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Abstract

The results of the learning to rank challenge showed that the quality of the predictions
from the top competitors are very close from each other. This raises a question: is learning
to rank a solved problem? On the on hand, it is likely that only small incremental progress
can be made in the “core” and traditional problematics of learning to rank. The challenge
was set in this standard learning to rank scenario: optimize a ranking measure on a test
set. But on the other hand, there are a lot of related questions and settings in learning
to rank that have not been yet fully explored. We review some of them in this paper and
hope that researchers interested in learning to rank will try to answer these challenging
and exciting research questions.

1. Learning Theory for Ranking

Many learning to rank algorithms have been shown effective through benchmark experi-
ments. However, sometimes benchmark experiments are not as reliable as expected due
to the small scales of the training and test data. In this situation, a theory is needed to
guarantee the performance of an algorithm on infinite unseen data.

Statistical learning theory, specifically the generalization theory, investigates the bound
between the risk on the finite training data and the risk on infinite test data. In learning
to rank, the risk on the training data is defined with a surrogate loss function (e.g., the
pairwise losses in Ranking SVM (Joachims, 2002) and RankBoost (Freund et al., 2003)),
while the risk on the test set is measured by a ranking measure (e.g., 1-NDCG or 1-MAP).
Therefore, to obtain a generalization bound in this setting, we need to address the following
issues: (i) a reasonable assumption on the data generation (e.g., queries and documents), (ii)
a generalization bound regarding the surrogate loss function; (iii) the relationship between
the surrogate loss function and the ranking measure; (iv) and the existence of the limit of
the ranking measure when the number of documents approaches infinity.

As for these issues, there have been a number of attempts but still a large open space
to explore.

• Assumption on data generation. In (Agarwal and Niyogi, 2005; Clemencon and Vay-
atis, 2007) it is assumed that the documents in the training data are sampled in
an i.i.d. manner, no matter which queries they are associated with. However, it is

c© 2011 O. Chapelle, Y. Chang & T.-Y. Liu.



Chapelle Chang Liu

widely accepted that documents associated with different queries should have differ-
ent distributions. In (Lan et al., 2008; Lan and Liu, 2009), it is assumed that queries
are sampled in an i.i.d. manner, while documents associated with each query are
generated in a deterministic manner. However, it is clear that there is sampling of
documents when one constructs the training set. Recently, in (Chen et al., 2010b),
a new assumption is adopted, which involves sampling at both query and document
layers. This assumption seems to better describe the data generation for learning to
rank. However, its problem lies in that the resultant data is non-i.i.d. and the theo-
retical analysis becomes difficult. It is desirable to find a reasonable yet easy way of
describing the data generation, which will help the corresponding theoretical analysis
a lot.

• Generalization bound regarding surrogate loss functions. There have been a number of
works discussing this problem, however, most of them cannot be used to explain real
learning to rank algorithms, mainly due to the unreasonable data assumptions they
used (see the discussions in the previous item). In (Chen et al., 2010b), a two-layer
generalization bound is derived for the pairwise surrogate loss functions given the
assumption of two-layer sampling. However, it seems that the results cannot be easily
extended to other types of loss functions (e.g., pointwise and listwise loss functions).

• Relationship between surrogate loss functions and ranking measures. There have been
some attempts on this in (Cossock and Zhang, 2006) and (Chen et al., 2010a), which
show that several pointwise, pairwise, and listwise surrogate loss functions are upper
bounds of the widely-used ranking measures. However, there are still many other sur-
rogate loss functions not covered. Furthermore, the bounds obtained in these works
are the worst-case bounds, and thus very loose. Especially when the number of docu-
ments increases, the bounds will become almost meaningless because the weight before
the surrogate loss functions will eventually approach infinity. It is highly desirable to
obtain tighter bounds, probably in the sense of expectation.

• Existence of limits for ranking measures. There is no result yet on whether the limits
exist when the number of documents approaches infinity. The challenge lies in that
the ranking measures do not have a sum-i.i.d. form with respect to documents and the
law of large numbers cannot be used to prove their convergence and limits. However,
if we cannot guarantee the existence of their limits, then we even do not know whether
the risk on the infinite test data makes sense. We need to understand the convergence
of existing ranking measures and/or to design new measures that can converge with
respect to the increasing number of documents.

If the above four issues are solved, we will be able to move a significant step forward
towards the generalization ability for learning to rank. However, this is not yet the end of
the story. Usually the uniform generalization bound is too loose to guide real applications.
In order to derive a tighter bound, we may need some additional assumptions on the data,
instead of just a weak i.i.d. one. This is in the light of PAC-Bayes, and should be another
important future research direction to explore.
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2. Online Complexity v.s. Accuracy

Most of the research on learning to rank has focused on optimizing the relevance of search
results. This quest for accuracy can lead to very complex models. Indeed, as datasets grow,
learning theory suggests that the model complexity (in terms of VC dimension) should also
grow. And complex models are often computationally expensive. For instance, the model
of Eric Gottschalk and David Vogel – the runners-up in the first track of the challenge –
has more than 10,000 trees some of the trees have more than 1,000 leaves. The brings the
question on wether this kind of models can be deployed in a real world ranking system where
latency is an important factor. In web search for instance there are stringent requirements on
the execution time: the document scoring phase should typically not exceed 50 milliseconds.

For this reason, there is a recent effort in trying to build models which have a reduced
execution time. Recently, (Wang et al., 2010) explicitly addressed this accuracy / complexity
trade-off for linear ranking functions. A linear function is of course very fast to evaluate,
but the feature computation cost should also be taken into account. By performing feature
selection, the authors of the aforementioned paper were able to substantially reduce the
online complexity without much loss in accuracy.

In the context of decision trees ensembles, execution time can be reduced using early exits
(Cambazoglu et al., 2010): if, based on a partial evaluation of the trees, a document does
not appear to be relevant, this document is not further evaluated. The ideas in these two
papers could be combined using a cascade architecture pioneered in (Viola and Jones, 2004).
An ensemble of trees would be learned such that early trees use only cheap features while
later trees are allowed to use more expensive features. But combined with early exits, these
expensive trees would not be evaluated for a large number of documents. This architecture
would effectively considerably reduce the only complexity of decision trees ensembles.

This line of research bears some resemblance with large scale learning (see section 4). In
both cases, the goal is to reduce the execution time due to large datasets, but large scaling
learning is concerned in reducing the training time, while the focus of this section is on the
testing time. Nevertheless, it might be possible to transfer techniques and ideas between
these two domains.

3. Sample Selection Bias

Training sets for learning to rank are typically constructed using the so-called pooling strat-
egy: the top documents for one of several systems are retrieved, merged and judged. These
documents are thus, by construction, more relevant than the vast majority of other docu-
ments. But what about test documents? Most learning to rank paper consider an offline
reranking scenario: for a given query, the test documents are also retrieved by pooling and
are then reranked according to the learned model. In that scenario, the training and test
sets follow the same distribution.

But in a search engine, the situation is different. A web search engine typically uses a
scheme with two phases (or more) to retrieve the relevant documents. The first phase is
a filtering one in which the potentially relevant documents – according to a basic ranking
function – are selected from the entire search engine index. Then these documents are
scored in a second phase by the learned ranking function. But there is still a large number
of documents in this second phase: tens of thousand. And most of these documents have
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little relevance to the query. There is a thus striking difference in the document distribution
between training and test. This problem is called the sample selection bias (Zadrozny, 2004):
the documents in the training set have not been drawn at random from the test distribution;
they are biased toward relevant documents.

This selection bias causes serious problems in practice. An illustration of this could be
that the model has not learned to demote spam documents because it has not seen enough
of them in the training set. On the other hand, because most of the documents in the
training set have high text match scores, the model might not have realized that text match
features are very important features.

A standard way of addressing the sample selection bias is to reweight the training
samples such that reweighted training distribution matches the test distribution. These
weights can be found through logistic regression (Bickel and Scheffer, 2007, Section 2.1).
Once the weights have been estimated, they can readily be incorporated into a pointwise
learning to rank algorithm. How to use the weights in a pointwise or listwise is algorithm
is an interesting research question.

Note that the sample selection bias is related to transfer learning (see section 7) insofar
as both deal with the case of different training and test distributions. But in the sample
selection bias, even though the marginal distribution P (x) changes between training and
test, the conditional output distribution P (y|x) is assumed to be fixed. In most transfer
learning scenarios, this conditional output distribution shifts between training and test.

Another way of correcting this sample selection bias is to improve the scheme used for
collecting training data. The pooling strategy could for instance be modified to include
documents deeper in the ranking, thus reflecting more closely the test distribution. But
judging more documents has a cost and this brings the question of how to select the training
documents under a fixed labeling budget. This question is at the core of active learning
(Long et al., 2010).

4. Large Scale Learning to Rank

In the literature of learning to rank, people have paid a lot of attention to the design of
loss functions, but somehow overlooked the efficiency and scalability of algorithms. The
latter, however, has become a more and more important issue nowadays, especially due to
the availability of large-scale click-through data in Web search that can be used to train
the learning to rank models.

While it is good to have more training data, it is challenging for many existing algorithms
to handle such data. In order to tackle the challenge, we may want to consider one of the
following approaches.

• Parallel computing. For example, we can use the MPI or MapReduce infrastructure
to distribute the computations in the algorithms. There are a number of attempts on
distributed machine learning in the literature (Chu et al., 2007; Chang et al., 2008),
however, the efforts on learning to rank are still very limited.

• Ensemble learning. We can down-sample the data to make it easy to handle by a
single-machine algorithm. After learning a ranking model based on this sample, we
can repeat the sampling for multiple times and aggregate the ranking models obtained
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from all the samples. It has been proved in (Ueda and Nakano, 1996) that such
ensemble learning can effectively make use of large datasets and the resultant model
can be more effective than the model learned from every single sample.

• Approximate algorithms. In some cases, we can derive an approximate version of
an existing algorithm, whose complexity is much lower than the original algorithm
while the accuracy remains to a certain extent. This kind of approaches have been
well studied in the literature of computational theory (Sipser, 2006), but still not
sufficiently investigated in learning to rank.

In addition to discussing how to handle large data from a purely computational perspec-
tive, we may want to investigate the problem from another angle. That is, it may not be
always necessary to increase the data scale. With more and more data, the learning curve
may get saturated, and the cost we pay for the extra computations may become wasteful.
To gain more understanding on this, we need to jointly consider the learning theory and
computational theory for ranking. This can also be an important piece of future work.

5. Robust Learning to Rank

In most of the existing works, multiple ranking functions are compared and evaluated, and
the best ranking function is selected based on some relevance measurement, e.g. NDCG.
For a commercial search engine company, the real scenario is more complex: the ranking
function is required to be updated and improved periodically with more training data, newly
developed ranking features, or more fancy ranking algorithms, however, the ranking results
should not change dramatically. Such requirements would bring new challenge of robustness
to the learning to rank area.

How to measure robustness? Multiple evaluations over time is one method but very
costly. One practical solution is that robustness can be measured with the probability of
switching neighboring pairs in a search result when ranking score turbulence happens (Li
et al., 2009). From metrics perspective, if adding the robustness factors into the original
relevance metrics, e.g. NDCG, the new metrics could be more suitable to measure relevance
and robustness at the same time. However, the efforts on robustness measurement are still
very preliminary.

In addition, the robustness over training data noise is another challenging task. Many
of existing learning to rank algorithms are based on pairwise preference framework which
is quite fragile to training data noise, since one mis-judged relevance label on a document
would lead to a large number of mis-labeled document pairs. This would significantly
jeopardize the robustness of the overall ranking performance. Carvalho et al. (2008) study
the impacts of outlying pairs in learning to rank with pairwise preferences and introduce a
new meta-learning algorithm capable of suppressing these undesirable effects. In terms of
point-wise and list-wise learning algorithms, the corresponding efforts are still missing.

How to learn a robust ranking function is another interesting topic. Intuitively, if an
algorithm could learn the parameters which control the metric sensitivity to the score tur-
bulence, the generated ranking functions would be more robust. Another possible solution
is related to incremental learning, which guarantees that the new model is largely similar
to previous models.

95



Chapelle Chang Liu

6. Learning to Rank for Diversity

Most learning to rank approaches implicitly assume independence in the documents rele-
vance. This often implies redundancy in the search results. A recent trend in learning to
rank research is thus to optimize not only for relevancy, but also for diversity (Radlinski
et al., 2009): the search result set should ideally cover various information nuggets, facets
or topics.1 This prompted a diversity task as part of the 2009 and 2010 Web tracks of
TREC.2.

An explicit diversification strategy involves 3 components: 1. A method for automat-
ically discovering what are the information nuggets for a given query; 2. A system for
assessing the relevance of a document to a particular nugget; 3. A strategy for ordering the
results. This last component has been well studied recently, and in particular the optimiza-
tion of an objective function with a diminishing return property sounds appealing (Agrawal
et al., 2009). But the first two components still need to be worked out.

There also approaches to diversification which bypass these two difficult steps: instead
of explicitly controlling the diversification by enumerating the different nuggets of infor-
mation, the diversification is implicit. A rather common technique in this category is the
minimization of textual similarities across documents. This was first proposed by Carbonell
and Goldstein (1998) in their Maximal Marginal Relevance framework. An other approach
is to use implicit user feedback in a bandit-style algorithm (Radlinski et al., 2008).

Until recently, two of the difficulties in this line of research were the lack of benchmark
datasets and of a consensus on the evaluation metric. The recent diversity tasks at TREC
are a commendable step in addressing these issues.

The problem of learning to rank for diversity can be cast into the more general framework
of learning with structured prediction models (or relational learning) (Bakir et al., 2007):
instead of predicting the relevance of the documents independently, an entire ranking is
predicted. Qin et al. (2009) have proposed methods for this type of structured prediction
in the context of two information retrieval tasks: Pseudo Relevance Feedback and Topic
Distillation. A unified framework to handle all these different kinds of structured prediction
could facilitate the development of new learning to rank algorithms where the relation
between documents is important.

7. Transfer Learning to Rank

Most learning to rank algorithms are heavily dependent on a large amount of editorial
labeled training data, which is time consuming and costly to obtain. Furthermore, collecting
specific labeled data for different domains or different ranking applications is not scalable.

The idea of transfer learning – and of the related concepts of multi-task learning and
domain adaption – is that if the tasks or domains share some similarities, then the training
data or model from one task can be helpful in building a model for another task. The
key issue in applying a transfer learning algorithm for a ranking task is to identify and
understand what are the differences and similarities between the tasks: Is there only a

1. These various terms are used in the literature depending at which scale the diversity is considered.
2. See http://plg.uwaterloo.ca/~trecweb/
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change in P (x) as in the selection bias issue identified in section 3? Are the conditional
distributions different? Do the features need to be transformed between the tasks?

As the nature of the differences between tasks can be quite diverse, there are also various
types of transfer learning algorithms to cover these various cases. They can be grouped in
three categories:

• algorithm level transfer learning. The motivation of transfer learning to rank on
algorithm level is to learn different ranking tasks with a joint model, which addresses
the specifics of each learning task with task-specific parameters and the commonalities
between them through shared parameters, and most of existing works are related to
algorithm level (Chapelle et al., 2011), (Gao et al., 2009).

• feature level transfer learning. How to learn some common features which are effec-
tive for all domains is a fundamental problem in the area of multi-task learning. In
learning to rank scenario, a common feature could be either a meta feature learned
with multiple element features, or a weak learner in the boosting framework (Chen
et al., 2009). However, due to the heterogenous features across different domains,
some common features may not be sufficient to train a good ranking function on
target domains;

• data level transfer learning. On data level, the basic idea is how to adjust weight of
different sources of labeled data to build a robust training superset, which is applicable
for all domains. For example, (Long et al., 2009) proposed a learning framework
based on the concept of label-relation function to transfer knowledge among different
domains without explicitly formulating the data distribution differences;

In fact, these different levels of transfer learning are complementary, how to effectively
combine them into one generic framework is an open question. Finally learning theory might
be able to guide us in conceptualizing the notation of task relatedness and in providing us
some generalization error analysis for multi-task learning (Ben-David and Borbely, 2008;
Baxter, 2000).

8. Online Learning to Rank

Traditional learning to rank algorithms for web search are trained in a batch mode, to
capture stationary relevance of documents to queries, which has limited ability to track
dynamic user intention in a timely manner. For those time sensitive queries, the relevance of
documents to a query on breaking news often changes over time, which indicates the batch-
learned ranking functions do have limitations. User real-time click feedback could be a better
and timely proxy for the varying relevance of documents rather than the editorial judgments
provided by human editors. In the other word, an online learning to rank algorithm can
quickly learn the best re-ranking of the top portion of the original ranked list based on
real-time user click feedback.

Existing work (Moon et al., 2010) is heavily dependent on the data collected with an
exploration random shuffled bucket which removes positional biases on clicks. However,
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such a random shuffled bucket is costly and not practical. How to leverage ordinary real-
time click information to build an online learning re-ranker on the top of batch mode ranker
to improve the relevance and freshness of time sensitive queries is a still challenge task.

As the same time, using real-time click feedback would also benefit the recency ranking
issue (Dong et al., 2010), which is to balance relevance and freshness of the top ranking
results. Comparing the real-time click feedback over the click history, we could observe
some signals to capture the buzzness of click, which can be leverage as an important feature
for both ranking and time-sensitive query classification (Inagaki et al., 2010).

We have to admit that the research on online learning and recency ranking are still
relatively preliminary. How to effectively combine the time sensitive features into the online
learning framework is still an open question for the research community. Furthermore, as
a ranking function is frequently updated according to real-time click feedback, how to keep
the robustness and stability is another important challenge which can not be ignored.

References

S. Agarwal and P. Niyogi. Stability and generalization of bipartite ranking algorithms.
In Proceedings of the 18th Annual Conference on Learning Theory (COLT 2005), pages
32–47, 2005.

R. Agrawal, S. Gollapudi, A. Halverson, and S. Ieong. Diversifying search results. In WSDM
’09: Proceedings of the 2nd international conference on Web search and web data mining,
pages 5–14. ACM, 2009.

G. Bakir, T. Hofmann, B. Schölkopf, A. Smola, B. Taskar, and S. V. N. Vishwanathan.
Predicting Structured Data. The MIT Press, 2007. ISBN 0262026171.

J. Baxter. A model of inductive bias learning. Journal of Artificial Intelligence Research,
12:149–198, 2000.

S. Ben-David and R.S. Borbely. A notion of task relatedness yielding provable multiple-task
learning guarantees. Machine learning, 73(3):273–287, 2008. ISSN 0885-6125.

S. Bickel and T. Scheffer. Dirichlet-enhanced spam filtering based on biased samples. In
Advances in Neural Information Processing Systems 19, 2007.

B.B. Cambazoglu, H. Zaragoza, O. Chapelle, J. Chen, C. Liao, Z. Zheng, and J. Degenhardt.
Early exit optimizations for additive machine learned ranking systems. In Proceedings of
the third ACM international conference on Web search and data mining, pages 411–420,
2010.

J. Carbonell and J. Goldstein. The use of MMR, diversity-based reranking for reordering
documents and producing summaries. In Proceedings of the 21st annual international
ACM SIGIR conference on Research and development in information retrieval, pages
335–336, 1998.

V. Carvalho, J. Elsas, W. Cohen, and J. Carbonell. A meta-learning approach for robust
rank learning. In Proceedings of SIGIR 2008 LR4IR - Workshop on Learning to Rank
for Information Retrieval, 2008.

98



Future directions in learning to rank

E. Chang, K. Zhu, H. Wang, H. Bai, J. Li, Z. Qiu, and H. Cui. Parallelizing support vector
machines on distributed computers. In J.C. Platt, D. Koller, Y. Singer, and S. Roweis,
editors, Advances in Neural Information Processing Systems 20, pages 257–264. MIT
Press, Cambridge, MA, 2008.

O. Chapelle, P. Shivaswamy, S. Vadrevu, K. Weinberger, Y. Zhang, and B. Tseng. Boosted
multi-task learning. Machine Learning Journal, 2011. To appear.

D. Chen, Y. Xiong, J. Yan, G.-R. Xue, G. Wang, and Z. Chen. Knowledge transfer for
cross domain learning to rank. Information Retrieval, 13(3):236–253, 2009.

W. Chen, T.-Y. Liu, Y. Lan, Z. Ma, and H. Li. Ranking measures and loss functions in
learning to rank. In Advances in Neural Information Processing Systems 22 (NIPS 2009),
pages 315–323, 2010a.

W. Chen, T.-Y. Liu, and Z. Ma. Two-layer generalization analysis for ranking using
rademacher average. Technical report, Advances in Neural Information Processing Sys-
tems 23 (NIPS 2010), 2010b.

C.-T. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. Bradski, A. Ng, and K. Olukotun. Map-
reduce for machine learning on multicore. In B. Schölkopf, J. Platt, and T. Hoffman,
editors, Advances in Neural Information Processing Systems 19, pages 281–288. MIT
Press, Cambridge, MA, 2007.

S. Clemencon and N. Vayatis. Ranking the best instances. Journal of Machine Learning
Research, 8(Dec):2671–2699, 2007.

D. Cossock and T. Zhang. Subset ranking using regression. In Proceedings of the 19th
Annual Conference on Learning Theory (COLT 2006), pages 605–619, 2006.

A. Dong, Y. Chang, Z. Zheng, G. Mishne, J. Bai, R. Zhang, K. Buchner, C. Liao, and
F. Diaz. Towards recency ranking in web search. In Proceedings of WSDM 2010, 2010.

Y. Freund, R. Iyer, R. Schapire, and Y. Singer. An efficient boosting algorithm for combining
preferences. Journal of Machine Learning Research, 4:933–969, 2003. ISSN 1533-7928.

J. Gao, Q. Wu, C. Burges, K. Svore, Y. Su, N. Khan, S. Shah, and H. Zhou. Model
adaptation via model interpolation and boosting for web search ranking. In Proceedings
of EMNLP 2009, 2009.

Y. Inagaki, N. Sadagopan, G. Dupret, C. Liao, A. Dong, Y. Chang, and Z. Zheng. Session
based click features for recency ranking. In Proceedings of AAAI 2010, 2010.

T. Joachims. Optimizing search engines using clickthrough data. In Proceedings of the
8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD 2002), pages 133–142, 2002. ISBN 1-58113-567-X.

Y. Lan and T.-Y. Liu. Generalization analysis of listwise learning-to-rank algorithms. In
Proceedings of the 26th International Conference on Machine Learning (ICML 2009),
pages 577–584, 2009.

99



Chapelle Chang Liu

Y. Lan, T.-Y. Liu, T. Qin, Z. Ma, and H. Li. Query-level stability and generalization
in learning to rank. In Proceedings of the 25th International Conference on Machine
Learning (ICML 2008), pages 512–519, 2008.

X. Li, F. Li, S. Ji, Z. Zheng, A. Dong, and Y. Chang. Incorporating robustness into web
ranking evaluation. In Proceedings of the CIKM, 2009.

B. Long, S. Lamkhede, S. Vadrevu, Y. Zhang, and B. Tseng. A risk minimization framework
for domain adaptation. In Proceedings of CIKM 2009, 2009.

B. Long, O. Chapelle, Y. Zhang, Y. Chang, Z. Zheng, and B. Tseng. Active learning for
ranking through expected loss optimization. In Proceeding of the 33rd international ACM
SIGIR conference on Research and development in information retrieval, pages 267–274,
2010.

T. Moon, L. Li, W. Chu, C. Liao, Z. Zheng, and Y. Chang. Online learning for recency
search ranking using real-time user feedback. In Proceedings of CIKM 2010, 2010.

T. Qin, T.-Y. Liu, X.-D. Zhang, D.-S. Wang, and H. Li. Global ranking using continuous
conditional random fields. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou,
editors, Advances in Neural Information Processing Systems 21, pages 1281–1288, 2009.

F. Radlinski, R. Kleinberg, and T. Joachims. Learning diverse rankings with multi-armed
bandits. In Proceedings of the 25th international conference on Machine learning, pages
784–791, 2008.

F. Radlinski, P. Bennett, B. Carterette, and T. Joachims. Redundancy, diversity and
interdependent document relevance. SIGIR Forum, 43, 2009.

M. Sipser. Introduction to the Theory of Computation(2nd ed.). PWS Publishing, 2006.
ISBN 0-534-94728-X.

N. Ueda and R. Nakano. Generalization error of ensemble estimators. In IEEE International
Conference on Neural Networks, pages 90–95, 1996.

P. A. Viola and M. J. Jones. Robust real-time face detection. International Journal of
Computer Vision, 57(2):137–154, 2004.

L. Wang, J. Lin, and D. Metzler. Learning to efficiently rank. In Proceeding of the 33rd
international ACM SIGIR conference on Research and development in information re-
trieval, pages 138–145, 2010.

B. Zadrozny. Learning and evaluating classifiers under sample selection bias. In Proceedings
of the twenty-first international conference on Machine learning, 2004.

100


	Learning Theory for Ranking
	Online Complexity v.s. Accuracy
	Sample Selection Bias
	Large Scale Learning to Rank
	Robust Learning to Rank
	Learning to Rank for Diversity
	Transfer Learning to Rank
	Online Learning to Rank

