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Abstract

In this paper, we propose to study the problem of heterogeneous transfer ranking, a transfer
learning problem with heterogeneous features in order to utilize the rich large-scale labeled
data in popular languages to help the ranking task in less popular languages. We develop
a large-margin algorithm, namely LM-HTR, to solve the problem by mapping the input
features in both the source domain and target domain into a shared latent space and
simultaneously minimizing the feature reconstruction loss and prediction loss. We analyze
the theoretical bound of the prediction loss and develop fast algorithms via stochastic
gradient descent so that our model can be scalable to large-scale applications. Experiment
results on two application datasets demonstrate the advantages of our algorithms over other
state-of-the-art methods.

1. Introduction

In many applications of big data, we sometimes are confronted with a dilemma of small
data. That is, even though we have collected a large amount of observatory or experimental
data in a domain, the reality is that for specific tasks of interest, the actual amount of
data we are able to utilize may be very limited. For example, in information retrieval task,
many labeled examples are available for search query in English and Chinese while very few
examples are available for Thai or other less spoken languages. Similar in health care, many
labeled examples are available for personalized treatment for pneumonia, but only one or
two examples are available for TaySachs disease, a rare genetic disease. Transfer learning,
the process of leveraging the information from other domains (i.e., source domain) to train a
better model for the target domain, is a natural solution for the small data dilemma (Thrun
and Pratt, 1998; Pan and Yang, 2010).

Transfer learning for classification settings has been demonstrated useful in many ap-
plications, such as natural language processing (Daume, 2007; Blitzer et al., 2007), image
classification (Raina et al., 2007), intrusion detection (He et al., 2009) and so on. However,
learning to rank has many applications (Joachims, 2002; Burges et al., 2005; Xu and Li, 2007;
Cortes et al., 2007; Zheng et al., 2007; Guiver and Snelson, 2008; Cao et al., 2007), while
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transfer ranking is less studied. For example, (Chen et al., 2008) proposes the TransRank
algorithm that selects k-best queries from source domain as training examples and utilizes
feature augmentations to train a new classifier via rank SVM, (Bai et al., 2010) adapted
ranking models that are trained with multi-grade labeled training data to the target domain
using the domain-specific pair-wise preference data, and (Gao et al., 2010) estimated the
importance of examples in the source domain to the target domain and transformed the
importance into pairwise weight of document pairs for ranking algorithms.

Most existing work on transfer ranking have been focused on the learning scenario
where the source domain and the target domain share the same feature space. In practical
applications, we are usually confronted with even more challenging problems. For example,
in vertical search, we can obtain labeled ranking results for popular languages (e.g. English
and Spanish), whereas we are interested in building a search ranking algorithm for other
regions in different languages (e.g. Vietnamese and Thai) with very few or even no labeled
examples. This learning problem, where the source domain and the target domain have
heterogeneous feature space, is also known as heterogeneous transfer learning (Yang et al.,
2009). In this paper, we will study this problem under the ranking applications and refer it
to as heterogeneous transfer ranking. It is a more challenging task because the ranking model
usually requires a significant larger number of labeled examples due to its model complexity
while the heterogeneous feature space makes it difficult to transfer the information from the
source domain to the target domain effectively. In addition, the target domain usually
comes with very few or even no labeled examples, which exacerbate the aforementioned
issue.

In this paper, we propose a scalable large-margin based model for heterogeneous transfer
ranking (LM-HTR), which assumes a shared prediction function in a latent space and
learns the domain-specific mapping functions and the prediction function by minimizing
the reconstruction error and prediction error in one unified function. Different from most
transfer learning algorithms, which have the same mapping functions across domains, our
model relaxes this assumption by introducing a domain-specific mapping function and guide
the search of the mapping functions by minimizing the ranking loss. As a result, they
are more flexible and do not significantly rely on the assumption of strong similarities
between the source and target domains. In particular, we provide theoretical analysis on
the generalization bound of the ranking loss in the target domain. Since scalability is one
of the most important features for practical applications, we develop a fast optimization
algorithm based on stochastic gradient descent to solve the resulting optimization problem.
We demonstrate the effectiveness of LM-HTR on both synthetic datasets and application
datasets, even for those applications where the similarities between the source domain and
target domain are relatively low.

The rest of the paper is organized as follows: after reviewing related work, we describe
the proposed model LM-HTR followed by discussions on the generalization bound and the
scalability of LM-HTR. In the experiment results we verify the superior performance of
LM-HTR. Finally, we summarize the paper and provide hints on future work.
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2. Related Work

Transfer learning has been extensively studied in the literature (Thrun and Pratt, 1998;
Blitzer et al., 2007; Daume, 2007; Raina et al., 2007; Pan and Yang, 2010; He et al., 2009).
Unlike the classification task, there have been very few algorithms developed for the transfer
ranking task. For example, (Duh and Kirchhoff, 2008) proposed a method that aims to find
patterns in the documents labeled for each query in the target domain, project the data in
source domain into another space with the inferred patterns and learn the ranking function
in the projected space. This approach is vulnerable to overfitting when there are very few
documents labeled for each query in the target domain. (Bai et al., 2010) adapted a small
amount of ranked target data to the decision tree inferred from the source domain. (Gao
et al., 2010) describes a weighting method to give higher weights to the examples in the
source domain that more similar to those in the target domain. This weighting approach
may suffer from higher estimator variance, and relies heavily on the assumption that there
exist highly similar examples in the source and target domain.

Our proposed model has several advantages over existing work: First, it is heterogeneous
transfer learning in that it does not have the assumption that the source domain and the
target domain have to share the same feature space. In other words, the dimensions of the
features could be different or even the feature space could be different. This is extremely
useful for cross-lingual applications. Several recent work have explored heterogeneous trans-
fer learning for classification task (Yang et al., 2009; Zhu et al., 2011; Duan et al., 2012),
but none of them studied the ranking problem. Second, it is transductive transfer learning
in that it does not require any labeled example in the target domain. Practically this is
very important since in many applications it could be even difficult to identify the labeling
experts in the first place. Several promising methods have been developed for transduc-
tive transfer learning (Arnold et al., 2007; Quanz and Huan, 2009; Bahadori et al., 2011),
but most of them are either ineffective or extremely slow. Third, our model learns the
domain-specific mapping functions, which are more flexible and do not significantly rely on
the assumption of strong similarities between the source and target domains. Theoretical
analysis and empirical performance demonstrate these advantages.

3. Methodology

In this section, we first formally define the problem, then discuss an example to motivate why
domain-specific mapping functions are preferred for heterogeneous transfer learning, and
describe in detail our proposed model, and finally we present fast optimization algorithms
so that our model can be scalable to large-scale datasets.

3.1. Problem Definition

Learning to rank has been extensively studied and several different approaches have been
proposed to formulate the problem (Joachims, 2002; Burges et al., 2005; Xu and Li, 2007;
Cortes et al., 2007; Zheng et al., 2007; Guiver and Snelson, 2008; Cao et al., 2007). Through-
out this section, we use pairwise preference as an example to describe our model. Suppose
we have a document collection as well as a set of queries, all of which are in language
A (e.g. English). For each query j, we are given the ranking labels for a set of docu-
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ments SSj , j = 1, . . . , JS . For each query-document pair, we can construct a feature vector
zi ∈ XS , i = 1, . . . ,m consisting of features defined over the query, the document, and
the query-document matching scores, and in total we can have m such pairs. The label
yii′ ∈ {1,−1} specifies the relative position of query-document pair zi with respect to an-
other query-document pair zi′ in the ranking list (below (-1) or above (+1)) for all the
query-document pairs corresponding to the same query. Given another set of queries and
documents in language B (e.g. Thai), we can also have the query-document feature set
{xi ∈ XT |i = 1, . . . , n}. Our goal is to predict the pairwise preference label for the new set
in language B by utilizing the labeled examples in language A. Different from existing work
in transfer ranking, we do not require that the feature space of the source domain XS is
the same as that of the target domain XT . Practically, they could be totally different. In
addition, we do not require to have any labeled examples in the target domain. Therefore
our task is “heterogeneous” and “transductive” in nature.

3.2. Large-Margin Heterogeneous Transfer Ranking (LM-HTR)

We propose a large-margin approach that automatically learns the domain-specific mapping
functions and ranking function in one unified framework in order to solve the heterogeneous
transfer learning problem. Here we use the large-margin approach because it has been
demonstrated effective in many existing work on learning to rank (Joachims, 2002; Burges
et al., 2005). Notice that our model is general enough and other type of ranking algorithms
can be easily applicable. Before delving into our model, we first review transductive Support
Vector Machines (TSVM), which attempt to solve the transductive labeling problem defined
as following (Vapnik, 1995):

min
w,b,{y∗i }

1

2
‖w‖2 + C

m∑
i=1

ξi + C∗
m+n∑

i=m+1

ξ∗i (1)

subject to:

∀i ∈ {1, · · · ,m} yi(w
Txi + b) ≥ 1− ξi, ξi ≥ 0,

∀i ∈ {m+ 1, · · · ,m+ n} y∗i (wTxi + b) ≥ 1− ξ∗i , ξ∗i ≥ 0,

where w is the classifier and b is the bias component. (xi, yi), i = 1, . . . ,m are the
samples with their labels and xi, i = m + 1, . . . ,m + n comprise the unlabeled samples.
y∗i , i = m + 1, . . . ,m + n are the labels learned for the unlabeled samples; C,C∗, ξi and ξ∗i
are the costs and hinge losses for the labeled and unlabeled samples, respectively.

The formulation of the Large-Margin Heterogeneous Transfer learning Ranking (LM-
HTR) is similar except that we need two additional terms for learning domain-specific
mapping functions. More specifically, we have:

min
w,b,Φ,Φ̃,

{ai},{ei},{y∗ii′}

1

2
‖w‖2 + C1

m∑
i=1

ηi + C2

n∑
i=1

ζi + C3

m∑
i,i′=1
i6=i′

ξii′ + C4

n∑
i,i′=1
i 6=i′

ξ∗ii′ (2)
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subject to:

∀j∈{1,...,JS},
∀i,i′∈SS

j
yii′w

> (ai − ai′) ≥ 1− ξii′ , ξii′ ≥ 0,

∀j∈{1,...,JT },
∀i,i′∈ST

j
y∗ii′w

> (ei − ei′) ≥ 1− ξ∗ii′ , ξ∗ii′ ≥ 0

∀i ∈ {1, · · · ,m} ‖zi −Φai‖22 + β ‖Φ‖2F ≤ ηi,

∀i ∈ {1, · · · , n}
∥∥∥xi − Φ̃ei

∥∥∥2
2

+ β
∥∥∥Φ̃∥∥∥2

F
≤ ζi

The optimization problem in Eq. (2) jointly minimizes five loss terms: (i) a L2 regu-
larization term for restricting the complexity of the classifier in the latent space, (ii) two
reconstruction loss terms ηi and ζi for both source and target samples and (iii) hinge losses
ξii′ and ξ∗ii′ for large-margin ranking of pairs in the source and target domains. In this op-
timization problem, there are four types of variables that need to be optimized. Φ ∈ RdS×r
and Φ̃ ∈ RdT×r are basis vectors for the r dimensional hidden spaces underlying the source
and target domain, respectively. {ai} and {ei} are the representations of the source and
target samples in the latent space, respectively. The vector w is the ranking function in
the latent spaces which points in the direction of the preferred documents. The binary
values yii′ are the ±1 pairwise preference information in the source domain and y∗ii′ are the
predicted pairwise preference between two samples ei and ei′ in the latent domain. β is
the regularization parameter, ξij and ξ∗ij are hinge loss variables, and C1 - C4 are the cost
parameters that control the reconstruction error and ranking error in the source and target
domains.

In order to solve the optimization problem in eq (2), an iterative searching approach as
discussed in (Bradley and Bagnell, 2009) can be applied. That is, in each iteration, we fix
a group of variables and solve the resulting simpler subproblems:

1. Fixing {ai}, {ei}, we have two independent subproblems. One is the following PCA-
type problem,

min
Φ

{
m∑
i=1

‖zi −Φai‖22 + β ‖Φ‖2F

}
and (3)

min
Φ̃

{
n∑

i=1

∥∥∥xi − Φ̃ei

∥∥∥2
2

+ β
∥∥∥Φ̃∥∥∥2

F

}
, (4)

and the other is TSVM-type problem as follows:

min
w,{y∗

ii′}

1

2
‖w‖22 + C3

m∑
i,i′=1
i6=i′

ξii′ + C4

n∑
i,i′=1
i 6=i′

ξ∗ii′ (5)

subject to:

∀(i, i′) ∈ SSj yii′w
> (ai − ai′) ≥ 1− ξii′ , ξii′ ≥ 0

∀(i, i′) ∈ STj y∗ii′w
> (ei − ei′) ≥ 1− ξ∗ii′ , ξ∗ii′ ≥ 0

2. Fixing {wj}, b, Φ, Φ̃, and {y∗ij}, we have two independent sub-problems, that is,

for all queries in the source domain j = 1, . . . , JS , solve the following for all the documents
listed for the query,
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min
{ai}

C1

∑
i∈SS

j

‖zi −Φai‖22 + C3

∑
(i,i′)∈SS

j

ξii′ (6)

subject to:

∀(i, i′) ∈ SSj yii′w
> (ai − ai′) ≥ 1− ξii′ , ξii′ ≥ 0 (7)

Similarly, for all queries in the target domain j = 1, . . . , JT , we solve a similar problem
to update {ei}.

We can see that solving the sub-problems could be very challenging. For example, the
problem in eq (5), i.e., the TSVM ranking problem, is a mixed integer programming with
solutions known to be slow and unstable (Collobert et al., 2006). In later sections, we
present fast optimization algorithms so that it can be scalable to large-scale datasets.

4. Generalization Bounds

In order to obtain a deeper insight into the source of different types of losses in our algorithm,
we present a theoretical analysis on the generalization error of our algorithm using the
transductive Rademacher complexity bounds (Bartlett and Mendelson, 2003; Shawe-Taylor
and Cristianini, 2004). The transductive Rademacher complexity is the generalization of
the inductive Rademacher complexity to the transductive learning settings. Similar to
the inductive one, it measures the expected correlation of the patterns generated by the
algorithm and the noise. In other words, the Rademacher complexity is a measure of how
likely an algorithm can detect a pattern in pure noise. Thus, even the numeric value of
the Rademacher complexity gives meaningful insight to the performance of an algorithm
(Shawe-Taylor and Cristianini, 2004).

We define the loss function of the ranking algorithm Lg(xi,xi′) as ±1 loss in determining
the pairwise preference between two documents xi and xi′ . The theorem below states an
upper bound on the generalization error of LM-HTR:

Theorem 1 Risk bound for LM-HTR
Fix δ ∈ (0, 1). Let (zi)

m
i=1 be samples independently drawn from a probability distri-

bution in the source domain. Suppose (xi)
n
i=1 are generated independently according to

another distribution in the target domain. Define the constants c0 =

√
32 ln(4e)

3 , Q ,(
2

n(n−1) + 2
m(m−1)

)
and S , m+n

(m+n−1/2)(1−1/(2max(m,n))) . With probability at least 1 − δ,

the expected loss for ranking of any sample (xi,xj) pair for i, j = 1, . . . , n in the target
domain can be bounded as follows:

E[Lg(xi,xj)] ≤
2

m(m− 1)

m∑
i,j=1
j 6=i

ξij +

(
2

m(m− 1)
+

2

n(n− 1)

)

×
(√

RS +
√
RT

)
+ c0Q

√
q(q − 1)/2 + 2

√
SQ

2
ln

1

δ
.

where RS =
∑m

i,j=1(ai− aj)
>(ai− aj), RT =

∑n
i,j=1(ei− ej)

>(ei− ej) and q = min(m,n).
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Proof The formal proof is given in the supplementary materials. The proof is established
by observing the pairwise ranking of n samples as n(n−1)

2 classification tasks. Adapting
the procedures for the classification problems in (Shawe-Taylor and Cristianini, 2004) to
the transductive settings using the Transductive Rademacher Complexity (El-yaniv and
Pechyony, 2007) yields the desired results. In order to capture the effect of dimensionality
reduction, it suffices to perform the analysis in the latent domain; we can evaluate the
empirical complexity using the values of ai and ei learned through the experiments.

Discussion As we can see, the bound in Theorem 1 involves four terms: (i) the empirical
error, (ii) the transductive Rademacher complexity term and (iii)-(iv) residual decaying
terms. This reveals the dependency of the error bound to the different factors of our LM-
THR algorithm:
1. Dimensionality Reduction When the dimensionality reduction algorithm decreases the
variance in the unrelated and noisy dimensions, the values of RS and RT decrease and the
algorithm enjoys lower a generalization bound. Smaller latent space dimensions have lower
complexity and better generalization performance. This effect will be numerically verified
in the experiments section. Note that reduction of dimensionality to very small dimensions
will show its effect on the bound by increasing the empirical error term.
2. Number of Samples Theorem 1 indicates that the risk bound decays quadratically as the
number of samples increases. This is the direct effect of pairwise ranking in which we create
O(n2) classification tasks from n available samples for ranking.

Note that the bound above is derived for the algorithm when it is properly initialized
with the result of TSVM and contained to the neighborhood of the initialization point.
Clearly, with random initialization the complexity of the algorithm, in the worst case, can
be 2r times larger than the above quantity because one can flip the signs of each element
of the vectors in the latent space and find another optimal solution.

5. Scalability

In this section, we describe how to efficiently solve the TSVM ranking problem for large
datasets by methods such as Stochastic Gradient Descent.

Stochastic Gradient Descent Solution The problem in Eq. (5) is a difference convex
program and can be solved using the CCCP procedure as described in (Collobert et al.,
2006). In this method, the unlabeled samples are duplicated and each sample receives both
y∗ii′ = +1 and y∗ii′ = −1 labels. Then, w is iteratively updated by solving the following
problem:

min
w

1

2
‖w‖22 + C3

m∑
i,i′=1
i 6=i′

ξii′ + C4

n∑
i,i′=1
i 6=i′

ξ∗ii′ + α>w (8)

subject to:

∀(i, i′) ∈ SSj yii′w
> (ai − ai′) ≥ 1− ξii′ , ξii′ ≥ 0

∀(i, i′) ∈ 2× STj y∗ii′w
> (ei − ei′) ≥ 1− ξ∗ii′ , ξ∗ii′ ≥ 0
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Procedure 1 Fast Algorithms for the LM-HTR Model

Input: Parameters C1 − C4, r, and β. The precision parameter ε.
Input: Source and Target samples {zi}mi=1, {xi}ni=1. Ranking information, and query

groups SSj and STj
Initialization:
Perform a PCA to map xi to ei for i = 1, . . . , n.
Perform a PCA on zi to initialize ai for i = 1, . . . ,m. Initialize Φ and Φ̃ with the PCA
matrices.
Initialize w0 with the standard TSVM solution.
repeat

Update {ai}t and {ei}t by solving Eq. (7). Use smoothed estimation in Eq. (11) for
speed boost.
Update Φt and Φ̃t by solving the problem in eq(4) via its Lagrange Dual formulation
(Lee et al., 2006).
Update wt by solving the problem in Eq. (5). Use SGD in Eq. (9-10) for speed boost.

until
∥∥wt −wt−1∥∥

2
≤ ε

Output: wt

where αk =
∑

i,i′
d
dwk

H
(
y∗i,i′f(ei − ei′)

)
, for k = 1, . . . , d and H(t) = max (0, 1− t). Eq.

(8) can be solved by Quadratic Programming (Collobert et al., 2006). However, Quadratic
Programming requires O((2n+m)2) units of memory and does not scale well as the number
of samples increase, especially in the pairwise ranking task where O((m + n)2) number of
pairs are created. The Stochastic gradient update to solve the problem in Eq. (5) is
performed in the following way: choose a pair of samples with probability p0 = m

m+n from
source and with probability 1 − p0 from the target domain. For any pair aj ,ak from the
source domain perform the following update:

w(t+1) ← w(t) −
η0

1 + Cη0t
×
{

α

n+m
+ C3

∂

∂w
H1

(
ykj(w

>(ak − aj))
)}

(9)

For any pair ej , ek from the target domain perform the following update:

w(t+1) ← w(t) −
η0

1 + Cη0t
× (10){

α

n+m
+ C4

∂

∂w

[
H1

(
+w>(ek − ej)

)
+H1

(
−w>(ek − ej)

)] }
The proposed Stochastic Gradient Descent solution requires only O(n+m) storage units.

The run-time advantage of the SGD solution is demonstrated in the experiments section.
Finally, Algorithm 1 summarizes the steps to achieve fast solutions to LM-HTR.

The Representation Learning Sub-Problems The problem in Eq. (7) is a standard
quadratic programming problem, whose solution can be extremely expensive. To achieve
scalability, we use the following smooth approximation Hs(t)

Hs(t) =


1
2 − t if t ≤ 0
1
2(1− t)2 if 0 < t < 1
0 if t ≥ 1

(11)
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Table 1: The average ranking error measured in NDCG@n by different ranking algorithms.

Dataset US → Cn1 US → Cn2 Cn1 → Cn2 Cn2 → Cn1 OHSUMED

NDCG@n @1 @3 @1 @3 @1 @3 @1 @3 @1 @3
LM-HTR 0.5810 0.8724 0.3340 0.8602 0.3373 0.8927 0.5788 0.8972 0.7762 0.8959

TSVM 0.5794 0.8701 0.3320 0.8583 0.3366 0.8897 0.5787 0.9007 0.7762 0.8957
SVM 0.5690 0.8626 0.3275 0.8572 0.3372 0.8896 0.5784 0.9022 0.7770 0.8953
Duh’08 0.5702 0.8541 0.3566 0.8575 0.3354 0.8722 0.5561 0.8670 0.6837 0.8551
Gao’10 0.5684 0.8340 0.3274 0.8444 0.3385 0.8996 0.5805 0.8589 0.6512 0.8915

as an alternative to the hinge loss H1(t) = max{0, 1− t}, and apply the Gradient Descent
algorithm (Boyd and Vandenberghe, 2004) for solution.

6. Experiments

In order to demonstrate the effectiveness of our algorithm, we compare the performance of
LM-HTR with SVMrank, TSVMrank and the algorithms proposed in (Duh and Kirchhoff,
2008) (later referred to as Duh’08) and (Gao et al., 2010) (later referred to as Gao’10) in
the Yahoo Search and OHSUMED datasets.

The Yahoo Search Data has been used for verification of performance of the LM-HTR
algorithm. The dataset contains the web search data in the United States and two non-US
countries, denoted by Cn1 and Cn2. Each data instance is for a query-url pair. For each
query, documents are ranked as bad, fair, good, excellent and perfect match. The features
generally fall into the following three categories: query features, document features and
query-document features. The Query-document features comprise features dependent on
the relation of the query with respect to the document, for example, the number of times
each term in the query appears in the document, the number of times each term in the
query appears in the anchor-texts of the document, etc. We defined four transfer ranking
tasks (US → Cn1, US → Cn2, Cn1 → Cn2 and Cn2 → Cn1) and performed transfer ranking
experiments on them.

The OHSUMED document ranking dataset is a set of 348,566 references from MED-
LINE, an on-line database of medical information. Extracted features include title, abstract,
MeSH indexing terms, author, source, and publication type of the journals published during
1987-1991. We use the cleaned version of the dataset available in the LETOR3.0 collection
(Liu et al., 2007) which has 16140 documents ranked for 106 queries. Similar to (Gao et al.,
2010), we create the source and target datasets by splitting the dataset into two parts, each
with 53 queries. Notice that for the OHSUMED dataset, the queries are different for the
source and target domain. In other words, the ranking algorithm cannot practically learn
per query ranking information and the domain adaptation can help transferring the learning
from one query to another one. This is a heterogeneous transfer learning in a loose sense.
Unfortunately there are very limited data publicly available for this new learning scenario.
To make the results convincing, we use this publicly available dataset (OHSUMED) so that
the results can be repeatable.

Accuracy Comparison For accuracy comparison, We report the Normalized Discounted
Cumulative Gain (NDCG) values, (Järvelin and Kekäläinen, 2002). LM-HTR has six hy-
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Figure 1: (a) Sensitivity of LM-HTR performance with respect to hyper-parameters C3 and
C4. (b) Illustration of the transduction gain: Learning curve of SVM on the Cn2

dataset and the accuracy of the LM-HTR obtained by transfering information
from the US and Cn1 datasets.
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perparameters (C1 − C4, β, r) to be tuned during the performance evaluation which can
be impractical for some large datasets. However, our sensitivity analysis showed that the
parameters C1, C2 and β do not significantly impact the performance of the algorithm.
Thus we set them to a small number and tune the rest of the parameters. To have a more
fair comparison, we use linear kernels for all baselines. We use 5-fold cross validation for
tuning the values of C3, C4 and r.

As it is shown in Table 1, LM-HTR outperforms other algorithms in the transfer ranking
tasks. The SVM and TSVM algorithms are not developed for transfer learning tasks,
however better performance of TSVM hints the possibility of information transfer in the
datasets. The Duh’08 algorithm attempts to find a pattern in the target samples and
projects the source samples on that pattern. However, in our datasets the number of
documents listed for a query is small (for e.g. on average 50 documents per query in the
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Figure 3: (a) The ratio of run time of the TSVM implemented via Quadratic Programming over

the SGD implementation, while the error rate is kept the same. The horizontal axis

represents the number of labeled data points (and unlabeled too). (b) The difference in

achieved accuracy (in percentage).

Yahoo dataset.) and finding patterns in 50 data points is usually error prone. Our algorithm
relies on all the samples and avoids over-fitting that happens in the Duh’08 algorithm.
Gao’10 uses weights based on the similarity of the samples to the target samples. Our
results confirm that the proposed weighting degrades the performance of algorithm in the
studied datasets; because it discards many of the samples that are differently distributed
from the target samples. LM-HTR uses all the samples by mapping them into a suitable
latent space.

Transduction Gain In order to quantify the amount of gain achieved by LM-HTR in
terms of number of equivalent labeled samples in the target domain, we design another
experiment as follows: we provide SVM-rank labeled examples from the target domain and
train SVM-rank with the labeled examples. We obtain the learning curve by increasing
the number of labeled examples. Fig. 1(b) shows the learning curve on the Cn2 dataset.
We also plot the corresponding ranking performance by LM-HTR obtained by transferring
information from the US and Cn1 datasets. As we can see, to achieve the same performance
of LM-HTR with transfer from Cn1 to Cn2 and US to Cn2, the SVM-rank algorithm requires
more than 300 and 900 labeled examples from the target domain, respectively. Note that
providing 900 labeled examples from the target domain can be challenging, especially in
the scenarios that the characteristics of the datasets change rapidly with time.

Parameter Impact Study The parameters C3 and C4 are the coefficients of the ranking
loss terms, which can impact the performance of our model. Figure 2 shows the pairwise
labeling error for a set of values of C3 and C4 in an experiment on the synthetic dataset.
While the results confirm the robustness of the performance of LM-HTR with respect to the
change in hyper-parameter values, higher values of C3 are slightly more favorable, which
suggests the importance of the labeling information in the source domain.

Empirical Rademacher Complexity In order to study the effect of latent space dimen-
sion, we resort to the risk analysis in Theorem 1 to provide more insight. Figure 2 shows
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the mean Rademacher complexity values with different latent space dimensionality r on the
OHSUMED dataset. As expected, the Rademacher complexity of LM-HTR is upper bounded
by SVM, suggesting the superior generalization performance of LM-HTR. The Rademacher
complexity plot shows that as we map the data points to a higher dimensional latent space,
the generalization error increases. However, considering the accuracy plot, we can deduce
that, as expected, the prediction task can become easier as we increase the dimensions of
the latent space. As the plot suggests, r = 25 is the dimension in which the trade-off point.

Speed Boost by the SGD Algorithm We perform an experiment on a synthetic clas-
sification dataset with different number of samples to demonstrate the speed advantage of
SGD over Quadratic programming in solving the TSVM problem. The running time of the
SGD TSVM algorithm is compared with the Quadratic Programming version in which QP
is solved by invoking the Gurobi optimization package (Gu et al., 2011). Figure 3(a) shows
the running time enhancement by SGD while the percentage of difference in accuracy is plot-
ted in Figure 3(b). The Quadratic Programming quickly became impractical for datasets
with more than 8, 000 labeled samples, when we stopped the experiment. Meanwhile SGD
converged in less than 0.1 seconds in all of the experiments.

The speed gain for the TSVM ranking should be much greater because the number of
variables grow with O((m+ n)2) and the QP becomes impractical for datasets as small as
100 data points.

7. Conclusion

In this paper, we proposed a general frame work to solve the heterogeneous ranking problem
by mapping the input features in both the source domain and target domain into a shared
latent space and simultaneously minimizing the feature reconstruction loss and prediction
loss. Under the framework, we designed a transfer ranking algorithm, called LM-HTR.
Theoretic bounds of the prediction loss are provided. We also developed fast algorithms
via stochastic gradient descent so that they are scalable for large-scale applications. For
future work, we are interested in investigating theoretical analysis on general heterogeneous
transfer learning algorithms.
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Appendix A. Proofs

Proof of Theorem 4.1

Let us consider the classification task for one of the classes. Denote f̄i = (fi(1), · · · , fi(n+
m)) ∈ Rm+n the soft-labels (before sign function) of all points in the set
Am+n , (z1, . . . , zm,x1, . . . ,xn). We can define F ⊆ Rm+n as the set of all possible soft
classification points that are generated by our learning algorithm. The goal of the learning
algorithm is to minimize the test error
Ln(f̄j) , 1

n

∑m+n
i=m+1 loss(fj(i), yi) where loss(., .) is the 0/1 loss function. The function

L̂m(f̄j) , 1
m

∑m
i=1 loss(fj(i), yi) is the empirical error of the algorithm on the training set.

According to (El-yaniv and Pechyony, 2007), we have the following definition of trans-
ductive Rademacher complexity and the next theorem showing its application in bounding
the expected loss of transductive SVM.

Definition 2 Transductive Rademacher Complexity Let F ⊆ Rm+n and p ∈ [0, 1/2].
Let σ = (σ1, · · · , σm+n) be a vector of iid random variables such that

σi ,


1, with probability p;
−1, with probability p;
0, with probability 1− 2p.

The (empirical) transductive Rademacher complexity with parameter p is

Rm+n(F , p) ,
(

1

m
+

1

n

)
Eσ

[
sup
v∈F
〈σ,v〉

]
(12)

Risk bound for Transductive SVM Let F be the set of full-sample soft labellings
of the algorithm, generated by operating it on all possible training and test set parti-

tions and f̄ ∈ [−1, 1]m+n. Let p0 = mn
(m+n)2

, c0 =

√
32 ln(4e)

3 , Q ,
(
1
n + 1

m

)
and S ,

227



Bahadori Chang Long Liu

m+n
(m+n−1/2)(1−1/(2max(m,n))) . With probability at least 1 − δ over the choice of the training

set from Am+n, for all f̄ ∈ F ,

Ln(f̄) ≤ L̂m(f̄) +Rm+n(F , p0) + c0Q
√

min(m,n) + 2

√
SQ

2
ln

1

δ
. (13)

Proof: The proof is followed by bounding the empirical Rademacher complexity of the class
of functions produced by our algorithm (Rm(m−1)/2+n(n−1)/2(F , p0)) and an application of
the bound above. We can bound Rm(m−1)/2+n(n−1)/2(F , p0) as following (For cleanness of

notation, let 1
N = 1

m(m−1) + 1
n(n−1)):

Rm(m−1)/2+n(n−1)/2(F , p) =
1

N
Eσ

[
sup
v∈F

〈
σ,v

〉]
=

1

N
Eσ

[
sup
f∈F

m∑
i,i′=1
i 6=i′

σii′f(zi − zi′) +

n∑
i,i′=1
i 6=i′

σ̂ii′f(xi − xi′)

]

≤ 1

N
Eσ

[
max
‖w‖≤1

m∑
i,i′=1
i 6=i′

σii′w
>(ai − ai′)

]
+

1

N
Eσ̂

[
max
‖w‖≤1

n∑
i,i′=1
i6=i′

σ̂ii′w
>(ei − ei′)

]

≤ 2

N
Eσ

[∥∥∥∥ m∑
i,i′=1
i 6=i′

σii′(ai − ai′)

∥∥∥∥
2

]
+

2

N
Eσ̂

[∥∥∥∥ n∑
i,i′=1
i6=i′

σ̂ii′(ei − ei′)

∥∥∥∥
2

]

=
2

N
Eσ

[(〈 m∑
i,i′=1
i 6=i′

σii′(ai − ai′),

m∑
i,i′=1
i 6=i′

σii′(ai − ai′)

〉)1/2]

+
2

N
Eσ̂

[(〈 n∑
i,i′=1
i 6=i′

σ̂ii′(ei − ei′),

n∑
i,i′=1
i 6=i′

σ̂ii′(ei − ei′)

〉)1/2]

≤ 2

N

(
Eσ

[ m∑
i,i′=1
i 6=i′

m∑
j,j′=1
i 6=i′

σii′σjj′(ai − ai′)
>(aj − aj′)

])1/2

+
2

N

(
Eσ̂

[ n∑
i,i′=1
i 6=i′

n∑
j,j′=1
i6=i′

σii′σjj′(ei − ei′)
>(ej − ej′)

])1/2

≤ 2

N

( m∑
i,i′=1
i6=i′

(ai − ai′)
>(ai − ai′)

)1/2

+
2

N

( n∑
i,i′=1
i 6=i′

(ei − ei′)
>(ei − ei′)

)1/2

=
2

N

(√
RS +

√
RT

)
.

An application of the result in (El-yaniv and Pechyony, 2007) withQ ,
(

2
n(n−1) + 2

m(m−1)

)
and S , m(m−1)+n(n−1)

2(m(m−1)/2+n(n−1)−1/2)(1−1/(2max(m,n))) concludes the proof. �
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