {negative, positive}. Via
experiments, we aim to answer the following two ques-
tions - (1) how effective is the proposed framework com-
pared with representative sentiment analysis methods; (2)
how do different components contribute to the proposed
framework PSA. To answer the first question, we compare
PSA with various state-of-the-art sentiment analysis meth-
ods. To answer the second question, we investigate the ef-
fects of different components on PSA. In reality, there may
be some microblogs without any sentiment polarity, i.e., neu-
tral, therefore we finally conduct experiments with c = 3,
i.e., {negative, neutral, positive} to assess the capability
of the proposed framework in handling multi-class sentiment
analysis problem.

3.1 Datasets and Experimental Settings To evaluate the
proposed framework, we collect two microblogging datasets.
One is written in English with classes { negative, positive}
and the other is written in Japanese with classes {negative,
neutral, positive }. Following a common way to preprocess
text data for sentiment analysis [24, 23], we employ a uni-
gram model to generate the feature space and the term pres-
ence to denote the feature weight. Relations are constructed
based on the way introduced in [11]. Below we will present
more details about these two datasets.

The first dataset is a microblogging dataset written in
English (eMicroblogs), which only contains negative and
positive microblogs. In [8], the authors collected a set of
English microblogs with polarity sentiment labels for super-

Table 1: Statistics of the Datasets
eMicroblogs jMicroblogs

# of Positive Microblogs 11,959 11,701
# of Negative Microblogs 10,303 4,567
# of neutral Microblogs 0 15,863
# of Unigrams 23,346 56,810
# of Pos Lexicon Terms 2,718 2,122
# of Neg Lexicon Terms 4,902 3,195

vised sentiment classification. Hu et al. [12] built a corre-
lation graph from the following graph provided by [14]. A
widely used English sentiment lexicon, i.e., MPQA opinion
Corpus [30], is adopted to provide prior knowledge from the
lexicon.

The second dataset is a Japanese microblogging dataset
(jMicroblogs), which contains negative, neutral and positive
microblogs. This dataset is collected using frequent queries,
and polarity sentiment labels are manually added to them.
Three annotators assign labels to each microblog, and these
labels are integrated by taking majority votes to set the
final labels. Japanese sentiment lexicon and emoticon lists
contain entries collected by crawling web pages as well as
in-house data. From this dataset, we extract positive and
negative microblogs to form another dataset (jMicroblogs2)
for the evaluations with c = 2.

Some statistics of the datasets are summarized in Ta-
ble 1. For each dataset, we randomly divide it into two equal
parts A and B, and fix the part A as the testing set. For B,
we choose x% of B as the labeled data and the remaining
1 − x% as unlabeled data. For each experiment, we repeat
the partition process 5 times and report the average results.
In this paper, we vary x as {10, 30, 50, 70, 100}. Note that
when x = 10, we actually choose 5% of the whole dataset
as labeled data and 45% of the whole dataset as unlabeled
data. We choose a common metric accuracy to evaluate the
performance of sentiment analysis [24, 11].

In F (W), l(·, ·) is a loss function and d(·, ·) is a
distance metric. We choose square loss for l(·, ·) and
Euclidean distance for d(·, ·) in this work. Note that our
evaluations will first focus on c = 2 with eMicroblogs and
jMicroblogs2 datasets, and finally we assess the capability
of the proposed framework in handling multi-class sentiment
analysis problem with jMicroblogs.

3.2 Performance Evaluation To answer the first ques-
tion, we choose representative methods from three groups
as baseline methods. The first group includes representative
supervised methods:

• LS: This method performs least square, a widely used
supervised method, on the labeled microblogs.

• Lasso: Lasso can force some learned coefficients to
exact zero, and then excludes the corresponding terms
(irrelevant terms) from the sentiment classifier [29].
Lasso works on the labeled microblogs only.

• SANT: SANT is based on Lasso, but exploits the corre-
lation information among microblogs to facilitate senti-
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Figure 2: The Performance Comparison

ment analysis [12]. It works on the labeled microblogs
with their correlation relations.

• MinCuts: This method utilizes contextual information
via the minimum cut framework for sentiment classifi-
cation [22].

Note that we choose square loss as the loss function, there-
fore the baseline methods LS, Lasso, and SANT are based on
square loss. We do not compare our method with methods
based on hinge loss such as SVM, and logistic loss such as
logistic classifier, since we can extend the proposed frame-
work with hinge loss and logistic loss.

Methods in the second group are unsupervised methods
based on lexicon

• lexRatio: This method aggregates the sentiment polar-
ity of terms in a microblog based on a lexicon to deter-
mine its sentiment orientation [30].

• LMS: LMS is an augmented lexicon-based method.
LMS first utilizes the lexicon and other rules to obtain
the labels of microblogs, and then trains a classifier
based on the microblogs labeled by the lexicon-based
method [31].

Methods in the third group are representative semi-
supervised methods,

• SS+LEX+RLS: SS+LEX+RLS incorporates lexical in-
formation and unlabeled data within standard regular-
ized least squares [25].

• GraphLS: Graph regularization is one of the most
popular techniques to perform semi-supervised learn-
ing [34], and it assumes that unlabeled and labeled
data follow the same distribution, and that similar mi-
croblogs should have similar sentiment polarity.

The parameters of all baseline methods are determined
via cross-validation. For PSA, we set {λT = 0.1, λW =
0.3, λ = 0.001} and {λT = 0.5, λW = 0.5, λ = 0.01}
in eMicroblogs and jMicroblogs2, respectively. We will
provide more details about parameter analysis for PSA in the
following subsections. The comparison results are shown in
Figure 2.

We make the following observations:

• With the increase of labeled data, the performance of
supervised methods and semi-supervised methods in-
creases, while the performance of unsupervised meth-
ods is independent of the number of available labeled
data. We also note that when the number of labeled
data is small, semi-supervised methods outperform su-
pervised methods, and when the number of labeled data
is large enough, supervised methods can perform better
than unsupervised lexicon-based methods.

• Lasso performs better than LS, which indicates the
existence of irrelevance words for sentiment analy-
sis and suggests that excluding irrelevant terms from
microblogs can improve the sentiment classification
performance. SANT obtains better performance than
Lasso. The only difference between SANT and Lasso
is that SANT exploits microblog-microblog correla-
tion information, which demonstrates that microblog-
microblog correlation information contains comple-
mentary information to the content of microblogs.

• SS+LEX+RLS outperforms GraphLS. One major rea-
son is that SS+LEX+RLS incorporates lexicons, which
demonstrates the importance of prior knowledge from
lexicons.

• The proposed framework PSA always obtains the best
performance. Compared to the best performance of
baseline methods, PSA gains 5.95% with 10% and
8.38% with 70% relative improvement in eMicroblogs.
We apply t-test to compare the performance of PSA and
the best performance of baseline methods. The t-test re-
sults demonstrate that our semi-supervised framework
with sentiment propagation achieves significant perfor-
mance improvement (with the significance level 0.01).
There are two major reasons - (1) SS+LEX+RLS and
GraphLS do not include components to deal with irrel-
evant words, while PSA can reduce the influence of ir-
relevant words on the classifier via sparse coding; (2)
short microblog content cannot provide sufficient infor-
mation to indicate the similarities between microblogs
for SS+LEX+RLS and GraphLS, while PSA provides
the propagation process to incorporate various types of
emotional signals such as correlations, emoticons, and
lexicons. We will present more details about the contri-
butions of components of PSA in the following subsec-
tion.

With evidence above, we can draw an answer to the
first question - the proposed framework PSA gains signifi-
cant performance improvement for sentiment classification
compared to various representative baseline methods.

3.3 Impact of Different Components on PSA In the last
section, we demonstrate the effectiveness of PSA. In this
subsection, we investigate the effects of different compo-
nents on PSA correspondingly to answer the second ques-
tion. There are three key components of PSA: tPropagation,
wPropagation and the sparse coding component to handle
irrelevant words, controlled by parameters {λT , λW , λ}, re-
spectively. By setting one, two, or three of these parameters



Table 2: The Performance of PSA by Systematically Eliminating its Components; Note that “Optimal” in the table denotes
a non-zero optimal value of the corresponding parameter, and “loss” represents the performance reduction compared to PSA
with all three components.

λT λW λ
eMicroblogs(loss) jMicroblogs2(loss)

10% 100% 10% 100%
Optimal Optimal Optimal 75.27(N.A.) 79.91(N.A.) 80.91(N.A.) 86.41(N.A.)

0 Optimal Optimal 69.95(−7.07%) 76.01(−4.88%) 75.07(−7.22%) 84.31(−2.43%)
Optimal 0 Optimal 71.73(−4.70%) 75.32(−5.74%) 76.51(−5.44%) 83.89(−2.92%)
Optimal Optimal 0 73.84(−1.90%) 77.39(−3.15%) 78.44(−3.05%) 85.83(−0.67%)

0 Optimal 0 67.94(−9.74%) 75.08(−6.04%) 72.23(−10.73%) 83.77(−3.06%)
0 0 Optimal 66.10(−12.18%) 74.15(−7.21%) 71.55(−11.57%) 82.69(−4.31%)

Optimal 0 0 69.03(−8.29%) 74.79(−6.41%) 74.91(−7.42%) 83.02(−3.92%)

0 0 0 64.65(−14.11%) 72.64(−9.10%) 69.52(−14.08%) 81.20(−6.03%)

to zero, we can systematically eliminate the effect(s) of one,
two or three components from the proposed framework. The
results of PSA with different components are shown in Ta-
ble 2 and we only show performance with 10% and 100%
since we have similar observations with other settings. Note
that “loss” represents the performance decrease compared to
PSA with all three components; “Optimal” in the table de-
notes a non-zero optimal value of the corresponding param-
eter via cross-validation, and “0” denotes the correspond-
ing parameter with the value zero. For example, the second
row represents the performance of PSA without tPropaga-
tion, while the last row represents the performance without
any components, which is actually the baseline method LS.

The second to the fourth rows in Table 2 denote the per-
formance when we eliminate the effect of one component
from PSA. We note that performance consistently degrades
after eliminating any of these components, which suggests
that these three components contain complementary infor-
mation to each other and are useful for the proposed frame-
work. We also note that removing different components may
result in very different performance reduction, which indi-
cates that the contributions of different components to PSA
may differ. For example, when the number of labeled data
is small, it seems that tPropagation plays a more important
role in PSA; hence, eliminating tPropagation decreases the
performance most for both datasets.

The performance when we eliminate the effects of two
components from PSA is shown from the fifth to the seventh
rows in Table 2. The performance further decreases com-
pared to that when eliminating only one component. When
eliminating the effects of all three components, the perfor-
mance is worst as presented in the eighth row in Table 2.
Compared to PSA with all components, the performance of
PSA without any components decreases 14.08% with 10%
and 9.10% with 100% in jMicroblogs2.

3.4 Parameter Analysis In this subsection, we conduct
parameter analysis for PSA. There are three important pa-
rameters for PSA - (1) λT controlling the contribution
from tPropagation, (2) λW controlling the contribution from
wPropagation, and (3) λ controlling the capability of han-
dling noise data. Hence we study the effect of each of the

three parameters by fixing the other 2 to see how the perfor-
mance of PSA varies with different percentages of labeled
data. The values of {λT , λW , λ} are varied as {1e-6,1e-5,1e-
4,1e-3,0.01,0.1,0.3,0.5,1}. The processes of parameter anal-
ysis for eMicroblogs and jMicroblogs2 are similar, and we
present the details for eMicroblogs to save space. Examples
of experimental results are presented next.

To study the effect of λT on PSA, we fix {λW =
0.3, λ = 0.001}. The performance variation w.r.t. λT and
percentages of labeled data is depicted in Figure 3(a). When
the number of labeled data is small, the performance of PSA
is very sensitive to λT . For example, when we choose 10%
labeled data, the performance increases a lot with λT from
0.01 to 0.1, which suggests the importance of tPropagation
to PSA when a small number of labeled data is available.
Generally with the increase of λT , the performance trends to
dramatically increase and then gradually decrease, and in a
certain region, the performance seems stable such as λT in
{0.1, 0.3, 0.5}. These patterns can be utilized to determine
the optimal value of λT in practice.

By setting {λT = 0.1, λ = 0.001}, the performance
variation w.r.t. λW and percentages of labeled data is demon-
strated in Figure 3(b). Compared to λT , the performance is
less sensitive to λW . Generally, with the increase of λW ,
the performance first increases, and after a certain value, the
continued increase of the value of λ leads to performance
reduction. In an extreme case, when λW is +∞, wPropaga-
tion will dominate the learning process and the performance
is mainly controlled by the lexicon.

The performance variation in terms of λ and percent-
ages of labeled data is shown in Figure 3(c) with {λT =
0.1, λW = 0.3}. λ controls the sparsity of W. From
λ = 1e-6 to λ = 1e-3, the performance increases a lot.
These results support that eliminating irrelevant features can
significantly improve the performance. When λ continues to
increase, the sparse coding part dominates the learning pro-
cess and W becomes sparser. This may exclude many useful
words and results in performance reduction. For example,
when λ is +∞, the learned W is zero, which eliminates all
words.
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Figure 3: Parameter Analysis for The Proposed Framework PSA.

Table 3: Performance Comparison for Multi-Class Senti-
ment Analysis.

Algorithms 10% 30% 50% 70% 100%
LS 55.88 56.99 58.08 58.97 59.40

Lasso 56.42 58.06 58.93 59.75 60.20
SANT 56.78 58.42 59.37 59.81 60.14

MinCuts 55.92 57.39 58.19 59.03 59.38
SS+LEX+RLS 59.51 60.94 61.73 62.56 62.92

GraphLS 59.09 59.97 60.18 61.85 62.02
PSA 63.83 64.34 64.97 65.01 65.67

3.5 PSA for Multi-Class Sentiment Analysis In reality
there might be many microblogs without any sentiment po-
larity such as neutral microblogs. It is important to assess the
capability of the proposed framework PSA in handling the
problem of multi-class sentiment analysis. In this subsec-
tion, we compare PSA with representative baseline methods
in jMicroblogs which contains negative, neutral and positive
microblogs, and the results are shown in Table 3. The accu-
racies of lexRatio and LMS are 51.79% and 53.27%, respec-
tively. Since their performance is independent on the training
set, we do not show their results in the table.

Observations with multi-class data are similar to those
of binary-class data. With the increase of training sets, the
performance of supervised and semi-supervised methods in-
creases. Most of the time, semi-supervised methods outper-
form supervised methods especially when the training set is
small. The proposed framework always obtains the best per-
formance and the t-test results show that the improvement is
significant. These results suggest that the proposed frame-
work PSA can address the multi-class sentiment analysis
problem effectively.

4 Related Work

Sentiment analysis methods fall into three categories,
i.e., supervised methods, unsupervised methods and semi-
supervised methods [23, 15]. Supervised methods first ex-
tract a feature space to represent the data and then train
a sentiment classifier from manually labeled training data
(or a mapping function from the feature space to the la-
bels) [24, 22]. Lexicon-based methods are the most represen-

tative methods for unsupervised sentiment analysis, which
determine the sentiment polarity of a given document by pre-
defined sentiment lexicons [27]. There are three common
ways to build sentiment lexicons. The first is to manually
label the sentiment polarity of a set of representative words
such as MPQA [30]. The second is to learn sentiment orien-
tation of a word from its semantically/linguistically related
words with the help of dictionaries (e.g., WordNet) [2]. The
third is to infer sentiment orientation of words from a given
corpus by exploring the relation between the words and some
observed seed sentiment words [18, 32]. Semi-supervised
methods take advantage of both labeled and unlabeled data
and can rapidly adapt to new domains with less human ef-
forts [25].

Recently, microblogging services became important re-
sources to understand public opinions, and sentiment anal-
ysis for microblogging data has attracted increasing atten-
tion. In [8], a framework is proposed to obtain a sentiment
classifier with distant supervision. Authors in [4] explore
the meta information of words and the linguistic characteris-
tics of tweets for sentiment analysis. Zhang et al. propose
to combine lexicon-based and learning-based methods for
Twitter sentiment analysis [31]. Except content information,
microblogging data provides extra information related to its
sentiment polarity such as social relations and emoticons.
This extra information is strongly correlated with sentiment
polarity. In [12], the authors find strong evidence to sup-
port that (1) the sentiment polarity of tweets from the same
users or two connected users are more likely to be similar
than that of randomly chosen tweets; (2) the sentiment po-
larity of tweets is likely to be consistent with that of emoti-
cons in tweets. There are some efforts to exploit extra in-
formation presented in microblogging data to help sentiment
analysis. For example, [26, 28, 12] investigate how to incor-
porate social relations for sentiment analysis, while [33] ex-
ploit emoticons to improve sentiment analysis for microblog-
ging data. Our proposed framework is substantially different
from these methods. First our framework is semi-supervised;
methods while above methods are either supervised methods
or unsupervised methods. Second, our framework provides
a unified way to incorporate extra sources such as social re-
lations and emoticons into a coherent model via the prop-
agating process, while above methods are developed for a



certain type of extra information, i.e., either social relations
or emoticons.

5 Conclusion

In this paper we propose a novel propagation-based senti-
ment analysis framework PSA which alternates a propagat-
ing process and a fitting process. The fitting process learns
a classifier to fit label information and propagation results
from the propagating process, and delivers the classification
results as supervision information to guide the propagating
process, while the propagating process in turn propagates
classification results from the fitting process and returns the
propagation results to the fitting process, which allows the
fitting process to learn from unlabeled data. The experi-
mental results on real-world microblogging datasets demon-
strate the effectiveness of the proposed framework. Since the
proposed propagation-based framework is a general learning
framework, we will apply this framework for other applica-
tions such as spam detection in the future.
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