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ABSTRACT

Data of many problems in real-world systems such as link
prediction and one-class recommendation share common char-
acteristics. First, data are in the form of positive-unlabeled

(PU) measurements (e.g. Twitter “following”, Facebook “like”,

etc.) that do not provide negative information, which can
be naturally represented as networks. Second, in the era
of big data, such data are generated temporally-ordered,
continuously and rapidly, which determines its streaming
nature. These common characteristics allow us to unify
many problems into a novel framework — PU learning in
streaming networks. In this paper, a principled probabilis-
tic approach SPU is proposed to leverage the characteristics
of the streaming PU inputs. In particular, SPU captures
temporal dynamics and provides real-time adaptations and
predictions by identifying the potential negative signals con-
cealed in unlabeled data. Our empirical results on various
real-world datasets demonstrate the effectiveness of the pro-
posed framework over other state-of-the-art methods in both
link prediction and recommendation.
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1. INTRODUCTION

Networks have been widely adopted to represent relations
among entities in many real-world systems. For example,
in link prediction, a network can indicate friendships among
users; in one-class recommendation, a bipartite network can
capture purchase relations between users and items; while
in relevance ranking for modern search engines, a bipartite
network can represent the clicking behaviors from users to
documents. One common characteristic of these networks is
that they only provide positive information, i.e. a connec-
tion between a pair of nodes; while negative information is
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hidden in unlabeled data, i.e. no connection between a pair
of nodes. Therefore, these problems can be unified as the
positive-unlabeled (PU) learning in networks.

Although learning from only PU examples has been stud-
ied in the context of binary classification [8, 20, 35], vec-
torized content representations are required. However, in
many cases, the aforementioned applications only assume
the availability of networks. Furthermore, in the era of big
data, data are generated at an unprecedented rate. For ex-
ample, Facebook users exceeded one billion in 2012, which
doubled from the previous year!. Such data present dis-
tinct properties such as temporally ordered, continuous and
at high-velocity, and thus link creations should be consid-
ered as data streams. Therefore we need to incorporate the
streaming nature of networks, which motivates a novel prob-
lem — PU learning in streaming networks. The following
three challenges have to be tackled simultaneously.

e Streaming nature: Data streams are massive and gen-
erated at high velocity. Therefore the learning algorithm
needs to be implemented very efficiently and is able to
work with one pass of the data. Specifically, the algorithm
has to perform an incremental update in order to process
massive volume of data in an online fashion. Furthermore,
the input streams consist of not only new relations, but
also new registered entities which can be introduced to
the system for any given time. Therefore, it requires the
algorithm to provide instant responses to any unseen can-
didates without assuming a fixed number of nodes in the
network.

e Unlabeled negativity: One key problem of PU Learn-
ing in networks is to discover users’ hidden preferences
from data. These preferences should include not only
what they like, but also what they dislike. It is evident
from recent work [29] that the negative information has
significant added value in various analytical tasks. Due to
the one-side characteristic of PU inputs, we need to iden-
tify the potential “negative” signals from unlabeled ones
to yield a more accurate performance.

e Concept shift: The underlying user preferences (or item
characteristics) continuously evolve over time, which can
have significant effects on predictions. For instance, in
the context of co-authorship prediction, one may change
the research interest from one field to another, which de-
creases the likelihood of connecting to people from the
original field.

 http://www.businessinsider.com/
facebook-350-million-photos-each-day-2013-9
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Figure 1: An illustrative example of the Streaming PU relational learning. Compared to the conventional setting that assumes
aggregated feedbacks, the streaming PU setting unfolds events along the temporal direction. The “yellow 1”s indicate new
appeared relationship at that time, while the dashed rectangle represents a new item introduced. The length of the arrows
between each block figure under the streaming PU settings represents the time difference between two consecutive events.

In this paper, we explicitly consider the problem of PU
learning in networks under streaming scenarios. An illustra-
tive example of the proposed streaming PU learning frame-
work is shown in figure 1. The input streams are modeled
as two types of events: new relation engagements and new
node introductions. Events are temporally ordered and re-
ceived by online systems continuously. The time difference
between two consecutive events can be nonuniform and ar-
bitrarily small. In particular, we tackle all three aforemen-
tioned challenges by a unified framework termed streaming
positive-unlabeled learning (SPU). The major contributions
of this paper are three.

e We unify a number of real-world applications to the prob-
lem of PU learning in streaming networks.

e The novel framework SpU discovers the negative informa-
tion from unlabeled samples through time to power pre-
dictions. Its self-adaptive mechanism can efficiently work
with one pass of the data and capture temporal drifts of
latent characteristics.

e Lxtensive empirical studies reveal the successful use of the
proposed framework in the application of link prediction
and recommendation.

2. PROBLEM DEFINITION AND NOTATION

Here we first define some notation:

e Upper-cased letters, A, denote random variables/vectors.
Lower-cased letters, a, denote deterministic values. Script
letters, A, denote sets.

e p(-) or ¢(-) denote probability density function or proba-
bility mass function, depending on whether the random
variable is continuous or discrete.

e E, (A) and Cov, (A) denote expectation and covariance
of A respectively, under the probability measure p.

e N (11,%) denotes normal distribution with mean p and
covariance X.

e {A;}; is a set of random variables A; with subscript ¢
running through the index set, i.e. U;{A;}.

2.1 The Network Representation

We assume there are two types of nodes: type-1 node and
type-2 node. Note that type-1 can be identical to type-2
in some problems such as link prediction. The number of
these two types of nodes at time t are m' and n' respec-
tively. The reason why they depend on ¢ is that the pro-
posed model accommodates the introduction of new nodes.

Temporal direction

For each type-1-type-2 node pair (i, ), Lﬁj is an indicator
variable of whether they connect, i.e. it is 1 if there is an
edge connecting them at time ¢ and 0 otherwise.

This network representation is applicable to a number of
real-world applications. For example, in social networks, the
two types of nodes are homogeneous and represent the users,
and L,fj = 1 represents that users 7 and j connect at time ¢.
While in one-class recommendations, the two types of nodes
are heterogeneous, with one representing the users and the
other denoting the items, such as movies or social media
posts. The two types of nodes form a bipartite graph, where
L,fj = 1 denotes that user i interacts with (e.g. downloads,
or gives “like” to) item j. Without the loss of generality, we
assume the two types of nodes are heterogeneous. Homo-
geneity is merely a special case by imposing symmetry on
the connections.

2.2 The Streaming PU Setting

It is now important to emphasize the streaming nature
of our setting. First, rather than presetting a fixed number
of nodes, our setting allows the size of the network to be
constantly and continuously changing. Second, rather than
regarding the connection status between nodes as stationary,
our setting regards each link status as dynamic and instan-
taneous. In other words, Lﬁj = 1 only reflects the connection
status at that particular time ¢t when the edge is established.
It does not imply the node pair (4, j) keep connecting at any
future times.

The instantaneity of connection status is a natural as-
sumption for applications where the connection represents
a click, a message sent etc., because these interactions are
themselves instantaneous. Even for applications where the
connection represents some durable relation such as a “like”,
a Twitter “follow” etc., this assumption is still reasonable,
because in most real-world scenarios canceling an edge may
be reluctant or impossible, even though their actual connec-
tion status may have changed. For example, suppose a user
gives a “like” to a Facebook post, expressing his/her inter-
est in the post. This “like” is likely to sustain even if the
user’s interest in the post diminishes over time. Therefore,
the “like” merely reflects the user’s interest at that particular
moment, but hardly any time afterwards.

2.3 The Prediction Task

Our goal is to predict the node pairs that would connect in
the near future, given any time t. Formally, V(i, ) : L{; = 0,

provide the prediction ﬁfj‘ s.t. the probability of error

P(Lif # Lif) = B[(Lif — Li))"]



is minimized; where t+ denotes a sufficiently small amount
of time after t. We adopt the standard Bayesian approach for
the task, which consists of two steps: 1) model the probabil-
ity distribution of Lﬁj; and 2) predict the connection status
with a tractable inference scheme under the modeled distri-
bution. These two steps will be detailed in the following two

sections respectively.

3. THE PROBABILISTIC MODEL

This section proposes the probabilistic model, which in-
volves the joint probability distribution of {L{;}; ., and a
set of auxiliary hidden variables.

3.1 Partially Observed Connection

To address the positive-unlabeled nature of our data, we
assume L’;j depends on two factors: 1) The “mutual interest”
of the node pair, and 2) whether their connection status is
observed. In other words, the node pair (i, ) connects only
when these two nodes are of interest to each other, and their
connection status is observed. More concretely, in Facebook,
for instance, there are two reasons that a user have not given
a “thumb up” to a post: 1) this user does not like the post
at all (no mutual interests), or 2) this user have not seen the
post yet (connection status unobserved).

To model the above intuition, we adapt the popular Probit
model. Denote X f] as a real valued hidden variable modeling
their mutual interests. And Ofvj is the indicator variable of
whether the connection status of node pair (3, j) is observed
at time ¢. Then, the conditional distribution of Lﬁj is

(M

e J 1 ifogj = LAXE >0
& 0 otherwise.

The prior distributions of ij and ij are given in the fol-

lowing two subsections respectively.

3.2 Connection Observability

This section proposes the prior distribution of Oﬁj, which
denotes the connection observability. Intuitively, the con-
nection observability is affected by several factors. The first
factor is the liveliness of the network. If the amount of ac-
tivity is great, i.e. the nodes are actively seeking links with
others, then the probability of not meeting a node is low.
The second factor is the cost to connect. If the cost of con-
nection is low, i.e. the nodes can easily find other nodes,
and can easily connect to whichever nodes they want, then
the probability of having an unobserved link is also low.

While these factors are hard to evaluate explicitly, we find
that the network liveliness is intuitively correlated with the
number of recently established links; and the connection dif-
ficulty is inversely correlated with the number of recently
born pairs, i.e. pairs with at least one node that is recently
born. This is because the faster new content is introduced,
the harder for the nodes to traverse the new content and
find the nodes of interests.

Based on these intuitions, we first define the new-link-to-
new-node ratio:

#{(i,j) 131 € (t— A, LE; = 1}
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where At is a time window; a; and b; denote the birth times
for the type-1 node ¢ and type-2 node j respectively. Then

the prior distribution of ij is given by
p(ij = 1) :max{)mﬂl}, (3)

where ) is a model parameter. The appropriateness of equa-
tion (3) will be demonstrated in section 5.5.

3.3 Mutual Interests between Nodes

This section introduces the conditional prior of ij. For
each type-1 node i at time ¢, we assume there exists a hidden
topic random vector U} of length r, whose elements repre-
sent type-1 node i’s affinities to r hidden topics. Likewise,
we use Vjt to denote the length-r characteristic vector of
type-2 node j at time t.

For each type-1-type-2 node pair (¢,7), their mutual in-
terests, X fj, depends on the similarity between their hidden
topic vectors. Intuitively, the more similar their affinity pat-
terns are, the more mutual interests they have. Formally, the
pdf of ij is given by

p (XGIULVY =N (9T Vio2), (1)
where 0% is a model parameter.

3.4 Temporal Dynamics

The hidden topic vectors of nodes tend to shift over time.
To model their temporal dynamics, we assume Brownian
motion:

p(UHUITT) = N (UFT 0R)

p (Vﬂvjt_T) =N (Vjt_T,U‘Q/TI> .

The initial distribution, namely the distribution at birth
time, is defined differently for two distinct cases. For those
nodes that are born at ¢ > 0, recall that a; and b; denote
the birth times for the type-1 node ¢ and type-2 node j re-
spectively. Also, for notation ease, the nodes are indexed by
birth order. Then we have

(5)

N 1 i—1 _
P (U1 ) = N <il 2 Bl ]"’5"[)
k=1

‘ (6)
b 1= b
P (V]_lecby—> =N (]_1 kz_:lE [V]fj ILby‘] ,0‘2/0[) ,
where £¢ is the set of observed Lf; .t' < t, whose formal def-
inition will be given in section 3.5. Equation (6) essentially
assumes that the initial preference of a newly-born node fol-
lows the general taste of the current population, because
E[U, 7| ] and E [V,)7|£""] are MMSE estimates of the
hidden topic vectors. Averaging across the whole population
extracts the general topic vector.

For those nodes that exist at the beginning of the world,
t = 0, we assume zero-mean Gaussian distribution:

P (UZO) =N (O,U?]OI) and p (VJO) =N (o, O'%/OI) . (7)
0%, 0%, 0% and 0%, are model parameters.

3.5 The Observation Set and Events

A link L’fj is defined as an observation if and only if the
following two conditions are satisfied.
Condition 1: the value of Lﬁj first appears or changes at
time ¢, which involves two scenarios: 1) all Lﬁjs whose cor-
responding type-1 node ¢ and/or type-2 node j are born at



time {; 2) all Li;s whose values jump to 1 at time ¢ (recall
that all the 1’s are instantaneous as discussed in section 3.1).

Condition 2: For an Lﬁj = 0 to be an observation, Oﬁj =

Here we would like to reiterate that the Lﬁjs that meet
the above conditions are considered as observations at that
specific time ¢ only. Based on these two conditions, the
observation set £|O is rigorously defined by

Llo={L};: ((ai=tVbj =t) NOj; =1) VL, =1}, (8)

where O denotes the set of all ijs. As implied by equation
(8), the observation set is conditional on O which is hidden,
and thus is impossible to evaluate. Following the common
paradigm to marginalize over unobserved randomness, we
define the unconditional observation set £ as the set of Lﬁjs
that satisfy condition 1:

c= U

oe{o,131€l

LIO={L};:a;=tVbj=tVL;=1}. (9)

The definition of observation set introduces our important
concept of events. An event is a time instance ¢ at which
new observations are introduced. As already discussed, this
includes: 1) the world starts ¢ = 0; 2) a new node is intro-
duced (t = a; or b;); and 3) a new edge is established.

Here we define some observation- and event-related nota-
tions. For any time ¢, we have the following definitions:

e L - the unconditional observation set as in equation (9);
o L' - the subset of £ with time up to and including time ¢;
e L' - the subset of £ with time up to but not including
time ¢;

e 7T - the set of all event times;

e 7(t) - the time elapsed after the most recent (excluding
current) event;

e 71 (7,t) - the time elapsed after the most recent (excluding
current) event that is related to type-1 node i;

e 7y (j,t) - the time elapsed after the most recent (excluding
current) event that is related to type-2 node j.

3.6 Model Summary and Joint Distribution

To sum up, the probabilistic model involves observed vari-
ables £ and hidden variables {O};, X{;,U{,V}}. The prior
distributions are given by equations (1)-(7). In particular,
for an event time ¢, the joint posterior distributions of all
the hidden variables is given recursively by

p (UL V) X000, 18) o ({UEVE, 16477 0)

1
e (x510%, j)p(Oij)~ 1 »pyixg.oy), 10
J i,j:LL €L|O
where
]._.[ p(L 7|X”7 ): ]._.[ p(L 7|X”, )
i,j:L§j€£|(’) 7:>j:L$J:1»LIjEl:
ot .
[T p@ixh.05)%,
z’,j:Lﬁ.’j:O,ijell
(11)
and

p({Uit7 ‘/jt}i,j |£t—7—(t)) — p({Uitfﬂ'(if)7 V}th(t)}iyj |£t—r(t))
Tt [Tevi vy ™).
2 J

(12)
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1
i
Ry o >
U Ui —
i | Temporal direction
» , -
Event by a, ot a, ot
time:  Viintro. Uyintro. U/, interact Uyintro.  Uy,¥; interact

Figure 2: An illustrative framework of Streaming PU learn-
ing. White nodes denote observed variables, and shaded
nodes denote hidden variables. The nodes are shown in a
3D coordinate with the time axis being the canonical x-axis
as labeled. All the hidden nodes are a subset of the under-
lying continuous hidden process sampled at event times.

As can be seen, the last term of equation (11) is raised to
the power of ij. This is merely a compact way of express-
ing only those L’é]-s with ij = 1 (condition 2 of being an
observation) are incorporated into the joint probability dis-
tribution. An illustration of the probabilistic model is shown
in figure 2.

4. MODEL INFERENCE

With the model established, we formulate the prediction
of future connection status as a standard inference problem
based on the observed connection status up to current time.

4.1 The Prediction Task
Our goal is to identify connections that are about to es-
tablish, i.e.
Li; =0, but Lj = 1. (13)
According to equation (1), one of the necessary conditions
is to identify
Li; =0, but X > 0. (14)
The posterior expectation, a.k.a. the MMSE estimate,
E [ij |£t] , is applied to infer the hidden ij. However, this
involves evaluating the posterior distribution as in equation
(10), which does not bear a closed-form solution due to the
complex nonlinearity of the model. Therefore, we would
apply a variant of variational approach to approximate the
posterior distribution, as will be introduced in the remainder
of the section.

4.2 Recursive Variational Inference

Approximating equation (10) involves two steps alterna-
tively and recursively. First, it is approximated by the fol-
lowing distribution

p({Uf,v;. |Lt)~ ({UZ,V}, 1305}y, IU)
SIUL V) p (0F)

2y (Ut Vi), |£t"<t>)p (x¢
H ( |X2]7 ) .

z‘,j;ngez:\o

7.]7

(15)
The only difference between equations (10) and (15) is that
the first term is replaced with an approximate distribution
|£877®) | which will be defined soon.

Then, we apply the VdIidtiOIlal apploximdtion approach to
approximate p’({Uf, V,t ij} ) as in equation (15)



to the distribution ¢ with the following form (for notation
case, condition on observation is omitted without causing
ambiguity):

v ({U v X5, 043, 16Y) = a ({Uf v, X5, 0}, ) =
[Tawh TTavh TT a0 a0 (Xt UL, VA0 g (xt) %
i J 6y J

(16)
The key idea behind this approximation form is that when
Lﬁj is observed, i.e. Of»j = 1, we apply the simple mean-
field approximation, where each hidden variable is indepen-
dent; otherwise we add the dependency on U} and Vt to
Xi; !.. The advantages to choose this approximation form are
twofold. First, this approximation yields a smaller error
than the simple mean-field approximation, because the lat-
ter is merely a special case of equation (16) by constraining
q0(X5|UL V) = qu(X{;). Second, though complicated with
more dependencies, this approximation still has a tractable
and concise closed-form solution.
We find the closest approximation by minimizing the KL
divergence between p’ and q:

min D = min KL
q q

|

Now we are ready to define p’ as in equation (15), which
depends on the ¢ distribution at the preceding event in a
similar way to equation (12):

0 ({Uh v x5, 043, )

({ut v x5, 043, |z:t)]

 ({Uh vy, 1e770)

_ Hp/ (Uﬂﬁt—q—(t)) Hp/ <Vjt|£t—r(t)> 7 (18)
% J
where

o (Uﬂct—f(t)) _ /dU;—T(t)q (Uit—r(t))p (UﬂUit—r(t)>
(Vt - T(t) /th T (Vi T(t))p(\/}”V;_T(t)).

(19)
To sum up, our inference scheme can be described as:

c=qatt—7(t)=>p att=>qatt=---,

at each event times ¢, first obtain the current p’ from the ¢
at the previous event according to equations (15), (18) and
(19). Then, approximate the current p’ with the current
q according to equations (16) and (17), and so on. The ¢
distributions are the distributions over which we perform
the inference. Hence we name our inference scheme as the
recursive variational inference.

4.3 The Streaming Inference Scheme

In this section, we briefly state the final solution to equa-
tion (17). The inference scheme consists of two parts:
e Update the posterior moments of hidden variables (under
q(-|£")) at each event time ¢;

e Predict future connection based on the most recent up-
dated posterior moments.

4.3.1 Updating Posterior Moments

Recall that the ¢ distribution is the approximate distri-
bution for the posterior distribution p (~|£t). Since at each
event time ¢, the observation set £ is augmented, the ¢
distribution should be updated accordingly. Furthermore,
the ¢ distribution is characterized by its moments, and so it
is suffice just to update the moments. The update process
is iterative: posterior moments obtained in the previous it-
eration is applied to update the posterior moments in the
current iteration until convergence. The update equations
in each iteration are given as follows.

e The update equations for U} and Vjt:
For a given event time ¢, for any type-1 node i that is
involved in the event, the update equation is given by

Covg (1) = (5t +o5* X a(0l = )R ((5)7) )
j;Lgye/;f

Eq (Uzt) =

Covg (UF) (Sgtno+oz® 3 a(0} =1, (V) Ea (X)),

j:Liect
(20)
where, for type-1 nodes who were born before ¢,

Sui = Covg(U ™M) oo (01, pus = B(Uy TV 0);
and for type-1 nodes who are born at t, uy; and Xy, are
the corresponding mean and covariance in either equation
(7) or (6) depending on whether ¢ is zero or not. More im-
portantly, for nodes that are not involved in the event, no
update is needed. The update equations for Vjt is symmetric
to equation (20) except that U and V/, and subscripts ¢ and
j are interchanged.

e The update equations for X : For a given event time
t, for any ng whose correspondlng ng is in the observation
set L', the posterior expectation is given by

o (ele) —a(s)
Eq, (X};) = pf; + (W—‘I’(ﬁj) R, (21)

where ¢(-) and ®(-) are pdf and cdf of standard Gaussian
distribution respectively; and pf; = Eq(U})"Eq(V}),

0—pt 00
¢ ) ZZHG ppt =1 o _ .
Cij = o Y Jig = O—nij
—00 otherwise o

e The update equations for Oﬁj:
At an event time ¢, if either type-1 node i or type-2 node
j are involved, the update equation for Of-‘,- is given by

ifLf =1

otherwise.

1 if ng =1
q(ij == p(of7:1) exp(nij) otherwise (22)
1+p(O§j:1) {exp(ni’j)—l] ’
where
_ T t
=In®(0 — Eq(Uy)" Eq(V}))
1 t t avs
- Etr[COVq(Ui JEq(V;)Eq(V}) (23)

+ Eg(U)Eg(UH)T Covg (V) + Covg (Uf)Covg(V})].

In practice, we find that the trace term in equation (23) is of-
ten dominated, and thus is omitted to reduce computational
complexity.

-1



Algorithm 1 Streaming Posterior Update Algorithm

Input: a set of L}; € £ just arrived
Output: Updated posterior moments (under q) of the hidden
variables

while Convergence not reached do

e Vi involved in the current events, update Eq(Uf) and
Covy(U}) according to equation (20);

e Vj involved in the current events, update ]Eq(Vjt) and
Covq(Vjt) according to equation (20) with U and V, and
subscripts ¢ and j interchanged;

® Vi, j pair involved in the current events, update Eg, (Xitj)
according to equation (21);

e Vi, j pair involved in the current events, update q(ij =1)

according to equation (22).
end

4.3.2 Predicting Future Connections

As discussed before, for any time ¢ and Lﬁj = 0, the pre-
diction is based on the approximated posterior expectation
of ij. Formally, based on equation (14), we would like to
find those

Lij = 0, but ]Eq (X;J) > 9,

according to
Eq (X};) = Eq (X505 =0) = Eq (U)"E q (V)

=K, ( Ut TU(Zt)) ( Vi Tv(3t>>

Here are some intuitions. The first equality is because when
there is no observation ij = 0, the posterior expectation
of X is equal to its prior expectation. The last equality is
because U} and Vt follow Brownian motion, and their ex-
pectations remain the same when there are no observations.

4.4 The Algorithm Table and Complexity

The posterior moment updating scheme is summarized in
algorithm 1. In terms of computational complexity, each
Lt € L appears in equation (20) once for ecach iteration;
1ts corresponding X and (),7 appear once in equations (21)
and (22) respectlvely Hence the total complexity over all
times is O(|L|I), where I is the number of iterations for each
update. This is a very efficient algorithm.

(24)

5. EXPERIMENT

In this section, we demonstrate the practical usage of the
purposed SPU framework by considering two important data
mining applications: link predictions and recommendations.
Our empirical studies on five real-world datasets provide
strong evidence that SPU significantly improves over many
state-of-the-art baselines.

5.1 Datasets

We utilize two link prediction and three recommendation
datasets. It is worth mentioning that all five datasets are
publicly available and the download links are provided. The
detailed descriptions of each are listed below:

e Link Predictions:
e DBLP? [18]: This dataset is a undirected collaboration
network of authors of scientific papers from DBLP com-
puter science bibliography. An edge between two authors

http://konect.uni-koblenz.de/networks/dblp_coauthor

represents a common publication. KEdges are annotated
with the date of the publication. We randomly sample
49,945 nodes among top active authors.

e Epinion® [30]: Epinion is a popular product review
site, where people can rate various products and add oth-
ers members to their own trust networks or “circle of
trust”. Such trustworthy relationships among users are
directional and represent who they may seck advice to
make decisions. We collect a total of 11,752 registered
users whose in-degree and out-degree are at least one.

¢ Recommendations:
e Facebook-like Forum* [24]: The Facebook-like forum
dataset consists of the Internet “post” activities among
899 users and 522 topics from an online community. The
goal is to recommend interesting topics to candidate users
that they will comment on in the near future.
e MovieTweeting® [7]: This dataset contains the tweet-
ing activities that consist of ratings on movies to IMDB
from Twitter. Instead of predicting the specific movie
ratings, we are focusing on tweeting activity itself by pre-
dicting what movie a user will rate.
e Last.fm Music® [3]: The dataset contains the full lis-
tening history for registered users at Last.fm”. We only
use their user ID, track ID and time-stamp for the purpose
of recommendations.

The statistics of the aforementioned datasets are summa-
rized in Table 1.

5.2 Baseline Methods

We compare our proposed framework SPU with several
representative baseline algorithms as follows:

e JC / TtemKNN: Jaccard’s coefficient (JC) and item-
based k-nearest neighbor (ItemKNN) are one of the most
fundamental baselines for link prediction and recommen-
dation respectively. We include either of them based on
the task that we evaluate on.

e PageRank: PageRank is an iterative fixed-point algo-
rithm over graphs, which can be applied to compute “im-
portance” scores for each node. The prediction weight
for each node pair is calculated as the product of their
PageRank scores [32].

e OCCEF [25]: One-class collaborative filtering assigns weights
to unlabeled data to distinguish negative examples and
unlabeled positive ones.

e Time-SVD++4 with weighted sampling [17]: It is a
variant of the Time-SVD++ algorithm, since the origi-
nal one specifically takes inputs as explicitly scaled form.
We utilize the same “user-oriented sampling scheme” that
has been adopted by OCCF [25] to alleviate the problem
under PU settings.

e NTF [16]: Nonnegative tensor factorization handles both
temporal dynamics as well as the PU inputs. However, it
differs from OCCEF and Time-SVD++ with weighted sam-
pling in that it considers all missing entries as negative.

3http://www.jiliang.xyz/trust.html
4http://toreopsahl.com/datasets/#online_forum_network
Shttps://github.com/sidooms/MovieTweetings
Shttp://www.dtic.upf.edu/ ocelma/
MusicRecommendationDataset /lastfm-1K.html
"http://www.last.fm/



Table 1: Detailed statistics of the datasets.
recommendation setting.

Type-1 and type-2 nodes represent users and items respectively under the

Link predictions Recommendations
Dataset DBLP Epinion Facebook-like Movie Tweeting Last.fm
Number of type-1 node 49,945 11,752 899 39,395 992
Number of type-2 node | uniform node type | uniform node type 522 22,637 107,397
Network property undirected directed bipartite, heterogeneous node type
Temporal range 12/1959-12/2013 01/2001-04/2011 05/2004-10/2004 | 02/2013-11/2015 | 02/2005-06,/2009
Temporal resolution month second second second second
Number of links 1,277,690 187,563 7,089 432,443 820,050
Sparsity 5.12x10~* 1.36x107° 1.51x10™ 4.85x10~* 7.70x107°

e PUMC [13]: PU learning for matrix completion is a
state-of-the-art one-bit factorization algorithm that tar-
gets to recover possible true negative samples by using dif-
ferent costs in the objective for observed and unobserved
entries.

In summary, JC, IltemKNN and PageRank are three con-

ventional methods that compute aflinity scores among node

pairs only based on the graph topologies. While all the
other four baselines leverage the PU inputs in various ways.

Among these four, Time-SVD++ and NTF also incorpo-

rate the temporal factor by confidence decay and temporal

aggregation, respectively. We make use of the open-source

C++ framework from GraphChi [19] for the implementation

of OCCF and Time-SVD++. The graph based algorithms

including JC and PageRank are publicly available from the
package in [32]. Moreover, the implementations of NTF and

PUMC are acquired from the original authors.

5.3 Experimental Settings

For the purpose of quantitative evaluations, we follow the
standard online testing protocol. Given a set of time-ordered
data, we divide them into two subsets along the temporal
direction. We call the first one the “validation set”, and the
second one the “updating and testing set”. An illustrative
example is shown in figure 3, where to, tv and ¢ represent
the starting time, the end time of validation set and the end
time of the dataset, respectively. The size of validation set
is chosen to be 30% of the entire dataset. In other words,
tv is the time when 30% of connections are presented.

The testing task is to predict the possible connections of
the network in the next time base on the “historical” data.
Specifically, we first align the reference time ¢, also consid-
ered as the “current” time, to tv. The prediction is evalu-
ated at time ¢, + At, where At equals the smallest temporal
granularity of the dataset. The only information that can be
used for model update (refining/learning latent representa-
tions) is the list of connections appearing in the time interval
[tv,t,]. After performance evaluation at this specific time,
we then shift ¢, by At. In other worlds, the “current” time
is now ty + At. Therefore, all the data generated from tem-
poral horizon [tv,ty + At] can be used for prediction at
tv + 2At. The same procedure is performed until ¢, reaches
end time of the dataset t5.

It is worth mentioning that, our proposed algorithm is a
fully online model, which means there is no need to retrain
all latent representations from the sketch when the reference
time ¢, shifts by At. For the batch baselines, we retrain
the entire model every time when t, moves, which is much
less efficient. Moreover, many baselines are insufficient to
consider the case of “multiple connections” or handle the
temporal resolution in a very fine grid. Although our Spu

Validation set

Model updating and testing set

User 65

Item ID Item 172 Item 21 Item 21

Timestamp  2011/01/23 2011/12/23 2013/11/03
1935:23 130155

to ty Temporal direction tg
Figure 3: An Illustrative example on data splitting. The
blue region indicates the validation set while data from the
green region are used for testing and model updating. At
each time, the data are in a triplet format as (user ID, item
ID, time-stamp).

algorithm explicitly consider both aforementioned issues, for
fair comparison all multiple edges are merged to the one that
first appears; and temporal granularity (At) is set to be a
year for the DBLP and as a week for the other four datasets.

The validation set is used to seek the best hyper parame-
ters for each algorithm. For instance, the latent dimension-
ality is a model sensitive parameter that needs to be chosen
independently. Therefore, all models follow the same pro-
tocol to obtain the best set of parameters on the validation
set. Once these hyper parameters are chosen, they remain
the same in the testing phase.

Two commonly used metrics are suitable for both link pre-
diction and recommendation. They are the area under the
ROC curve (AUC) as well as the equal error rate accuracy
(ACC). These two metrics are considered as classification
metrics which are extremely appropriate for tasks such as
“finding good objects”, especially when only PU inputs are
available [21, 23]. Since the evaluation task is highly im-
balanced, we randomly sample the same number of negative
samples (zeros) as that of positive ones at each testing time.
To ensure reliability, all experimental results are averaged
over 10 runs using different negative samplings.

5.4 Experimental Results

In this subsection, we present the empirical results of our
proposed SPU framework compared to the aforementioned
state-of-the-arts in both link prediction and recommenda-
tion in table 2. We observe that the proposed algorithm con-
sistently achieves the best performance on all five datasets.
It is evident that explicitly modeling the streaming network
under PU settings significantly improves the performance
for both tasks. The demonstrative features of the proposed
SpU algorithm will be detailed in the following subsections.

Time-SVD++ is considered as the second best algorithm,
which outperforms other baselines in three datasets. We ex-
tended the original Time-SVD++ to utilize the unlabeled
data through a weighted sampling approach proposed by
OCCEF. The reason why Time-SVD++4 outperforms not only



Table 2: Performance comparison. The best performance is highlighted in bold.

Link predictions

Recommendations

Dataset DBLP Epinion Facebook-like Twitter Last.fm

Metric AUC ACC AUC ACC AUC ACC AUC ACC AUC ACC

JC / TtemKNN | 0.6071 | 0.6162 | 0.8066 | 0.8062 || 0.6590 | 0.6240 | 0.6381 | 0.6756 | 0.5448 | 0.5671
PageRank 0.6328 | 0.5935 | 0.7806 | 0.7118 || 0.7116 | 0.6579 [ 0.7960 | 0.7282 | 0.7707 | 0.7028
OCCF 0.7093 | 0.6584 | 0.9086 | 0.8736 || 0.6959 | 0.6470 [ 0.8774 | 0.8360 | 0.8616 | 0.8038
Time-SVD++ | 0.7133 | 0.6635 | 0.9398 [ 0.8826 || 0.7031 | 0.6454 | 0.9167 | 0.8515 | 0.8718 | 0.7985
NTF 0.6920 | 0.6475 | 0.9087 | 0.8476 || 0.6378 | 0.6065 | 0.9040 | 0.8381 [ 0.8597 [ 0.7927
PUMC 0.7259 | 0.6660 | 0.9234 [ 0.8705 || 0.6835 | 0.6404 | 0.9174 | 0.8709 | 0.8686 | 0.8094
SPU 0.7412 | 0.6756 | 0.9534 | 0.8995 [[ 0.7339 | 0.6812 | 0.9495 | 0.8878 | 0.8831 | 0.8066

The assumption of the prior distribution of 0:]. in DBLP

ime

1

-
"

3 4 5 6 7 9 10 11 12 13 14 15
Weighting factors of unobserved entries

(a) DBLP

o 01/2014
£ 032014

The assumption of the prior distribution of O:j in Twitter

===

k.

4 5 6 7 8 9 10 11 12 13 14 15 16 17
Weighting factors of unobserved entries

(b) Twitter

2'<0 1 2 3

Figure 4: Verification of the proposed form of ¢ (Of-j = 1). The color in each cell denotes the accuracy if the prior is set to
the candidate value. The proposed prior, denoted by dotted lines, roughly follows the high accuracy region.

OCCEF but also other baselines is that it models the tempo-
ral information in a more suitable way. On the other hand,
there is no explicit temporal consideration in OCCF'. Similar
to Time-SVD++, NTF also considers the temporal dynam-
ics, but in a different way. However, its performance is even
worse than OCCF for some datasets. It could be because
treating all unlabeled data as negative samples hurts the
performance of NTF. Another potential reason is that the
algorithm considers temporal information in a retrospective
way, which is inadequate to model the prospective aspect of
the data streams. Moreover, PUMC obtains comparable re-
sults to Time-SVD++ across all five datasets without using
any temporal information. PUMC models the PU setup in
a principled way, which is able to identify the potential neg-
ative samples more accurately. At last, JC/ItemKNN and
PageRank reveal the worst performance. They all belong to
the standard similarity based algorithms without consider-
ing either temporal or PU characteristics of the inputs.

From the above observations, we can conclude that both
temporal information and the unlabeled negativity play very
important roles in the task of link prediction and recommen-
dations. Inadequate modeling of either of these two charac-
teristics will lead to a degradation in performance.

5.5 Prior Distribution Validation

In this subsection, we will examine the appropriateness of
the prior of ij as given by equations (2) and (3). Recall that
this prior is defined by our intuition that the probability of
observing a connection is affected by the network liveliness
and the cost of connections, which are correlated with the
ratio of the number of recently established links over that
of recently introduced nodes. We will apply a data-driven
approach to validate this assumption.

The basic idea is that a good prior should maximize the

accuracy of link prediction, and therefore we performed a
greedy search to find a suboptimal path of priors across ev-
ery time ¢ that maximizes the overall prediction accuracy.
Our proposed prior, as a function of event time ¢, will be
validated if it agrees with this suboptimal path.

Specifically, the candidate values of the prior are quan-
tized into discrete levels uniformly in the logarithmic scale
from 2° to 2717, At each event time ¢, the accuracy of pre-
diction is computed for every candidate value of the current
prior, given that the priors at previous times are set to the
optimal candidates in their respective greedy searches.

Figure 4 shows the results of this greedy search test. Each
pixel of the images denotes the prediction accuracy as a func-
tion of prior candidates (horizontal axis) and event times
(vertical axis). As can be seen, the yellow belt in each sub-
plot corresponds to the prior values that yield high predic-
tion accuracy, wherein the suboptimal path lies. The black
dotted line denotes the proposed prior, which roughly fol-
lows the yellow belt of the suboptimal path. This validates
our proposed prior.

5.6 True Negatives vs. Unlabeled

This subsection illustrates the mechanism through which
ij deals with the positive-unlabeled data. Essentially, the
key is to distinguish the true negatives from unlabeled data
among all Lﬁjs that are 0, and place greater emphasis on the
former during inference. According to the inference equation
(20), each summation term, which corresponds to each ob-
servation at time ¢, is multiplied by ¢(Oj; = 1) as weights.
We will inspect if these weights are able to discriminate be-
tween true negatives and unlabeled data.

Figure 5 shows the weights q(Oﬁj = 1) on 3-by-3 sub-
sets of two datasets. At event time ¢, all the Lﬁjs in these
subsets are 0, but a portion of them turn to 1 immediately



connectivity matrix

(a)
DBLP:

(b)

Twitter:

iter10
A 1

B 1

N C| 0 0 B

D E F
iter10

F F D E F

Figure 5: Evolution of weight matrix ¢ (()f-]» = l)‘ Vertical axis denotes user, and horizontal axis denotes item. The cor-
responding connection statuses Lﬁj are all 0 at time ¢ when the inference is performed, but a subset of them, numbered 1,
soon turn to 1, and hence are originally likely to be unlabeled data. The weights, denoted by the gray scale, managed to

deemphasize these unlabeled data upon convergence.

afterwards, as shown by the cells marked 1 in the leftmost
plots. Therefore the observed 0 in these cells are actually
unlabeled data, whereas the rest of the data (marked 0) are
more likely to be true negatives.

The right panel plots the evolution of the weight matrix
as iteration proceeds. The gray scale in each cell denotes the
weight, and the numbers are replicates of the left panel for
clarity. At first, all the weights are uniform, where our pro-
posed algorithm essentially reduces to many traditional link
prediction algorithms that treat the all observed Os indis-
criminately as true negatives. However, upon convergence,
the weights display a discriminative pattern: the weights of
the unlabeled data (marked 1 as discussed) get smaller; the
weights of those more probable true negatives (marked 0)
become larger. In other words, during the inference itera-
tion, the posterior distributions of the hidden topic vectors
are reinforced by the data believed to be true negatives, and
the interference from the unlabeled data is alleviated.

5.7 Temporal Drifting

Figure 6 shows the evolution of averaged hidden topic vec-
tors, i.e. [Eq (Uf ) averaged across %, and [E, (Vf) averaged
across j, through time. In each subplot, the left figure is for
the type-1 node topic and the right for type-2. There are
three observations. First, the proposed algorithm is able to
capture the dynamic changes of topics, hence can produce
different predictions at different times. Second, figure 6a
plots the result for DBLP, which is a user-user network with
the two types of nodes being identical. The inference algo-
rithm naturally yields identical topic vectors. In figure 6b,
where the two types of nodes are heterogeneous, the corre-
sponding topic vectors are completely distinct. Third, in 6b,
we can observe a more drastic evolution in user topics (left)
than in item topics (right) - there are more fluctuations in
the former whereas changes in the latter are all monotonic.
This agrees with our intuition that users’ tastes are more
volatile and influenced by trend.

6. RELATED WORK

6.1 PU Learning

The problem of PU learning is first studied in binary clas-
sification, where training examples only consist of positive
labels. Two general approaches have been previously pro-
posed to handle such “one-side” measurements. The first
approach involves iterating between two steps, which are
1) identifying possible negative samples (some approaches
also include positive ones [9]) from unlabelled data, and 2)
applying standard binary classification methods on nega-

tive samples identified the previous step [31, 33, 34]. The
other approach assigns weights to each unlabeled datum,
and then trains a classifier with the unlabeled data inter-
preted as weighted negative samples [8, 20, 35]. Although
many algorithms have been well developed for classification
with PU inputs, they assume data are in the form of vec-
torized representations, which is not applicable to problems
where only network topology information is available.
Matrix completion [4, 15, 16] is one of the most popu-
lar approaches to link prediction or recommendation since
it does not require any auxiliary content features. How-
ever, most of the existing approaches are not specifically
designed for the PU inputs. An important variant of the
matrix completion problem is to recover an underlying ma-
trix from one-bit quantizations, which is an instance of PU
learning. Davenport et. al. [6] first analyzes one-bit matrix
completion under a uniform sampling model, where observed
entries are assumed to be sampled uniformly at random.
However, in data mining applications such as collaborative
filtering, the uniform sampling model is over idealized. An
improved method have been proposed in [2], which replaces
the uniform sampling assumption with the max-norm as a
convex relaxation for the rank. Recently, Hsieh et. al. [13]
proposed a method termed PUMC, which contains well de-
veloped theories on performing one-bit matrix completion
by on assigning different costs to observed and unobserved
entries in the objective. Similar ideas [5, 14, 26, 28] have also
been used in recommender systems, albeit heuristically. It is
worth mentioning that all these methods are batch models
without considering any temporal aspect of the data.

6.2 Learning from Data Streams

In the era of big data, the inputs for many online systems
arrive in a streaming fashion. These data flow into a sys-
tem in vast volumes, change dynamically and are possibly
infinite [12, 36]. When the data are of large volume, they
cannot be stored in traditional database systems. More-
over, most systems may only be able to access the stream
once. This poses great computational and mining chal-
lenges. There have been many works on efficient methods for
mining data streams, which specifically work with one pass
of the data. On the other hand, the stream mining process
is dynamic since user behaviors as well as item characteris-
tics may evolve over time. Many stream mining algorithms
focus on the evolution of the underlying data [1]. Most of ap-
plications in data mining such as clustering, classification,
recommendation, frequent pattern mining, etc. have been
studied under the streaming settings. Readers could refer
to these books [1, 12] and surveys [10, 11, 22, 27] for details.
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Figure 6: The evolution of the averaged latent topics over time. In each panel, left is type-1 node and right is type-2 node.

7. CONCLUSION

Data in many real-world problems in the era of big data
such as link prediction and one-class recommendations present
similar features — positive-unlabeled (PU) and streaming
networks. The common features enable us to unify a num-
ber of such problems into the novel problem — PU learn-
ing in streaming networks. We delineate three challenges
in the problem, i.e., streaming nature, unlabeled negativity
and concept shift, and then propose a PU learning frame-
work SPU that provides a principled and efficient solution to
address these challenges simultaneously. We conducted ex-
periments on various real-world datasets and experimental
results suggest that SPU can significantly advance the tasks
of link prediction and recommendations.
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