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Abstract Discriminative regression models have proved
effective for many vision applications (here we focus on 3D
full-body and head pose estimation from image and depth
data). However, dataset bias is common and is able to sig-
nificantly degrade the performance of a trained model on
target test sets. As we show, covariate shift, a form of unsu-
pervised domain adaptation (USDA), can be used to address
certain biases in this setting, but is unable to deal with more
severe structural biases in the data. We propose an effec-
tive and efficient semi-supervised domain adaptation (SSDA)
approach for addressing such more severe biases in the data.
Proposed SSDA is a generalization of USDA, that is able to
effectively leverage labeled data in the target domain when
available. Our method amounts to projecting input features
into a higher dimensional space (by construction well suited
for domain adaptation) and estimating weights for the train-
ing samples based on the ratio of test and train marginals in
that space. The resulting augmented weighted samples can
then be used to learn a model of choice, alleviating the prob-
lems of bias in the data; as an example, we introduce SSDA
twin Gaussian process regression (SSDA-TGP) model. With
this model we also address the issue of data sharing, where
we are able to leverage samples from certain activities (e.g.,
walking, jogging) to improve predictive performance on very
different activities (e.g., boxing). In addition, we analyze the
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relationship between domain similarity and effectiveness of
proposed USDA versus SSDA methods. Moreover, we pro-
pose a computationally efficient alternative to TGP (Bo and
Sminchisescu 2010), and it’s variants, called the direct TGP.
We show that our model outperforms a number of baselines,
on two public datasets: HumanEva and ETH Face Pose Range
Image Dataset. We can also achieve 8–15 times speedup in
computation time, over the traditional formulation of TGP,
using the proposed direct formulation, with little to no loss
in performance.

Keywords 3D pose estimation · Semi-supervised domain
adaptation · Covariate shift adaptation

1 Introduction

Many problems in computer vision can be expressed in the
form of discriminative (structured) predictions of real-valued
multivariate output, y ∈ R

dy , from a high-dimensional mul-
tivariate input, x ∈ R

dx . A success of such methods in 3D
full-body pose estimation is evident from recent results that
use Microsoft Kinect sensor (Girshick et al. 2011; Sun et al.
2012); such discriminative methods have also proved effec-
tive for other problems, including image-based 3D pose (Bo
and Sminchisescu 2010; Kanaujia et al. 2007; Shakhnarovich
et al. 2003; Sminchisescu et al. 2006; Urtasun and Darrell
2008) head pose (Fanelli et al. 2011) and body shape (Chen
et al. 2011; Sigal et al. 2007) estimation. The typical goal
of discriminative regression methods is to learn a direct (and
sometimes multi-modal) mapping, f : R

dx → R
dy , from

features (e.g., computed from image or depth data) to pose
(e.g., 3D position and orientation of the head, or full 3D
pose of the body encoded by joint positions or joint angles).
Despite success and large body of work, most approaches
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by-and-large still suffer from two important issues: dataset
bias and lack of data sharing in learning—an inability to
effectively leverage information from one, or more, source
motion(s) or pose types to improve performance on a differ-
ent, target, pose type, which may have few training samples.

Dataset bias refers to the general observation that models
trained on one dataset (or on a training partition of a dataset)
may not perform well on another dataset (or disjoint test
partition of the same dataset). Biases can come in variety of
different forms and have been shown to be present even in
very large and carefully collected datasets. Consider training
a regression model that predicts position and orientation of a
person’s head from Kinect data as in Fig. 1c. If the model is
trained based on the data from subject A and then tested on
subject B, the results may be sub-optimal because statistics
of the facial features between the two subjects are likely to be
different (e.g., subject B may have higher cheekbones which
may lead the model to wrongly predict a higher pitch angle).
Even if the model is trained on many subjects, the presence
or absence of certain accessories (e.g., glasses) may cause
similar performance degradation. Consider an even simpler
case where the model is trained on many subjects, including
a test subject under consideration. If the model cannot fit the
training data perfectly, which is typical, the performance on
the test subject may again be inferior because the learning

Fig. 1 Illustration of results: HoG features for the gesture motion from
HumanEva- I dataset (a) along with the corresponding poses inferred
using proposed SSDA method (blue) and the ground truth (green) in
(b); results of SSDA on the head pose estimation in ETH Face Pose
Range Image Dataset is illustrated in (c)

algorithm would try to distribute errors among all subjects
by minimizing the average error over the entire training set.
Note, these issues are not specific to the problem of head
pose estimation and exist in most regression problems.

To address these issues we propose a new semi-supervised
domain adaptation (SSDA) approach, which is a generaliza-
tion of the unsupervised domain adaptation (USDA) we pro-
posed earlier in Yamada et al. (2012). Our domain adaptation
method allows us to easily adapt a model learned on a (source)
training set of feature-pose pairs: {(xtr

i , ytr
i )}ntr

i=1, to a partially
labeled (target) test set consisting of very few labeled exam-

ples: {(xte
j , yte

j )}n′
te

j=1 (for which outputs are known) and many
unlabeled samples for which outputs should be inferred:
{(xte

j )}nte
j=n′

te
. When labeled test samples (in the target domain)

are unavailable, it effectively reduces to the original USDA
formulation.

Our SSDA approach is surprisingly simple yet effective.
First, both target and source samples are transformed into a
common higher-dimensional space, through feature augmen-
tation (Daumé 2007); this augmentation in-itself aligns the
two spaces.1 Second, we apply importance weight estimation
to correct for sampling bias in the augmented feature space.
Finally, we use the resulting weighted augmented samples to
learn a non-linear multivariate regression model in the form
of importance weighted twin Gaussian processes (Yamada
et al. 2012). Moreover, we propose a computationally effi-
cient alternative to TGP (Bo and Sminchisescu 2010), that
we call direct TGP (dTGP). The benefit of dTGP is that the
learning and inference can be carried out by using only sim-
ple linear algebra. We apply the proposed approach to two
problems (see Fig. 1): (1) 3D pose estimation from images
on the HumanEva dataset (Sigal and Black 2006) and (2)
3D head pose estimation based on depth data using the ETH
Face Pose Range Image Dataset (Breitenstein et al. 2008).

The issue of dataset bias was partially addressed in our
preliminary work in Yamada et al. (2012). As we observe
in Yamada et al. (2012), the key assumption that training
and test samples come from the same underlying density
(i.e., (xtr

i , ytr
i ) ∼ ptr(x, y), (xte

j , yte
j ) ∼ ptr(x, y)), is often

flawed, even for large datasets; this fact leads to biased mod-
els that perform sub-optimally on the test set. In Yamada et al.
(2012), we have proposed a simple unsupervised approach
for removing certain biases, most notably those that adhere
to the assumption of covariate shift, where both the train-
ing and test sets are defined on the same domain (overlap)
but the density of samples may be different. This setting is
well suited for reducing effects of sampling bias. However,

1 We use the term alignment loosely here, as in practice, the spaces are
not explicitly aligned, but rather the augmented space is by construction
better suited for learning the adapted model; this effect is achieved
by implicitly assigning higher importance to labeled test samples over
training samples.
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as we show here, the entirely unsupervised approach may
be ineffective in dealing with more severe biases (e.g., those
that induce structured changes between the training and test
data) that make the training and test domains largely dis-
joint (e.g., see Fig. 3a). Here we expand on the findings in
Yamada et al. (2012), and propose a much more aggressive
semi-supervised approach that is able to work even in the
cases where the earlier formulation becomes less effective.
It’s important to note that the proposed approach is a strict
generalization. It can be reduced to our earlier unsupervised
formulation in Yamada et al. (2012) by choosing appropriate
model parameter.

The issue of data sharing has been around for some time
in object detection and categorization community, but to our
knowledge, has not been explored in the context of 3D pose
estimation (i.e., structured prediction problems). In object
detection, it is often argued that for certain classes of objects
the data is scarce and information transfer from other cate-
gories (e.g., in the form of priors (Miller et al. 2000), feature
sharing (Torralba et al. 2004) or data sample sharing (Lim
et al. 2011) is necessary to regularize the performance. In
pose estimation, one is typically interested in learning a sin-
gle regression function. However, we argue that similar issues
hold, in that for certain parts of the pose space the samples
may be scarce (e.g., we may only have 2–3 annotated box-
ing postures in the training set, but thousands of walking
and jogging postures). In this case utilizing samples from
other parts of the space to regularize performance in a smart
way, as we show, can also lead to improvements. Because
our approach can deal with large biases in the data, we can
simply treat data sharing as a form of a bias (e.g., where we
let samples from walking and jogging constitute our training
set and samples from boxing our test set). It is worth noting
that in the object detection and categorization community, in
contrast, the two problems of data sharing and bias are often
addressed separately.

Another potential use case for our semi-supervised method
is general model adaptation. Imagine a system (e.g.,
Microsoft Kinect) shipped with a pose estimation model
trained on a large dataset of exemplars (e.g., (Shotton et al.
2011) quotes 15 base body mesh shapes and a total of about
500,000 annotated samples). While effective, this model may
not be optimally tuned for recognizing poses specific to some
activity that one may want to employ in a game design (e.g.,
fishing) or to a specific user (e.g., 6 years old girl); by cue-
ing and recording the user in a set of predefined postures
(thereby getting a few annotated samples for the target test
set) the performance of the general model can be improved.

1.1 Contributions and Core Findings

We expand on our original USDA formulation for regression,
in Yamada et al. (2012), by proposing a new SSDA approach.

Proposed SSDA approach when used in absence of labeled
target domain samples, and/or under certain parameter set-
tings, reduces to our earlier formulation of USDA. Both,
USDA and the more general SSDA are amenable to most
discriminative and structured regression/prediction models
and problems. The proposed SSDA method is simple, effi-
cient and effective. It amounts to projecting input features to a
higher dimensional space and appropriately weighting them
to alleviate domain biases; the resulting transformed and
weighted samples are then used for learning. Using USDA
and SSDA as the basis, we propose and explore new forms
of Twin Gaussian Processes regression (USDA-TGP) and
(SSDA-TGP).

Further, we propose a measure of domain similarity,
between the source and target domains, which allows us to
explore the tradeoffs between effectiveness of USDA-TGP
and SSDA-TGP. As a consequence, we are able to show that
the proposed SSDA-TGP model is more effective in remov-
ing large structural biases in data and in promoting data shar-
ing during learning, as is illustrated in two applications: 3D
pose estimation from images and 3D head pose estimation
from depth data. The unsupervised variant, USDA-TGP, on
the other hand, is more effective in removing smaller biases
such as selection bias. Moreover, we propose a structured
prediction method we call direct TGP (dTGP), which is a
computationally efficient approximation to TGP and it’s vari-
ants. We show that dTGP is nearly equally effective, but is
8–15 times faster than standard TGP formulation (and cor-
responding variants).

2 Related Work

Our work touches on a number of topics in both com-
puter vision and machine learning, including, discrimina-
tive (structured) regression, pose estimation, transfer learn-
ing, domain adaptation, and dataset bias.

Discriminative regression Over the past 10 years many
methods have been introduced that include both paramet-
ric (e.g., conditional mixture of experts (Kanaujia et al.
2007; Sminchisescu et al. 2006)) and non-parametric (e.g.,
nearest neighbor regression (Shakhnarovich et al. 2003)
linear locally-weighted regression (Shakhnarovich et al.
2003), regression forests (Sun et al. 2012), local Gaussian
process regression (Urtasun and Darrell 2008), twin Gaussian
processes regression (Bo and Sminchisescu 2010), etc.) mod-
els. A variety of feature representations and learning architec-
tures have also been explored. We build on this literature by
formulating a new SSDA variant of twin Gaussian process
regression (Bo and Sminchisescu 2010) with histogram of
oriented gradients (HoG) as features.

Domain adaptation The first step of our SSDA domain
adaptation approach relates closely to the EasyAdapt method
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of (Daumé 2007), where domain adaptation is achieved by
projecting the source and target data into a higher dimen-
sional space, through augmentation. This projection in-itself
facilitates domain adaptation. However, we do not stop there,
but also allow these samples to be weighted, to account for
additional sampling biases in the data. For more detailed
overview of domain adaptation we refer reader to (Jiang
2007; Pan and Yang 2010). The issue of dataset bias has
recently emerged as a serious problem in object categoriza-
tion, with (Torralba and Efros 2011) showing that significant
biases exist in all current datasets.

Domain adaptation in object categorization Since in our
mapping each feature in the original problem is mapped into
three versions of it: a general version, a source-specific ver-
sion and target-specific version, our approach also relates to
Khosla et al. (2012) where dataset bias in object recognition
is addressed by learning a generalized model and dataset spe-
cific models within the max-margin framework. Authors in
Khosla et al. (2012) also point out the relationship of their
method, and by induction of our method, to a problem of
multi-task learning (Evgeniou and Pontil 2004). Alternative
methods for domain adaptation in object recognition space
include semi-supervised metric learning (Saenko et al. 2010;
Kulis et al. 2011) and un-supervised domain shift (Gopalan
et al. 2011). The key difference with these methods is that our
approach is simpler (instead of learning a metric space as in
Saenko et al. (2010); Kulis et al. (2011), we define our trans-
formations in closed form), more general (in a sense that it
can work with nearly any regression model), and works with
multivariate (structured) real-valued outputs.

Transfer learning for sharing Information transfer for
enhancing performance of object detectors on categories
where data is sparse dates to at least 2000. Many approaches
exist that include different forms of priors (Miller et al. 2000),
feature sharing (Torralba et al. 2004) or use intermediate rep-
resentations (like attributes). Conceptually (but not mathe-
matically) our approach is most similar to the idea of sam-
ple sharing introduced in Lim et al. (2011), where an object
detector can opportunistically borrow transformed samples
from other classes to enhance it’s performance on a target
class. Similar in spirit, our learning procedure is able to bor-
row transformed weighted samples from motions of other
types (as is illustrated by our ability to perform motion trans-
fer experiments in Fig. 5 c, f, g).

3 Unsupervised Domain Adaptation (USDA)
for Regression

In this section, we USDA method for 3D pose estimation,
after our original formulation in Yamada et al. (2012). This
method amounts re-weighting of training instances based on

the ratio of their probabilities under the test and training mar-
ginals. Note that while we focus on 3D body and head pose
estimation in this paper, the proposed approach is applicable
to any regression problem.

Let X tr(⊆ R
dx) be the domain of training image feature

vector xtr , Y tr(⊆ R
dy) be the domain of training pose vector

ytr , and X te(⊆ R
dx) be the domain of testing image feature

vector xte. Suppose we are given ntr i.i.d. training image-pose
feature pairs and nte i.i.d. test image feature vectors,

{(xtr
i , ytr

i ) | xtr
i ∈ X tr, ytr

i ∈ Y tr, i = 1, . . . , ntr},
{xte

j | xte
j ∈ X te, j = 1, . . . , nte},

drawn from distributions with the densities ptr(x, y) and
pte(x) respectively.

The final goal of USDA for 3D pose estimation is to learn a
function f (x;Θ) with low expected pose error, in the target
domain, based on the training image-pose feature pairs and
test image feature vectors.

Learning of model parameters, Θ , amounts to solving the
following optimization problem:

min
Θ

[∫∫
loss( y, f (x;Θ))pte(x, y)dxd y

]
. (1)

Note, we need to minimize the error over the test distrib-
ution pte (not over the training distribution ptr).

Because in the unsupervised setting we do not have test
image-pose feature pairs, the optimization of Eq. (1) is not
feasible. Thus, instead, we consider the following covariate
shift adaptation problem (Shimodaira 2000):

min
Θ

[∫∫
loss( y, f (x;Θ))w(x)ptr(x, y)dxd y

]
, (2)

where w(x) = pte(x)
ptr(x)

is the importance weight function.
The advantage of this USDA formulation is that we can

reduce sample selection bias, with the use of large number
of test image features, through covariate shift adaptation.

Our proposed method consists of the following two steps
that we describe in turn:

(i) Estimation of the importance weights w(x) using RuL-
SIF (see Sect. 3.1).

(ii) Importance weighted learning of parameters Θ of
f (x;Θ) from weighted augmented feature-pose pairs
(see Sect. 5 and Appendix).

3.1 Importance Weight Estimation

The importance weight may be estimated by independently
estimating densities ptr(x) and pte(x) from training and test
feature vectors and then taking their ratio. However, density
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estimation is known to be a hard problem and taking the ratio
of estimated densities tends to increase the estimation error
(Sugiyama et al. 2008). Thus, this two-step approach is not
appropriate in practice. We use a direct density-ratio estima-
tion method that allows us to directly learn the importance
weight function without going through density estimation.
We exploit an importance weight estimation method called
the relative unconstrained least-squares importance fitting
(RuLSIF) (Yamada et al. 2013).

Let us first define the relative importance weight (Yamada
et al. 2013):

wα(x) = pte(x)

(1 − α)pte(x) + αptr(x)
, 0 ≤ α ≤ 1, (3)

where α is a tuning parameter to control the adaptiveness to
the test distribution. Note that ptr(x) here is a distribution
over all labeled samples (training and test; if labeled test
samples are available). If α = 0 (i.e., w0(x) = 1) gives no
adaptation, while α = 1 (i.e., w1(x) = pte(x)

ptr(x)
) gives the full

adaptation from ptr(x) to pte(x); 0 < α < 1 will give an
intermediate estimator.2

Let X tr(⊆ R
dx) be the domain of training image feature

vector xtr andX te(⊆ R
dx)be the domain of test image feature

vector xte. Suppose we are given ntr and nte i.i.d. training and
test image feature vectors, {xtr

i }ntr
i=1, {xte

j }nte
j=1, drawn from

distributions with densities ptr(x) and pte(x), respectively.
The final goal of relative importance weight estimation

is to estimate the relative importance weight based on the
training and test image features.

Let us model the relative importance weight wα(x) by the
following kernel model:

wα(x; θ) =
nte∑
�=1

θ�κ(x, xte
� ), (4)

where θ ∈ R
nte are parameters to be learned from data sam-

ples, � denotes the transpose, κ(x, x′) = exp

(
− ‖x−xte

� ‖2

2τ 2

)
is the

Gaussian kernel and τ (> 0) is the kernel bandwidth.
The parameters θ in the model wα(x; θ) are determined

so that the following expected squared-error J is minimized:

J (θ)= 1

2
Eqα(x)

[
(wα(x; θ) − wα(x))2

]
,

= (1 − α)

2
Epte(x)

[
wα(x; θ)2

]
+ α

2
Eptr(x)

[
wα(x; θ)2

]
− Epte(x)[wα(x; θ)]+Const.,

2 α = 1 (i.e., w1(x) = pte(x)
ptr(x)

) gives the full adaptation from ptr(x)

to pte(x). However, since the importance weight w1(x) = pte(x)
ptr(x)

can
diverge to infinity under a rather simple setting, the estimation of
w1(x) = pte(x)

ptr(x)
is unstable and the covariate shift adaptation tends

to be unstable (Shimodaira 2000). To cope with this instability issue,
setting α to 0 < α < 1 is practically useful for stabilizing the covariate
shift adaptation, even though it cannot give an unbiased model under
covariate shift (Yamada et al. 2013).

where qα(x) = (1 − α)pte(x) + αptr(x), and we used
wα(x)qα(x) = pte(x) in the third term.

Approximating the expectations by empirical averages,
we obtain the following optimization problem:

θ̂ = argmin
θ∈Rnte

[
1

2
θ� Ĥθ − ĥ

�
θ + ν

2
θ�θ

]
, (5)

where νθ�θ/2 is included to avoid overfitting, and ν (≥ 0)

denotes the regularization parameter. Ĥ is the nte×nte matrix
with the (�, �′)-th element

Ĥ�,�′ = (1−α)
nte

nte∑
i=1

κ(xte
i , xte

� )κ(xte
i , xte

�′)

+ α
ntr

ntr∑
j=1

κ(xtr
j , xte

� )κ(xtr
j , xte

�′);

ĥ is the nte-dimensional vector with the �-th element ĥ� =
1

nte

∑nte
i=1 κ(xte

i , xte
� ). Then the solution to Eq. (5) can be ana-

lytically obtained as

θ̂ = (Ĥ + ν I)−1 ĥ, (6)

where I is the nte × nte-dimensional identity matrix.
The performance of RuLSIF depends on the choice of

the kernel bandwidth τ and the regularization parameter
ν. Model selection of RuLSIF is possible based on cross-
validation with respect to the squared-error criterion J
(Yamada et al. 2013).

3.2 Illustrative Example

We illustrate the efficacy of the proposed USDA approach
in Fig. 2 on a simple synthetically generated example. For
this illustration, as well as for remainder of the paper we use
USDA as part of the TGP model (we review TGP and discuss
how it can be learned with importance weighting imposed
on the samples in Sect. 5 and Appendix), which is able to
deal with non-linear multi-modal relationships between input
and output variables. Note, that for value of input close to
x = 0.5, the output can have up to three modes. The proposed
USDA-TGP approach (α = 0.5) can substantially improve
on the mean squared error (MSE) with respect to the ground
truth.

3.3 Issues with USDA Under Severe Biases

The proposed USDA is well suited for reducing effects of
sampling bias (as is illustrated in Fig. 2), but the approach
is not well suited for dealing with more severe biases (e.g.,
those that induce structured changes between the training and
test sets) and therefore make the training and test domains
largely disjoint (e.g., see Fig. 3a). This is easy to see, as the
relative importance weight, in Eq. (3), goes to a constant
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Fig. 2 Predicted outputs y using TGP (b), and USDA-TGP (c) in
green. Samples from the model x = y + 0.3 sin(2πy) + e where
e ∼ N (0, 0.052) are illustrated in (a); ◦ and × are training and test
samples respectively (for clarity we also illustrate marginals ptr(x) and
pte(x) in (b) and (c) bottom). Note that the input-output test samples are

not used in the training of TGP and the output test samples are not used
in the training USDA-TGP, they are plotted for illustration purposes
only, (a) Data samples (ROD = 0.177), (b) TGP (MSE = 0.038), (c)
USDA-TGP (MSE = 0.002)
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Fig. 3 Predicted outputs y using USDA-TGP with source data samples
(b), USDA-TGP with target data samples (c), and SSDA-TGP method
(d) in green. Samples from the model x = y + 0.3 sin(2πy) + e where
e ∼ N (0, 0.052); ◦ and × are training and test samples respectively
(for clarity we also illustrate marginals ptr(x) and pte(x) in (b), (c), and
(d) bottom). Note that the input-output test samples are not used in the

training of USDA-TGP Source, and we used only 100 input-output test
samples for USDA-TGP Target and the proposed SSDA-TGP method,
(a) Data samples (ROD = 0.485), (b) USDA-TGP source (MSE =
0.248), (c) USDA-TGP target (MSE = 0.079), (d) SSDA-TGP (MSE
= 0.054)

1/(1 −α) under such scenario. As a result, the unsupervised
approach becomes ineffective and potentially large benefits
can be obtained by leveraging small amounts of labeled data
in the target domain, leading to the semi-supervised domain
adaptation we introduce next.

4 Semi-Supervised Domain Adaptation (SSDA)
for Regression

Here, we propose a SSDA for 3D pose estimation to deal
with more severe biases. Our semi-supervised approach is
a generalization of USDA introduced in the previous sec-
tion, and amounts to first projecting training and test sam-
ples to a higher dimensional space, through feature augmen-
tation, then applying re-weighting to training and labeled test
instances based on the ratio of their probabilities under the
test and training marginals.

Let X tr(⊆ R
dx) be the domain of training image feature

vector xtr , Y tr(⊆ R
dy) be the domain of training pose vector

ytr , X te(⊆ R
dx) be the domain of test image feature vector

xte, and Y te(⊆ R
dy) be the domain of test pose vector yte.

Suppose we are given ntr and n′
te i.i.d. training and test image-

pose feature pairs and nte−n′
te i.i.d. test image feature vectors,

{(xtr
i , ytr

i ) | xtr
i ∈ X tr, ytr

i ∈ Y tr, i = 1, . . . , ntr},
{(xte

j , yte
j ) | xte

j ∈ X te, yte
j ∈ Y te, j = 1, . . . , n′

te},
{xte

j | xte
j ∈ X te, j = n′

te, . . . , nte},

drawn from distributions with densities ptr(x, y), pte(x, y),
and pte(x) respectively; note, n′

te � nte. Since we have
n′

te test image-pose feature pairs, it is natural to include
them in the training data set. Thus, we use {(xtr

i , ytr
i )}ntr

i=1 ∪
{(xte

j , yte
j )}n′

te
j=1 as a new traning data set and assume the

samples are drawn from a distribution with the density
p′

tr(x, y).
The final goal of SSDA for 3D pose estimation is to learn a

function f (x;Θ) with low expected pose error in the target
domain based on the training and test image-pose feature
pairs and test image feature vectors.

Similar to the USDA formulation in Sect. 3, learning of
parameters amounts to solving the following optimization
problem:
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min
Θ

[∫∫
loss( y, f (x;Θ))pte(x, y)dxd y

]
, (7)

where Θ are the model parameters.
However, because we can have a small number of test

image-posefeature pairs, the optimization in Eq. (7) is rather
difficult. Thus, we again consider the following covariate
shift adaptation problem (Shimodaira 2000):

min
Θ

[∫∫
loss( y, f (z;Θ))w(z)p′

tr(z, y)dzd y
]

, (8)

where z = g(x) is the transformed sample of x, g(·) is an
arbitrarry transformation function, and w(z) = pte(z)

p′
tr(z) is the

importance weight function. The difference from the USDA
formulation is that we use feature transformation (i.e., z =
g(x)).

The advantage of the proposed SSDA approach is two
fold: (1) the feature transformation can reduce the effect of
non-overlapping regions between training and testing distri-
butions (making the covariate shift assumption3 valid), and
(2) we can reduce sample selection bias in domain adaptation
with the use of large number of test image features through
covariate shift adaptation.

Our proposed method consists of the following three steps
that we describe in turn:

(i) Feature transformation z = g(x) obtained using feature
augmentation (see Sect. 4.1).

(ii) Estimation of the importance weights w(z) using RuL-
SIF (see Sect. 3.1).

(iii) Importance weighted learning of parameters Θ of
f (z;Θ) from weighted augmented feature-pose pairs
(see Sect. 5 and Appendix).

4.1 Feature Transformation

We adopt the supervised domain adaptation method called
EasyAdapt (EA) (Daumé 2007), which proved useful in nat-
ural language processing (NLP) community. In this paper,
we further extend the EA method by introducing a new para-
meter β (0 ≤ β ≤ 1) which controls the adaptiveness to the
target data4:

ztr = [xtr� βxtr� 0d
�]�,

zte = [xte�
0d

� βxte�]�,

3 Covariate shift assumption formally amounts to assuming that con-
ditional distributions on the source and target domains are the same but
the marginal distributions are different.
4 While it is possible to set β > 1, this gives an even higher importance
to the target domain samples (meanwhile largely ignoring contributions
from the source domain samples), which with few target samples leads
to overfitting.

where 0d is a d-dimensional vector with all zeros. Intuitively,
these transformations map the original feature vectors into
three versions: a general version, a source-specific version
and a target-specific version. Note, β = 0 gives no adapta-
tion in the sense of EA, while β = 1 gives the same effect
as the original EA (Daumé 2007;) 0 < β < 1 will give
an intermediate adaptation. Moreover, setting β = 0 corre-

sponds to simply merging {(xtr
i , ytr

i )}ntr
i=1 and {(xte

j , yte
j )}n

′
te

j=1
and regarding it as the training dataset. As such, the proposed
SSDA formulation is a generalization of the original feature
augmentation approach in Daumé (2007). In addition, this
simple extension allows us to tune the adaptiveness based on
prior information or using cross validation, which is desir-
able.

Analysis and Intuition To analyze the behavior of this
transformation, let us focus on a Gaussian kernel for x:
κ(x, x′; ρ2) = exp

(
−‖x−x′‖2

2ρ2

)
. Then, when x and x′ are sam-

ples from the same domain, we can compute the Gaussian
kernel between z and z′ as

K (z, z′) = κ(x, x′; ρ2)κ(x, x′; ρ2

β2 ).

On the other hand, when the domain is not the same,

K (z, z′) = κ(x, x′; ρ2)κ(x, x′; ρ2

β2 ) exp

(
−2β2x�x′

ρ2

)
,

≤ κ(x, x′; ρ2)κ(x, x′; ρ2

β2 ),

where the inequality holds when z and z′ only take positive
values such as HoG features. Thus, data samples from the
same domain are enhanced compared to those from different
domains. Intuitively, this means that the labeled data samples
from the target domain have a larger influence, as controlled
by β, than samples from the source domain when making
predictions about target (test) data. A more complete analy-
sis of this is given in Daumé (2007). Note, if elements of
x take negative value, we can use a different type of feature
augmentation. For example, instead of concatenating the fea-
tures in the original space, as we do here, we can first map
each of the three elements of the transformed feature vector
into the kernel space and then concatenate them in the kernel
space, which would allow us to apply the method for any
features so long as we have a positive semi-definite kernel
(Daumé 2007). The approach also extends to problems with
more than two domains.

4.2 Illustrative Example

We compare the performance of USDA to SSDA approach
on a one dimensional synthetic example in Fig. 3. Note, that
the setting is similar to the one in Fig. 2, with two notable
differences: (i) the source and target distributions are more
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disjoint (relative Pearson divergence (ROD) = 0.485 while
the data in Fig. 2a have ROD = 0.177; see Sect. 7) and (ii)
we assume that a number (100 in this case) labeled input-
output pairs are available in the target domain. Similarly to
prior example, we compare USDA and SSDA in the context
of important weighted twin Gaussian processes regression
which we discuss at length in the next section and Appendix.

It is clear that USDA-TGP (α = 0.5) performs poorly
regardless whether source or labeled target data is used for
training. We note that USDA-TGP trained on the labeled tar-
get samples performs better here because we have relatively
many labeled target samples—100 in this case. In contrast,
SSDA-TGP, here with α = 0.5 and β = 0.5, performs much
better than both USDA alternatives with 32 % lower MSE
over USDA-TGP target and 78 % lower MSE over USDA-
TGP source.

5 Importance Weighted Twin Gaussian Processes
Regression

USDA and SSDA approaches introduced in previous sec-
tions are applicable to variety of regression models. The only
restriction placed on the regression model, is that learning
must take into account weighted samples. We discuss vari-
ety of alternatives in our earlier work (Yamada et al. 2012);
here we focus on twin Gaussian processes regression (Bo
and Sminchisescu 2010) which proved very effective for high
dimensional problems with potentially structured outputs and
multi-valued relationships between inputs and outputs. We
overview the TGP regression (Bo and Sminchisescu 2010)
and importance-weighted twin Gaussian process (IWTGP)
regression (Yamada et al. 2012) in Appendix.

Computational complexity since TGP/IWTGP requires
matrix inversions of ntr × ntr matrices, the complexity of
solving Eq. (21) is O(n3

tr), which is impractical when ntr

is large. To deal with this issue, a common solution, which
we adopt, is to first find M nearest neighbors to a test input
and estimate TGP on the reduced set of training paired sam-
ples. The inverse matrix in Eq. (21) can then be efficiently
computed with complexity O(M3). However, in addition to
matrix inversion, TGP needs to solve a nonlinear optimiza-
tion problem, Eq. (21), which tends to be computationally
expensive and typically requires L-BFGS (Limited-memory
Broyden–Fletcher–Goldfarb–Shanno) solver and computa-
tion of gradients.

6 Computationally Efficient Twin Gaussian Processes
Regression

TGP and IWTGP, discussed in the previous section, require
solving of a nonlinear optimization problem which tends

to be computationally expensive. As a consequence, our
domain adaptation variants, USDA-TGP and SSDA-TGP
inherit these computational burdens. To alleviate these issues,
we propose computationally efficient alternative to TGP,
which we call dTGP, and its importance weighted variants.

To cope with computational challenges in TGP, we pro-
pose an approximation which results in a model similar to
locally weighted K-nearest neighbor regression (WKNN). In
this model the weights for the samples are estimated such that
the Kullback–Leibler divergence between input and output
Gaussian distributions is minimized, approximating the orig-
inal TGP objective. This is efficient, as the weights can be
analytically obtained. We can then estimate an (output) pose
as a weighted sum of K-nearest training pose vectors, where
top K nearest training pose vectors are obtained based on the
estimated weighting.

6.1 Direct Twin Gaussian Processes (dTGP)

A computational limitation of TGP is that it needs to opti-
mize y variable inside a Gaussian kernel, which makes TGP
optimization nonlinear. To avoid solving nonlinear optimiza-
tion problem, we adopt two-step approach which is sim-
ilar to weighted K -nearest neighbor regression (WKNN)
(Shakhnarovich et al. 2003). More specifically, since l( y) =
[L( y, y1), . . . , L( y, yn)]� can be regarded as a sample re-
weighting vector, we first estimate l y and choose top K near-
est output vectors { y′

k}K
k=1 by ranking based on l y, and then,

second, estimate an output y as a weighted sum over K -
nearest neighbors. Therefore, the key issue is efficient esti-
mation of l( y).

Estimating re-weighting vector We regard l y = l( y) as a
variable to be optimized. Then, the optimization problem in
Eq. (21) can be expressed as

min
l y

[
1 + λy−2l�y u−η log

[
1 + λy−l�y L−1l y

]]

s.t.0 ≤ l y,i ≤ 1 + λy, i = 1, . . . , n, (9)

where we use L( y, y) = 1 + λy. Note, to further speed up
the inference, we first estimate l y without box constraint and
then clamp l y to satisfy the constraint.

Taking derivative of the objective function in Eq. (9) with
respect to l y and equating it to zero, we get

l y = μLu, (10)

where μ = (1+λy−l y L−1 l y)

η
is a scalar. By plugging Eq. (10)

back into Eq. (9), we can rewrite the optimization problem
as

min
μ

[
1 + λy−2μa−η log

[
1 + λy−μ2a

]]
, (11)
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where a = u�Lu is a constant. Note, we only need to
estimate a scalar μ, while originally we needed to optimize
y ∈ R

dy . Hence the new optimization problem is much easier
to solve compared to the original optimization problem.

Taking derivative of Eq. (11) with respect to μ and equat-
ing it to zero, we get the following analytical solution:

μ̂ =
−η +

√
η2 + 4a(1 + λy)

2a
.

The final solution can be written as

l̂ y = min((1 + λy)1n, max(0n, μ̂Lu)),

where 1n denotes the n-dimensional vector with all ones,
0n denotes the n-dimensional vector with all zeros, and the
’max’ and ’min’ operation for vectors are applied in an
element-wise manner.

Estimating pose using weightedK -nearest neighbor
regression We estimate y using weighted KNN regression
(Shakhnarovich et al. 2003). We first obtain K nearest neigh-
bors and their weights {( y′

k, l̂ ′y,k)}K
k=1 from { yi }n

i=1, by sort-

ing training samples based on l̂ y, and estimate y as

ŷ =
K∑

k=1

γ̂k y′
k,

where γ̂k are the weights which are computed from l̂ y. In
contrast to traditional WKNN where the weights are a func-
tion of the distance in the input space, in our case the weights
are functions of both similarity of the test point to the train-
ing pairs, in the input space, and the similarity among the
training pairs themselves, in the output space.

We evaluate the following weighting functions:

Uniform: γ̂k = 1
K , k = 1, . . . , K

Gaussian: γ̂k = l̂ ′y,k∑K
k=1 l̂ ′y,k

, k = 1, . . . , K

Distance: γ̂k = −1/ log(̂l ′y,k )∑K
k=1 −1/ log(̂l ′y,k )

, k = 1, . . . , K

Note, since l̂ ′y,k takes value of a Gaussian kernel, l̂ ′y,k =
exp(−‖ y− yk‖2

2ρy
), the Distance weighting may be approxi-

mated by ‖ y − yk‖2 ∝ − log(̂l ′y,k).
The advantage of the proposed method over the existing

TGP is that we can estimate the output y using simple lin-
ear algebra, while the original TGP needs to solve a non-
linear optimization problem which tends to be computation-
ally expensive. In addition, the proposed approach does not
depend on a specific nonlinear optimization solver, and is
very easy to implement.

Relation to standard weighted K -nearest Neighbor
Regression Here, we show that a standard WKNN regression
(Shakhnarovich et al. 2003) is a special case of our proposed
method.

Let us assume that input and output distributions are the
same, i.e., K = L and λz = λy . Then, the estimated l y is
given by

l̂ y = μ̂K K−1k(z) = k(z),

where μ̂ = 1 and kk(z) = exp
(
−‖zk−z‖2

2ρ2
z

)
. Hence the Gaussian

weighting parameter can be given as

γ̂k =
exp

(
−‖zk−z‖2

2ρ2
z

)
∑K

k=1 exp
(
−‖zk−z‖2

2ρ2
z

) , k = 1, . . . , K ,

where {z′
k}K

k=1 is the K -nearest neighbor set. The resulting
weighting parameter is the same as the weighting in standard
WKNN regression. Therefore the proposed method, in par-
ticular with Gaussian weighting, reduces to standard WKNN
when covariance matrices are the same (i.e., K = L).

6.2 Direct Importance Weighted Twin Gaussian Processes
(dIWTGP)

The proposed speedup technique can also be applied for
importance weighted variant of TGP, called IWTGP after
(Yamada et al. 2012).

Estimating re-weighting vector Again let us consider l y =
l( y) as a variable to be optimized. Then, the optimization
problem in Eq. (24) can be written as

min
l y

[
1 + λy−2l�y uw−ηw log

[
1 + λy−l�y L−1

w l y

]]

s.t.0 ≤ l y,i ≤ 1 + λy, i = 1, . . . , n. (12)

Taking derivative of Eq. (12) and equating it to zero, we
can similarly obtain the sample re-weighting vector:

l̂ y = min((1 + λy)1n, max(0n, μ̂w(Lw)uw)), (13)

where μ̂ = −ηw+√
η2
w+4aw(1+λy)

2aw
and aw = u�

w Lwuw. As
before, y can be estimated by weighted K -nearest neighbor
regression. We call the importance weighted variant of dTGP
– dIWTGP.

6.3 Illustrative Example

Figure 4 illustrates predicted outputs y using TGP and dTGP
(Dist) for multi-modal data: x = y +0.3 sin(2πy)+e where
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Fig. 4 Predicted outputs y by TGP (b) and dTGP (c) for multi-
modal data, where we set M = 200. a Samples from the model
x = y + 0.3 sin(2πy) + e where e ∼ N (0, 0.052). d Average test

time for TGP and dTGP over 500 test samples with respect to the num-
ber of nearest neighbors M , (a) Data samples, (b) TGP (MSE=0.0552),
(c) dTGP (D) (MSE=0.0553), (d) Computational time

e ∼ N (0, 0.052). In these experiments, we use 10,000 train-
ing samples and 500 test samples. As Fig. 4b, c clearly show,
dTGP (Dist) performs very similarly to the original TGP
implementation (Bo and Sminchisescu 2010). In addition,
Fig. 4d shows the test computational time for 500 test sam-
ples with respect to the number of nearest neighbors M . The
computational speed of the proposed method is about 20
times faster than that of the original TGP when M = 50.
The computational cost of the proposed method gradually
increase when M increases. This is because dTGPs need
to compute a matrix inverse and the computational cost of
inverse becomes dominant when M is large. In practice, set-
ting M to 200 works favorably in terms of both performance
and computational time.

7 Domain Similarity Estimation Using relative Pearson
Divergence

Our leading assumption is that SSDA is more effective,
than USDA, when difference between source and target
domains is larger. To analyze the relationship between the
similarity of domains and the proposed USDA and SSDA
approaches, we propose an approach to estimate the rank
of domain (ROD) measure (Gong et al. 2012), which is
useful to measure the difference between source and tar-
get dataset, based on the relative Pearson (PE) Divergence
(Yamada et al. 2013). We use the relative Pearson (PE)
Divergence, since it can be estimated analytically and has
good non-parametric convergence property (Yamada et al.
2013).

Let Ptr and Pte be probability distributions of samples
in {xtr

i }ntr
i=1 and {xte

j }nte
j=1, then the relative PE divergence is

defined as (Yamada et al. 2013)

PEα(Ptr‖Pte) =
∫

(wα(x) − 1)2 qα(x)dx, (14)

where wα(x) is the relative density-ratio [(a.k.a., relative
importance weight in Eq.(3)] and qα(x) = (1 − α)pte(x) +
αptr(x). The relative PE divergence is a squared loss variant
of the KL divergence, and it takes non negative value and
vanish when Ptr = Pte (Ali and Silvey 1966).

We use the symmetrized relative Pearson divergence as
the rank of domain estimation:

ROD(Ptr, Pte) = 1

2
(PEα(Ptr‖Pte) + PEα(Pte‖Ptr)).

Estimation of the Relative Pearson Divergence Using esti-
mator of the relative density-ratio wα(x), which is efficiently
computed using RuLSIF, we can construct estimator of the
relative PE divergence (14). After a few lines of calculation,
we can show that the relative PE divergence (14) is equiva-
lently written as

PEα(Ptr‖Pte) = −α

2

∫
wα(x)2 ptr(x)dx

− (1 − α)

2

∫
wα(x)2 pte(x)dx+

∫
wα(x)pte(x)dx.

(15)

Based on this expression, we obtain the estimator of the
relative PE divergence as

P̂Eα(Ptr‖Pte) = − α

2ntr

ntr∑
i=1

ŵα(xtr
i )2

− (1 − α)

2nte

nte∑
j=1

ŵα(xte
j )2 + 1

nte

nte∑
j=1

ŵα(xte
j ). (16)

Finally, the estimator of ROD measure based on the rela-
tive PE divergence is given by

R̂OD(Ptr, Pte) = 1

2
(P̂Eα(Ptr‖Pte) + P̂Eα(Pte‖Ptr)).

In this paper, we experimentally use α = 0.5.
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8 Experiments

8.1 Evaluation of USDA and SSDA

We start by exploring the ability of USDA and SSDA to bat-
tle various biases in different transfer learning settings. As
in simple examples before, we analyze USDA and SSDA in
the context of IWTGP regression. We apply USDA-TGP and
SSDA-TGP to two problems on publicly available datasets:
(i) 3D pose estimation from monocular images—on the
HumanEva- I dataset and (ii) 3D head pose estimation from
range data—on the ETH Face Pose Range Image Dataset
(Breitenstein et al. 2008). We further explore the benefits of
USDA versus SSDA as a function of the similarity between
source and target domains on these real world datasets.

To do the latter, we compute an ROD score (based on the
formulation in Sect. 7) for each setting. Lower value of ROD
score corresponds to more similarity between source and tar-
get domains; higher value of ROD implies more dissimilar-
ity between source and target domains. Experimentally, we
observe that values of ROD close to 0.2 or less imply rel-
atively small bias in the data (e.g., sample selection bias);
values of ROD around 0.35 moderate bias and ROD ≥ 0.4
implies large structural biases in the data.

We compare the proposed USDA-TGP and SSDA-TGP
methods to the following baselines:

TGP (S): TGP learned with training (source) image-pose
pairs
TGP (T): TGP learned with test (target) image-pose pairs
TGP (S + T): TGP learned with training (source) image-
pose pairs and test (target) image-pose pairs
TGP (EA): TGP learned with training (source) image-
pose pairs and test (target) image-pose pairs in the aug-
mented space
WKNN: Weighted k nearest neighbor regression with
k = 25, using training (source) image-pose pairs.

Note, that, much like TGP, USDA-TGP can be trained with
different slices of data, so we test the following alternatives:

USDA-TGP (S): IWTGP with training (source) image-
pose pairs and test (target) image features for learning
USDA-TGP (T): IWTGP with test (target) image-pose
pairs and test (target) image features for learning
USDA-TGP (S + T): IWTGP with training (source)
image-pose pairs, test (target) image-pose pairs and test
(target) image features for learning

Further note, TGP (S + T), USDA-TGP (S + T), TGP
(EA) are actually special cases of proposed SSDA-TGP
model where (α = 0, β = 0), (α = 0.5, β = 0) and
(α = 0, β = 1.0) respectively.

8.1.1 3D Human Pose Estimation

For these experiments we utilize HumanEva- I dataset
(Sigal and Black 2006) (we refer to (Bo and Sminchisescu
2010) for details). We use training and validations sub-sets
of HumanEva- I and only utilize data from three color cam-
eras with a total of 9,630 image-pose frames for each camera.
This is consistent with experiments in Bo and Sminchisescu
(2010) and Yamada et al. (2012). We first divide 9,630 image-
pose frames into training and test data set. Then, we randomly
sub-sample n′

te from the full test data set as labeled samples
and used rest of test, nte − n′

te data samples, for testing. We
randomly sub-sample n′

te image-pose pairs from the full test
set; to alleviate the sampling bias we sample 100 times, learn
100 different models, and average their corresponding errors.

We test three transfer scenarios: (1) subject transfer bias
(sampling bias) – the training data includes 2 subjects and
test data comes from a 3-rd subject not used for training, (2)
motion transfer bias (data sharing)—the training data does
not include test motion, and (3) camera transfer—camera
view is different between training and test. We propose three
experiments:

Subject transfer (C1–C3): Test subject is not included in
training phase. Data from cameras C1, C2, and C3 is used
for this experiment as independent single-view samples.
Camera transfer (C1): Camera 1 data is used for training
and Camera 2 data is used for testing.
Motion transfer (C1–3): Walk, Jog, and ThrowCatch
motions are used for training and Boxing and Gestures
are used for testing. Data from cameras C1, C2, and C3
is used for this experiment as independent single-view
samples.

Error metric In HumanEva- I pose is encoded by (20)
3D joint markers defined relative to the ‘torsoDistal’ joint in
camera-centric coordinate frame, so y = [ y(1), . . . , y(20)]�
∈ R

60 and y(i) ∈ R
3. Error (in mm) for each pose is mea-

sured as average Euclidean distance: Errorpose(̂ y, y∗) =
1

20

∑20
m=1 ‖ ŷ(m) − y∗(m)‖, where ŷ is an estimated pose vec-

tor, and y∗ is a true pose vector (see Sigal and Black (2006)
for details).

Parameters for HumanEva- I dataset, we used the origi-
nal parameter setting of Bo and Sminchisescu (2010): λz =
λy = 10−3, 2ρ2

z = 5, and 2ρ2
y = 5 × 105. The num-

ber of M nearest neighbors in TGP and USDA-TGP is
set to min(300, ntr). In USDA-TGP, we set α = 0.5, and
bte = min(500, nte) to be consistent with original pub-
lished results in Yamada et al. (2012). In SSDA-TGP, we
choose the α and β parameters using cross-validation and let
bte = min(500, nte). In our cross-validation procedure we
evaluate 9 different parameter settings where we set α and
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Fig. 5 Performance on HumanEva- I dataset illustrated as a function
of the number of paired target samples (a–c); we averaged the error
over all motions for each subject and across (100) different random
samplings of n′

te. Comparable methods according to the paired t test at
the significance level 5 % are specified by ‘◦’. Performance compari-
son of SSDA-TGP with respect to the α and β parameter illustrated in
(d–f) as a function of the number of paired target samples; we aver-
aged the error over all subjects. Comparable methods according to the
paired t test at the significance level 5 % are specified by ‘◦’. The table

in (g) shows performance with five labeled paired target samples for
easier analysis, and comparable methods according to the paired t test
are specified by bold font, (a) Subject transfer (C1–3) (ROD = 0.207),
(b) Camera transfer (C1) (ROD = 0.353) (c) Motion transfer (C1–3)
(ROD = 0.406), (d) Subject transfer (C1–3) (ROD = 0.207), (e) Cam-
era transfer (C1) (ROD = 0.353) (f) Motion transfer (C1–3) (ROD =
0.406) (g) Quantitative results with five labeled paired target samples
(based on (a), (b) and (c) above)

β to 0.0, 0.5, and 1.0 each and choose the parameter setting
combination that maximizes performance on the validation
set (in all experiments we use half of the labeled target sam-
ples for training and half for validation).

Performance and Analysis Fig. 5a–c show the average
mean pose estimation error as a function of the paired tar-
get set size (averaged over all motions and 100 runs of ran-
dom sampling of paired target samples); Fig. 5g specifically
shows performance with five labeled training samples, again

averaged over 100 runs. The graphs and table show that the
proposed USDA-TGP and SSDA-TGP outperform standard
TGP on equivalent settings.

In particular, Fig. 5g shows that USDA-TGP outperforms
TGP in all three transfer settings and on every single split of
the data (S), (T) and (S + T). We notice that the largest boost
(28 % improvement in error) from USDA-TGP comes in the
subject transfer case, with model trained on the source (S)
samples. We believe there are two reasons for this. First, num-
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ber of labeled target samples in this case is relatively small
(only 5) in comparison to source samples, so training on them
alone (T) is unlikely to be successful; adding them to a source
samples (S + T) also has limited benefit. Second, the source
and target domains are relatively similar (ROD = 0.207),
making this setting particularly well suited for USDA. This
also explains why SSDA-TGP performs marginally inferior
to USDA-TGP on subject transfer.

Interestingly, however, USDA-TGP(S) starts to become
much less effective as the dissimilarity between the target
and source domains increases. In such cases, one can see
that improvements obtained using a semi-supervised setting
SSDA-TGP are considerably more pronounced; in Fig. 5g
SSDA-TGP has 20 % lower error than USDA-TGP (S +
T) in the motion transfer setting with ROD = 0.406 (note,
both approaches use the same exact labeled and unlabeled
data). Further, for the intermediate ROD value of 0.353, in
the camera transfer setting, the improvement of SSDA-TGP
over USDA-TGP is also moderate at 5 % lower error. This
suggests that effectiveness of USDA and SSDA methods can
be approximated by measuring the similarity/dissimilarity of
the source and target domains.

Figures 5d–f show the comparison of SSDA-TGP with dif-
ferent α and β parameters. The automatically chosen parame-
ters selected by cross-validation are labeled CV. We observed
that setting β = 0 in SSDA-TGP tends to perform well when
the training and test data set are not disjoint, while β ≥ 0.5
tends to perform well when the training and test data set
are disjoint (e.g., motion transfer). Cross-validation-based
parameter selection tends to perform well when the number
of labeled target samples is larger and becomes somewhat
unstable when the number of labeled target samples is small.
We observe that manually setting α = 0.5 and β = 0.5
performs favorably in such cases and avoids instabilities of
cross-validation. Paired t-tests were conducted for all exper-
iments and we observe that SSDA-TGP statistically outper-
forms competitors at p = 0.05 (5 %) significance in most
cases. We conducted the paired t tests by first selecting the
algorithm (parameter setting) with the lowest error and then
performing pair-wise comparisons between it and every other
algorithm (parameter setting) considered.

One may be tempted to conclude that feature augmenta-
tion is what contributes the most to the performance, since in
camera transfer and motion transfer settings performance of
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Fig. 6 Cross-validation parameter selection analysis on HumanEva-
I dataset illustrated as a function of the number of paired target samples;
we averaged the error over all motions for each subject and across (100)
different random samplings of n′

te. Each plot shows the fraction of the
time a given parameter setting was chosen by cross-validation, (a) Sub-

ject transfer (C1–3) (ROD = 0.207), (b) Camera transfer (C1) (ROD =
0.353), (c) Motion transfer (C1–3) (ROD = 0.406), (d) Subject transfer
(C1-3) (ROD = 0.207), (e) Camera transfer (C1) (ROD = 0.353), (f)
Motion transfer (C1–3) (ROD = 0.406)
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TGP(EA) is statistically indistinguishable from the proposed
SSDA-TGP approach. However, we would like to highlight
that in the subject transfer scenario SSDA-TGP does per-
form considerably (and statistically significantly) better than
TGP(EA). In other words, we view SSDA-TGP as a more
versatile approach that is capable of better dealing with vari-
ety of transfer settings.

The cross-validation parameter selection procedure is
more closely evaluated in Fig. 6 where we plot the frac-
tion of runs (y-axis) in which cross-validation selected a
given parameter value for α (a–c) and β (d–f) for a cho-
sen number of labeled target samples (x-axis). As mentioned
previously, we have multiple subjects and do 100 random
samplings of n′

te for each transfer setting, so we have a
distribution over the parameters chosen by cross-validation
which we show in Fig. 6. We observe that with few labeled
target samples the results of cross-validation are not very
stable and different parameters are chosen in many cases
nearly equally frequently (Fig. 6a, e). As the number of
labeled target samples increases cross-validation tends to
become more stable with certain parameter setting being
clearly preferred over the others (for example, see Fig. 6c
or e).

8.1.2 3D Head Pose Estimation

We also assess the performance of the proposed USDA-TGP
and SSDA-TGP methods on ETH Face Pose Range Image
Dataset (Breitenstein et al. 2008) (see Fig. 1c). The dataset
contains 10,780 range images of 20 people (3 females, 6 sub-
jects recorded twice, with and without glasses) turning their
head while captured at 28 fps by the range scanner of (Weise
et al. 2007). The resolution of each image is 640 × 480
pixels, and a face typically consists of 150 × 200 pixels.
The head pose range is about ±90◦ yaw and ±45◦ pitch
rotations. The provided ground truth for each image con-
sists of the 3D nose tip coordinates and the coordinates of
a vector pointing in the face direction (Breitenstein et al.
2008).

We compute HoG feature within a depth image’s region
of interest (ROI) (see Fig. 7), in our case the bounding box
around the face (200 x 200 pixels). To obtain the HoG, we
divide the ROI into a non-overlapping 5 × 5 grid. Within
each cell in the grid, we compute the orientation and mag-
nitude of each pixel and obtain a 31 dimensional feature for
each cell. We concatenated all features of cells to obtain 775
dimensional HoG feature (∈ R

775). Finally, we normalized
the HoG vector to unit length. For pose vector y, we use five
dimensional vector comprising of yaw and pitch angle, and
location of the nose (∈ R

3).
The bias in head pose estimation can come in (at least)

two forms: the training (source) data may simply be biased
and for example, not contain the subject present in the test

(target) set, or an subject in test set wears glasses while no
subjects wearing glasses were observed in the training set.
Hence we propose 2 experiments:

Subject transfer: test subject is not included in the training
set.
Glass transfer: subjects not wearing glass are used for
training and subjects wearing glass are used for testing.

Error metric We compute error in yaw (degrees), pitch
(degrees), and nose position error (mm), where each error is
measured as average Euclidean distance between estimated
and ground truth data.

Parameters for ETH data set, we experimentally (through
grid search) set the TGP, USDA-TGP, and SSDA-TGP
parameters to λz = λy = 10−5, 2ρ2

z = 5 × 103, and
2ρ2

y = 5 × 107. The number of M nearest neighbors in
TGP and USDA-TGP is set to min(300, ntr). In SSDA-TGP,
we choose the α and β parameters by cross-validation, and
bte = min(500, nte), respectively.

Performance and analysis Fig. 9 shows the performance
comparison of SSDA-TGP with respect to the α and β para-
meters on ETH face dataset. Figure 8g shows performance
with 30 labeled training samples. From these experiments,
we observed that cross-validation (SSDA-TGP setting) and
α = 0.5, β = 0.5 both give favorable estimation accu-
racy with respect to the number of paired target samples.
Moreover, Fig. 8a–e show the average mean yaw, pitch, and
nose estimation error as a function of test set size (averaged
over all subjects and 30 runs) for subject and glass trans-
fer cases. The graphs clearly show that the proposed SSDA-
TGP method outperforms non domain adaptation and USDA-

Fig. 7 ETH Depth Face images and the corresponding HoG features,
(a) Depth Images, (b) HoG Descriptor
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Fig. 8 Performance on ETH Face Pose Range Image Dataset illus-
trated as a function of the number of test (target) samples; we averaged
the error over all subjects. Subject transfer(ROD = 0.416) (a–c) and
Glass transfer (ROD = 0.404) (d–f). Comparable methods according
to the paired t test at 5 % significance are specified by ‘◦’. Results in
(a–c) are competitive with (Breitenstein et al. 2008), but are not directly

comparable since the settings are different. The table in g shows per-
formance with 30 labeled paired target samples for easier analysis, and
comparable methods according to the paired t test are specified by bold
font, (a) Yaw angle error, (b) Pitch angle error, c Nose error, (d) Yaw
angle error, e Pitch angle error, (f) Nose error, (g) Quantitative results
with 30 labeled paired target samples (based on (a–f) above)

TGP methods under most settings. Paired t-tests were con-
ducted for all experiments. We observe that the USDA-TGP
and SSDA-TGP methods statistically outperform competi-
tors at p = 0.05 (5 %) significance. In both transfer sittings
considered, the ROD values are relatively large, so SSDA-
TGP tends to perform well; USDA-TGP (S + T) performs
well on the yaw and pitch estimates in the subject transfer
setting.

Figure 9 shows the performance of SSDA-TGP with dif-
ferent α and β parameters as compared to the cross-validation
parameter setting procedure. The conclusions are largely

similar to those drawn in the human pose experiments in the
previous section. It is clear that cross-validation procedure
outperforms fixed parameter values as number of labeled tar-
get samples increases.

8.2 Evaluation of Direct TGP

Now that we showed effectiveness of USDA and SSDA meth-
ods, we investigate the fast alternatives to the TGP that are
able to improve on the speed of inference by a factor of 8–
15 times. Since our fast approximation to TGP applies to
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Fig. 9 Subject transfer (ROD = 0.415). (a–c) Performance compari-
son of SSDA-TGP with respect to the α and β parameter on the ETH
face Pose Range Image Dataset illustrated as a function of the number
of paired target samples; we averaged the error over all subjects. Glass
transfer (ROD = 0.404). (d–f) Performance comparison of SSDA-TGP
with respect to the α and β parameter on ETH face Pose Range Image

Dataset illustrated as a function of the number of paired target samples;
we averaged the error over all subjects. Comparable methods according
to the paired t test at the significance level 5 % are specified by ‘◦’. (a)
Yaw angle error. (b) Pitch angle error. (c) Nose error. (d) Yaw angle
error. (e) Pitch angle error. (f) Nose error
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Fig. 10 Performance comparison with respect to M and K parameters. (a, c) Performance comparison of dTGP and dUSDA-TGP with respect to
M (K = 25). (b, d) Performance comparison of dTGP and dUSDA-TGP with respect to K (M = 200) (a) dTGP, (b) dTGP, (c) dUSDA-TGP, (d)
dUSDA-TGP

all of the methods, instead of running a set of exhaustive
experiments with variety of settings we explored in previous
sections, here we focus on a few simple scenarios to illustrate
overall effectiveness of the method.

8.2.1 HumanEva- I Data

We start by exploring performance of dTGP on HumanEva-
I dataset under selection bias setting. Figure 10 shows the

performance comparison with respect to M and K parame-
ters for dTGP and dUSDA-TGP, respectively. We observe
that performance of dTGP and dUSDA-TGP (similar to TGP
and USDA-TGP) are insensitive to parameter M . The per-
formance tends to asymptote once M is sufficiently large
(> 200) and drops gracefully as M decreases. Some direct
methods do appear sensitive to parameter K . In particular,
one can see that with uniform weighting the performance of
dTGP and dUSDA-TGP actually degrades as K increases.
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Table 1 Performance on the entire HumanEva- I dataset; we average errors over all motions and frames

Subject dTGP dTGP dTGP dUSDA-TGP dUSDA-TGP dUSDA-TGP

Train Test (Unif) (Gauss) (Dist) TGP (Unif) (Gauss) (Dist) USDA-TGP WKNN

S1,S2,S3 S1 97.1 88.8 87.8 85.0 97.1 88.7 87.6 83.6 94.3

S1,S2,S3 S2 105.1 79.4 78.1 72.1 105.1 79.0 77.6 71.5 100.7

S1,S2,S3 S3 117.1 80.6 78.6 76.4 117.1 80.2 78.0 75.7 110.4

Average error (mm) 106.4 82.9 81.5 77.8 106.4 82.6 81.0 76.9 101.8

Average test time (sec) 3.46 3.46 3.46 25.78 3.75 3.75 3.75 27.04 0.76

The estimated ROD measure for this experiment is 0.207. The best method having the smallest error and comparable methods (error from a best
method is <3 mm) are specified by bold face

Table 2 Performance and computational training and test time of dTGP and dUSDA-TGP and existing methods on Poser dataset, where we set
the number of nearest neighbors M as 200

dTGP dTGP dTGP TGP dUSDA-TGP dUSDA-TGP dUSDA-TGP USDA-TGP WKNN
(Unif) (Gauss) (Dist) (Unif) (Gauss) (Dist)

Average error (deg) 5.77 5.45 5.44 5.69 5.77 5.44 5.42 5.67 5.69

Training time (sec) 0.15 0.15 0.15 0.15 1.22 1.22 1.22 1.22 –

Test time (sec) 0.79 0.79 0.79 12.32 0.89 0.89 0.89 12.63 0.51

Test time is measured over 418 images. The ROD score of the Poser data is 0.220. The best method having the smallest angle error is specified by
bold face

This may seem counterintuitive at first, however, this can
be easily explained. First, since uniform weighting simply
averages across nearest neighbors, having more neighbors
implicitly means smoother and more regularized (and hence
likely less accurate) prediction. Second, if regression is multi-
modal, as is the case here, having more nearest neighbors with
equal weighting will likely average across different modes
(where as having much fewer will more likely focus on a sin-
gle mode). Because Gaussian and distance weightings take
into account the distance between samples in both the input
and output spaces both of these issues are mitigated. As a
result, Gaussian and distance variants of dTGP and dUSDA-
TGP are relatively insensitive to K . Distance weighting per-
forms best overall and tends to improve marginally as K
increases.

Based on results in Fig. 10, we let M = 200 and K = 25
for the remaining experiments. Table 1 shows the pose esti-
mation accuracy over the test set. Overall, the proposed
direct method performs close to the original TGP and USDA-
TGP, speeding them up by about 7 and 8 times, respectively.
Distance weighting works the best among three considered
weighting methods (<5 % loss in performance on average).
Note, when the number of training samples is big, the most
computationally expensive operation is finding M-nearest
neighbors. To deal with this issue, we can use locality sensi-
tive hashing to further speed up computation (Shakhnarovich
et al. 2003).

8.2.2 Poser Data

We also notice that despite being an approximation, dTGP
and dUSDA-TGP can actually perform better than the orig-
inal in certain scenarios. We illustrate this by focusing on
another public dataset made available by Agarwal and Triggs
(2006). Poser dataset (Agarwal and Triggs 2006) consists of
1,927 training and 418 test images, which are synthetically
generated, using Poser software package, from motion cap-
ture (Mocap) data (54 joint angles per frame). The image
features, corresponding to bag-of-words representation with
silhouette-based shape context features, and error metric are
provided with the dataset. The ROD score of the Poser dataset
is 0.220.

Error metric The proposed error measure amounts to
the root mean square error (in degrees), averaged over
all joints angles, and is given by: Errorpose(̂ y, y∗) =
1

54

∑54
m=1 ‖(̂ y(m) − y∗(m)) mod 360◦‖, where ŷ ∈ R

54 is
an estimated pose vector, and y∗ ∈ R

54 is a true pose vector
(see Agarwal and Triggs (2006) for details).

Performance and analysis Table 2 shows the pose esti-
mation result averaged over the test set. Proposed dTGPs
and dUSDA-TGPs compares favorably with their conven-
tional counterparts, speeding up performance by 11.5 and
10.6 times, respectively. Moreover, the Distance weighted
K -nearest neighbor based dTGPs, dTGP(Dist) and dUSDA-
TGP(Dist), outperform the original USDA-TGP in this data
set.

123



Int J Comput Vis (2014) 109:126–145 143

9 Conclusion

In this paper, we proposed a simple, yet effective, SSDA
method for addressing training set bias in regression prob-
lems. Our SSDA approach is a generalization of the USDA,
which we propose earlier in Yamada et al. (2012), and reduces
to USDA when labeled data in the target domain is unavail-
able and/or under a particular setting of model parameters.
Proposed SSDA, and the special case of USDA, are amenable
to most discriminative and structured regression/prediction
models and problems.

Using SSDA as the basis, we proposed a new form of twin
Gaussian processes regression called SSDA-TGP. A key ben-
efit of SSDA-TGP is that large structural biases in data can
be alleviated by data sharing during learning. SSDA-TGP
first projects the input image features into a higher dimen-
sional space to alleviate domain biases caused by disjoint-
ness of training and test data sets. IWTGP can then be used
in this higher dimensional space to infer pose, while, in addi-
tion, removing the sample selection bias. We applied the
proposed method to 3D head and 3D human pose estima-
tion, and achieve state-of-the-art performance on standard
datasets: HumanEva- I (Sigal and Black 2006) and ETH
Face Pose Range Image Dataset (Breitenstein et al. 2008).

Further, we propose a measure of domain similarity,
between the source and target domains, which allows us to
explore tradeoffs between effectiveness of SSDA-TGP and
it’s unsupervised variant USDA-TGP. As a consequence, we
are able to show that proposed SSDA-TGP model is more
effective in removing large structural biases in data and in
promoting data sharing during learning (which causes large
dissimilarity between source and target domains). The unsu-
pervised variant, USDA-TGP, on the other hand, is more
effective in removing smaller biases such as selection bias.

Moreover, to speed up TGPs, we proposed a computa-
tionally efficient alternative to twin Gaussian processes, that
we called direct TGP (dTGP). We show that dTGP, and pro-
posed alternatives, are 8–15 times faster than traditional TGP
formulation, with little to no loss in performance.

Acknowledgments The authors thank Dr. Liefeng Bo for providing
us the TGP code and Dr. Michalis Raptis and Dr. Marek Vondrak for
their valuable comments and contributions.

Importance Weighted Twin Gaussian Processes Regres-
sion (IWTGP)

For completeness, we overview the importance-weighted
variant of twin Gaussian processes (Bo and Sminchisescu
2010) called IWTGP (Yamada et al. 2012), which is a trans-
fer learning method under covariate shift (Shimodaira 2000).

Under covariate shift setup it is assumed that labeled
training image-pose pairs {(ztr

i , ytr
i )}ntr

i=1 drawn i.i.d. from

p( y|z)ptr(z) and unlabeled test image features {zte
j }nte

j=1
drawn i.i.d. from pte(z) (which is usually different from
ptr(z)) are available. Note, for simplicity of notations, we
regard ptr(z, y) as p′

tr(z, y).

Gaussian Process Regression

We start by introducing standard Gaussian Process (GP)
Regression. The GP regression assumes a linear model in
the function space with Gaussian noise for the k-th dimen-
sion (e.g., joint position):

yk = fk(z) + ek, ek ∼ N (0, σ 2), fk(z) = b�
k φ(z),

(17)

where there is a zero mean Gaussian prior over the parameters
bk ∼ N (0p,� p); 0p is the p-dimensional zero vector and
� p is the p-dimensional covariance matrix, φ(z) is the func-
tion which maps a dz = 3dx dimensional input vector z into
an p dimensional feature space. To make prediction for the
test sample, one needs to average over all possible parameter
values, weighted by their posterior, resulting in a Gaussian
predictive distribution. GP has similar problems with multi-
modality as kernel regression (KR). To address this limi-
tation, TGP encodes the relations between both inputs and
outputs using GP priors. This is achieved by minimizing
the Kullback-Leibler divergence between the marginal GP
of outputs (poses) and observations (features).

Twin Gaussian Processes Regression

In this section, we review the twin Gaussian processes regres-
sion (TGP), after (Bo and Sminchisescu 2010), and point out
potential computational issues with TGP.

Take an alternative view to GP regression, where a joint
distribution over all training outputs, Y = [ y1, . . . , yntr

] ∈
R

dy×ntr and an unknown test output y for a given correspond-
ing input z takes the form of a joint Gaussian:

[
Y�

k
yk

]
∼ NZ

(
0,

[
K k(z)

k(z)� K (z, z)

])
, (18)

where Y k is the k-th row of Y , yk is the k-th entry of y, K is an
ntr × ntr matrix with each element K i j = cov(φ(zi ),φ(z j ))

being a covariance function encoding correlations between
pairs of random variables zi and z j ; similarly ki (z) =
cov(φ(zi ),φ(z)) is a column vector of size ntr × 1 and
K (z, z) = cov(φ(z),φ(z)). A popular choice for a covari-
ance function is a Gaussian with noise:

cov(φ(zi ),φ(z j )) = K (zi , z j ) = exp

(
−||zi − z j ||2

2ρ2
z

)

+ λzδi j ,
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where, ρz is the kernel bandwidth parameter and λz is the
noise variance; δi j is the Kronecker delta function.

Because the joint distribution is Gaussian, the predictive
distribution is also Gaussian and can be obtained by condi-
tioning on the observed training outputs Y k . The mean and
variance of the predictive distribution can be derived in closed
form:

m(yk) = Y k K−1k(z),

σ 2(yk) = K (z, z) − k(z)� K−1k(z).

Unlike GP regression, TGP also defines the covariance
function over outputs (not just inputs), which allows to model
correlations in outputs. In addition, by minimizing KL diver-
gence between the two Gaussian Processes (one going in the
forward and one in the backwards direction) it’s possible to
focus on the most prominent mode in the potentially multi-
modal mapping between image features and 3D pose.

To derive the backwards GP process, note that
[
Y�

k , yk
]�

,
in Eq. (18), can also be thought of as a sample from a Gaussian
distribution over the outputs,
[

Y�
k

yk

]
∼ NY k∪yk

(
0,

[
L l(yk)

l(yk)
� L(yk, yk)

])
, (19)

where we can empirically estimate covariance matrix as:

LY k∪yk =
[

Y�
k

yk

] [
Y k yk

]
.

For a multivariate output case, we can treat each dimension
k as an independent samples from the Gaussian distribution
(see Eq. (18)) since covariance is independent of k. Hence,
We can instead estimate covariance matrix as:

LY∪ y = 1

dy

[
Y�
y�

] [
Y y

]
.

This, however, assumes that outputs along each dimension
are i.i.d.; to account for the correlations between outputs,
we can define a more general covariance function over the
outputs, resulting in:[

Y�
y

]
∼ NY∪ y

(
0,

[
L l( y)

l( y)� L( y, y)

])
, (20)

which bears close similarity to the original GP in Eq. (18).
TGP measures the offset between the true Gaussian distri-

bution of the inputs, NZ , and measured Gaussian distribution
of the outputs, NY∪ y, using Kullback-Leibler divergence.
However, the output, y, is unknown in this measure. To match
the estimated output distribution and fully observed input one
as much as possible, one is required to estimate output, ŷ, by
minimizing the Kullback-Leibler divergence:

ŷ = argmin
y∈R

dy

DK L(NZ || NY∪ y),

where NZ and NY∪ y are defined in Eqs. (18) and (20) respec-
tively.

As a result, inference in TGP is given as the solution to
the following optimization problem (Bo and Sminchisescu
2010):

ŷ = argmin
y∈R

dy

[
L( y, y)−2l( y)�u

− η log
[

L( y, y)−l( y)�L−1l( y)
]]

, (21)

where u = K−1k(z), η = K (z, z) − k(z)�u, K (zi , z j ) =
exp

(
−‖zi −z j ‖2

2ρ2
z

)
+ λzδi j and L( yi , y j ) = exp

(
−‖ yi − y j ‖2

2ρ2
y

)
+ λyδi j

are the Gaussian kernel function for image feature vec-
tor z and pose feature vector y, ρz and ρy are the ker-
nel bandwidth, l( y) = [L( y, y1), . . . , L( y, yntr

)]� k(z) =
[K (z, z1), . . . , K (z, zntr )]�, and λy and λz are regulariza-
tion parameters to avoid overfitting. This nonlinear optimiza-
tion problem can be solved using a second order Broyden-
Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton optimizer
with cubic polynomial line search for optimal step size selec-
tion (Bo and Sminchisescu 2010).

Importance Weighting in TGP

Under covariate shift, the likelihood of Gaussian Process can
be given as (Shimodaira 2000)

ntr∏
i=1

p(ytr
i |ztr

i , b)wα(ztr
i )

∝
ntr∏

i=1

1√
2πσ

exp

⎛
⎝−‖w

1
2
α (ztr

i )ytr
i −w

1
2
α (ztr

i )φ(ztr
i )�b‖2

2σ 2

⎞
⎠ ,

(22)

where wα(z) is the relative importance weight function.
Thus, the GP regression model under covariate shift can

be represented by

w
1
2
α (z)yk = w

1
2
α (z)φ(z)�bk + ek, ek ∼ N (0, σ 2). (23)

That is, to achieve covariate shift adaptation in TGP, we need

to simply re-weight each input and output by w
1
2
α (z).

The optimization problem of IWTGP is therefore given
by (Yamada et al. 2012)

ŷ = argmin
y∈R

dy

[
L( y, y) − 2l( y)�uw

− ηw log
[

L( y, y)−l( y)�L−1
w l( y)

]]
, (24)
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where K (ztr
i , ztr

j ) = exp

(
−‖ztr

i −ztr
j ‖2

2ρ2
z

)
+ λzδ̃i j and L( ytr

i , ytr
j ) =

exp

(
−‖ ytr

i − ytr
j ‖2

2ρ2
y

)
+λyδ̃i j , δ̃i j takes w(ztr

i )−1 if i = j and zero if

i �= j , uw = K−1
w k(ztr), ηw = K (ztr, ztr) − k(z)�uw, and

w(ztr) = pte(ztr)

ptr(ztr)
is called the importance weight function,

which is used for compensating sample selection bias. The
importance weight can be directly estimated from training
and test image data sets {ztr

i }ntr
i=1 and {zte

j }nte
j=1 by direct impor-

tance weight estimation such as relative unconstrained least-
squares importance fitting (RuLSIF) (Yamada et al. 2013).
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