
Learning to Rewrite Queries

Yunlong He
Yahoo! Reseach
Sunnyvale, CA

yunlong.he@yahoo.com

Jiliang Tang
Michigan State University

East Lansing, MI
jiliang.tang@cse.msu.edu

Hua Ouyang
Yahoo! Reseach
Sunnyvale, CA

houyang@yahoo-inc.com
Changsung Kang

Yahoo! Reseach
Sunnyvale, CA

ckang@yahoo-inc.com

Dawei Yin
Yahoo! Reseach
Sunnyvale, CA

daweiy@yahoo-inc.com

Yi Chang
Yahoo! Reseach
Sunnyvale, CA

yichang@yahoo-inc.com

ABSTRACT
It is widely known that there exists a semantic gap be-
tween web documents and user queries and bridging this
gap is crucial to advance information retrieval systems. The
task of query rewriting, aiming to alter a given query to a
rewrite query that can close the gap and improve informa-
tion retrieval performance, has attracted increasing atten-
tion in recent years. However, the majority of existing query
rewriters are not designed to boost search performance and
consequently their rewrite queries could be sub-optimal. In
this paper, we propose a learning to rewrite framework that
consists of a candidate generating phase and a candidate
ranking phase. The candidate generating phase provides
us the flexibility to reuse most of existing query rewriters;
while the candidate ranking phase allows us to explicitly
optimize search relevance. Experimental results on a com-
mercial search engine demonstrate the effectiveness of the
proposed framework. Further experiments are conducted
to understand the important components of the proposed
framework.

1 Introduction
Users of the Internet typically play two roles in commercial
search engines. They are information creators that generate
web documents and they are also information consumers
that retrieve documents for their information needs. It is
well known, however, that there is a “lexical chasm” [18] be-
tween user queries and web documents because they use dif-
ferent language styles and vocabularies. As a consequence,
search engines could be unable to retrieve relevant docu-
ments even when the issued queries are perfectly describing
users’ information needs. For example, a user forms a query
“how much tesla”, but web documents in search engines use
the expression “price tesla”. Therefore it has become in-
creasingly important for search engines to intelligently sat-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CIKM’16 , October 24-28, 2016, Indianapolis, IN, USA
c© 2016 ACM. ISBN 978-1-4503-4073-1/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2983323.2983835

isfy users’ information needs by understanding the intent
from their queries.

Query rewriting (QRW), which targets to alter a given
query to alternative queries that can improve relevance per-
formance by reducing the mismatches, is a critical task in
modern search engines and has attracted increasing atten-
tion in recent years [6, 14, 18, 8]. For example, authors
in [14] propose to modify the search queries based on typical
substitutions that web searchers make to their queries; and
query rewriting is treated as a machine translation prob-
lem and statistical machine translation (SMT) models are
trained based on query-snippet pairs [18, 8]. However, the
vast majority of existing algorithms focus on either correla-
tions between queries and rewrites or bridging the language
gap between user queries and web documents, which could
be sub-optimal for the goal of query rewriting – improv-
ing search relevance performance. For example, since the
SMT model aims at translating a sentence from a source
language to a fluent and grammatically correct sentence in
a target language, the SMT model prefers to rewrite the
query “how much tesla” as “how much is the tesla” instead of
“price tesla”. Therefore it is necessary to explicitly consider
ranking relevance when developing query rewriting methods.

In this paper, we propose a learning to rewrite framework
that consists of (1) candidate generating and (2) candidate
ranking as shown in Figure 1. Given a query, we create possi-
ble candidates via a set of candidate generators in the candi-
date generating phase; while given a learning target, we train
a scoring function to rank these candidates from the candi-
date generating phase in the candidate ranking phase. The
advantages of this framework are two-fold. First, the can-
didate generating phase not only allows us to reuse most of
existing query rewriting algorithms as candidate generators
but also enables us to explore recent advanced techniques
such as deep learning to build new candidate generators.
Second, the candidate ranking phase gives us flexibility to
choose the target to optimize for query rewriting; for exam-
ple, in this work, we desire to boost relevance performance
thus we can choose the relevance target to rank candidates.
Our contributions are summarized as below:

• Define the problem of learning to rewrite formally;

• Propose a learning to rewrite framework that is flexible
to incorporate existing query rewriting algorithms and
optimize the relevance performance explicitly; and

• Conduct experiments on a commercial search engine to

Figure 1: Flow chart of the proposed learning to rewrite framework

demonstrate the effectiveness of the proposed frame-
work.

The rest of the paper is organized as follows. In Section
2, we briefly review the related work. In Section 3, we for-
mally define the problem and introduce the proposed frame-
work in detail. In Section 4, we present empirical evaluation
with discussion. In Section 5, we give conclusion with future
work.

2 Related Work
Query expansion and rewriting have long been important
research topics in information retrieval [3]. Xu and Croft
[23] studied using the top ranked documents retrieved by
the original query to expand the query. This method suffers
from the sensitivity to initial ranking results and does not
learn from user generated data. Later approaches [6, 7, 14]
focus on using user query logs to generate query expansions
by collecting signals such as clickthrough rate [6, 24], cooc-
currence in search sessions [14] or query similarity based on
click graphs [7, 1]. Since search logs contain query docu-
ment pairs clicked by millions of users, the term correlations
reflect the preference of the majority of users. However,
the correlation-based method, as pointed out by [19], suf-
fers low precision partly because the correlation model does
not explicitly capture context information and is suscepti-
ble to noise. More recently, natural language technology in
form of statistical machine translation (SMT) [19, 18, 8, 9]
has been introduced for the query expansion and rewriting
problems. In the SMT system all component models are
properly smoothed using sophisticated techniques to avoid
sparse data problems while the correlation model relies on

pure counts of term frequencies. However, the SMT system
is used as a black box instead of fully tuned for the task of
query rewriting.

Another related research topic is query recommendation.
Authors in [12] make use of search session data to find query
pairs frequently co-occurring in the same sessions, which are
used as suggestions for each other. Baeza-Yates et al. [2]
propose to rank the clustered queries according to two prin-
ciples: i) the similarity of the queries to the input query, and
ii) the support of the suggested query, which measures the
magnitude of answers returned in the past to this query that
have attracted the attention of users. A follow-up work [4]
combines various click-based, topic-based and session based
ranking strategies and uses supervised learning in order to
maximize the semantic similarity between the query and the
recommendations. Cao et.al [5] addressed the data sparse-
ness issue by summarizing queries into concepts by clus-
tering a click-through bipartite. Then, from session data
a concept sequence suffix tree is constructed as the query
suggestion model.

Recently, deep learning techniques [16, 21] have been ap-
plied on query processing and machine translation tasks.
For example, authors in [11] generate distributed language
models for queries to improve the relevance in sponsored
search. Authors in [21] applied recurrent neural networks
on machine translation tasks and achieved state-of-the-art
performance compared to traditional SMT systems. A hi-
erarchical recurrent encoder-decoder method is proposed in
[20] for the task of query auto-completion.

In this work, our approach is formulated as a learning
to rewrite framework and its key component is candidate

ranking. Therefore the candidate ranking phase is similar
to the learning to rank framework in terms of many aspects
such as loss functions [25, 22] and ranking features [15].

3 Learning to Rewrite Framework
The query rewriting problem aims to find the query rewrites
of a given query for the purpose of improving the relevance
of the information retrieval system. The proposed frame-
work formulates the query rewriting problem as an opti-
mization problem of finding a scoring function F (q, r) which
assigns a score for any pair of query q and its rewrite can-
didate r. The framework assumes that G = {g1, g2, . . . , gM}
is a set of M candidate generators. Candidate generators
could be any existing query rewriting techniques and we
will introduce more details in Subsection 3.1. In the can-
didate generating phase, we use candidate generators in G
to generate a set of rewrite candidates for a given query q
as R = {r1, · · · , rn} where n is the number of generated
rewrite candidates. Each pair of query q and its rewrite
candidate ri, i.e., (q, ri), is scored by the function F (q, ri).
The rewrite candidates from R are then ranked based on
the scores {F (q, r1), F (q, r2), . . . , F (q, rn)} in the candidate
ranking phase. A key step of the learning to rewrite problem
is how to obtain the scoring function F .

Let F = {f : (q, r) 7→ f(q, r) ∈ R} be the functional space
of the scoring functions for any pair of query and rewrite can-
didate and Q = {q1, · · · , qm} be a set of m queries. We use
Ri = {ri,1, · · · , ri,ni} to denote the set of rewrite candidates
of query qi generated by G where ni is the number of rewrite
candidates for qi. For each query qi, we further assume that
Ii is the learning target that encodes the observed informa-
tion about the quality of rewrite candidates in Ri. Note
that the forms of Ii are problem-dependent that could be
the label for each pair (q, ri) or the preferences among Ri

for qi. With aforementioned notations and definitions, the
problem of searching in F for a scoring function F (q, r) is
formally stated as the following minimization problem:

F = arg min
f∈F

m∑
i=1

L(f, qi,Ri, Ii). (1)

The exact forms of the loss function L(f, qi,Ri, Ii) depends
on the learning target Ii and we will further discuss these
in Subsection 3.2. As illustrated in Figure 1, the proposed
framework consists of two key steps – candidate generat-
ing and candidate ranking. In the following subsections, we
elaborate them with details.
3.1 Candidate Generating
We have two ways to obtain candidate generators for can-
didate generating. One is to treat existing query rewriters
as candidate generators. The other is to explore advanced
techniques to build new candidate generators. Two candi-
date generators used in the paper include one query rewriter
based on statistical machine translation (SMT) in [18] as
well as one new generator based on deep learning techniques.
More technical details about SMT based query rewriter can
be found in [18] and we will also discuss how to train the
rewriter in the experiment section. Next we focus on the
candidate generator based on deep learning techniques.

Recently deep learning techniques have powered a num-
ber of applications from various domains such as computer
vision, speech recognition and natural language processing.
Meanwhile the majority of existing query rewriters are built

with traditional techniques. Therefore a candidate gener-
ator based on deep learning techniques could be comple-
mentary to traditional ones and provides potentially better
candidates. Recurrent Neural Network (RNN) is neural se-
quence model that achieves state of the art performance on
many important sequential learning tasks. The long short-
term memory (LSTM) is a one of the most popular RNN
instance. It can learn long range temporal dependencies and
mitigate the vanishing gradient problem. We propose to use
the Sequence-to-Sequence LSTM model [21] to build a new
candidate generator. In model training, we treat the original
query as input sequence, and use its rewrite queries as target
output sequences. In prediction, the most probable output
sequences are obtained by a beam-search method elaborated
at the end of this section and are used as the query rewrite
candidates.

Given an input sequence xJ1 = x1, · · · , xJ , a standard
RNN computes the hidden vector sequence hJ

1 = h1, · · · , hJ

and output vector sequence yJ1 = y1, · · · , yJ by iterating the
following equations from j = 1 to J :

hj = H(Wxhxj +Whhhj−1 + bh)

yj = Whyhj + by

where the W·,· terms denote weight matrices, the b· terms
denote bias vectors and H is the hidden layer function.

For the version of LSTM used in the sequence to sequence
model, the gates and cells are implemented by the following
composite functions, where we followed [10]:

ij = σ(Wxixj +Whihj−1 + bi)

fj = σ(Wxfxj +Whfhj−1 +Wcfcj−1 + bf

cj = fjcj−1 + ijtanh(Wxcxj +Whchj−1 + bc)

oj = σ(Wxoxj +Whohj−1 +Wcocj + bo)

hj = ojtanh(cj).

In a sequence to sequence LSTM, we want to estimate
the conditional probability p(y1, · · · , yI |x1, · · · , xJ) where
x1, · · · , xJ is an input sequence and y1, · · · , yI is its cor-
responding output sequence whose length I may differ from
J. The LSTM computes this conditional probability by first
obtaining the fixed dimensional representation v of the in-
put sequence x1, · · · , xJ given by the last hidden state of
the LSTM, and then computing the probability of y1, · · · , yI
with a standard LSTM-LM formulation whose initial hidden
state is set as the representation v of x1, · · · , xJ :

p(y1, · · · , yI |x1, · · · , xJ) =
I∏

i=1

p(yi|v, y1, · · · , yi−1), (2)

where p(yi|v, y1, · · · , yi−1) is represented with a softmax over
all the words in the vocabulary. Note that we require that
each query ends with a special end-of-query symbol“<EOQ>”,
which enables the model to define a distribution over se-
quences of all possible lengths. The overall scheme is out-
lined in figure 2, where the shown LSTM computes the
representation of the terms in the query qt1, qt2, · · · , qtm,
<EOQ> and then uses this representation to compute the
probability of rt1, rt2, · · · , rtn, <EOQ>.

We learn a large deep LSTM on large-scale query- rewrite
query pairs. More details about how to prepare these pairs
will be discussed in the experimental section. We trained
it by maximizing the log probability of a correct rewrite

Figure 2: Scheme of Sequence to Sequence LSTM for Generating Query Rewrite

query r = rt1, rt2, · · · , rtn, < EOQ > given the query q =
qt1, qt2, · · · , qtm, < EOQ >, thus the training objective is

1

|D|
∑

(q, r) ∈ D log p(r|q),

where D is the training data set and p(r|q) is calculated ac-
cording to Eq. (2). Once training is complete, we feed origi-
nal queries to the model and produce rewrite candidates by
finding the most likely rewrites according to the LSTM – We
search for the most likely query rewrites using a simple left-
to-right beam search decoder instead of an exact decoder.
It maintains a small number B of partial rewrites, where
partial rewrites are prefixes of some query rewrite candi-
dates. At each time-step, we extend each partial rewrite in
the beam with every possible word in the vocabulary. We
discard all but the B most likely rewrites according to the
model’s log probability. As soon as the “<EOQ>” symbol is
appended to a partial rewrite, it is removed from the beam
and is added to the set of complete rewrite candidates.

3.2 Candidate Ranking
A key challenge of the candidate ranking phase is to learn
the scoring function that is used to rank rewrite candidates
from the candidate generating phase and next we detail our
solution.

3.2.1 Loss Functions

The loss function in the optimization problem for F in Eq. (1)
is different with different types of the learning target Ii.
Next we define three types of loss functions according to Ii
– point-wise, pair-wise and list-wise loss.

Point-wise loss Assuming that for each pair (qi, ri,j), a
grade label yi,j is available which indicates the quality of ri,j
as a query rewrite of qi, the loss function that is appropriate
for point-wise learning target Ii is:

L(f, qi,Ri, Ii) =

ni∑
j=1

l(f(qi, ri,j), yi,j),

where l can be a squared error loss function, i.e., l(x, y) =
‖x−y‖2 if y takes numerical values, or a logistic loss function,
i.e., l(x, y) = log(1 + e−xy) if y ∈ {−1,+1}.

Pair-wise loss When the preference between a pair of rewrite
queries ri,j and ri,k is available, the loss function for the
pair-wise learning target can be constructed as the sum over
pair-wise loss function. For example, let ri,j � ri,k denote
the learning target that ri,j is a preferred query rewrite to
ri,k given the original query qi. The pair-wise loss function

has the following form:

L(f, qi,Ri, Ii) =∑
ri,j�ri,k

l(f(qi, ri,j)− f(qi, ri,k)),

where a typically used l includes the squared hinge loss func-
tion l(t) = max(0, 1 − t)2 and the logistic function l(t) =
log(1 + e−t).

List-wise loss If the learning target Ii includes a complete
order of the rewrite candidatesRi for qi in terms of rewriting
quality, the loss function can then be formulated to calculate
the cost of the difference between the ranking order gener-
ated by the scores f(qi, ri,1), · · · , f(qi, ri,ni) and the ground-
truth ranking order. For a more concrete example, let Ii be
given in the form of (yi(1), yi(2), ·, yi(ni)) where yi(j) is the
index of the candidate in the set Ri which is ranked at the
position j. Let φ(q, r) be a mapping which retains the order
in a permutation, i.e., φ(qi, ri,yi(1)) > φ(qi, ri,yi(1)) > · · · >
φ(qi, ri,yi(ni)). The cosine loss function proposed in [17] is
defined as:

L(f, qi,Ri, Ii) =

1

2

1−
∑ni

j=1 f(qi, ri,j)φ(qi, ri,j)√∑ni
j=1 f

2(qi, ri,j)
√∑ni

j=1 φ
2(qi, ri,j)

 .

More examples of the list-wise loss functions can be found
in [22].

3.2.2 Generating Learning Targets
Generating the learning target Ii is challenging especially
for a large set of queries and their corresponding rewrite
candidates. One straightforward way is to use human label-
ing. However, it is not practical, if not impossible, to achieve
this for a web-scale query rewriting application. First, it is
very time and effort consuming to label millions of query
rewriting pairs. Second, the relevance performance depends
on many components of a search engine such as relevance
ranking algorithms, thus it is extremely difficult for human
editors to compare the quality of rewrite candidates. Third,
for a commercial search engine, its components are typically
evolved rapidly and in order to adapt to these changes, hu-
man labels are consistently and continuously needed. There-
fore it is desirable for an automatic approach to generate
learning target.

In this work, we specifically focus on boosting the rel-
evance performance via query rewriting, thus the learning
target should indicate the quality of the rewrite candidates
from the perspective of search relevance. Intuitively a better
rewrite candidate could attract more clicks to its retrieved

documents. In other words, the number of clicks on the re-
turned document from a rewrite candidate could be a good
indicator about its quality in terms of relevance. These in-
tuitions pave us a way to develop an automatic approach to
generate learning target based on the query-document click
graph that is extracted from search logs.

A click graph is a query-document bipartite graph which
consists of the triplets (q, u, nq,u), where q denotes a query,
u denotes a document and the edges in the bipartite graph
indicate the co-click between queries and documents and the
weights are co-click numbers nq,u, i.e., the number of clicks
(accumulated through a time period and a population of
users) on u when the issued query is q. The click graph
is constructed from user search logs, thus it contains rich
information of users’ understandings and behaviors about
queries and documents. There are many successful appli-
cations based on the query-document graph such as query
suggestion [5] and query clustering [2]. Next we introduce
our approach to generate learning targets from the query-
document graph.

For each query and query rewrite pair (q, r), we estimate
the click numbers if we alter q to r from the query-document
click graph as illustrated in Figure 3:

• We use the query r to retrieve top k documents from
the search engine as U = {u1, u2, · · · , uk} where ui

indicates the ranked i-th document in the returned
list. For example, we retrieve k = 4 documents for
the rewrite candidate r1.

• The click number of the document ui in U with the in-
formation intent of q cr,ui is estimated as nq,ui if there
are clicks between query q and document ui in the
query-document graph (e.g., cr1,d2 = nq,d2 in Figure 3)
and 0 (e.g., cr2,d2 = 0 in Figure 3) otherwise. The ra-
tionale of using (q, ui) instead of (r, ui) is that r could
drift the intent of q and we want to maintain the origi-
nal intent. For example, if r changes the intent of q, ui

could be completely irrelevant to q and it is reasonable
to estimate cr,ui = 0. Let Cr = {cr,u1 , cr,u2 , . . . , cr,uk}
be the estimated click numbers for its top k retrieved
documents.

With the estimated click numbers Cr and document po-
sitions as shown in Figure 3, we can generate the learning
target. Next we illustrate how to generate the point-wise
learning target yq,r from Cr. Our basic idea is to aggre-
gate the estimated click numbers in Cr to a unified target
yq,r. In this paper, we investigate the following aggregating
strategies:

• Clicknum: Intuitively the total click numbers can in-
dicate the quality of a rewrite candidate in terms of
relevance. Therefore the Clicknum strategy is to sum
click numbers in Cr as yq,r:

yq,r :=

k∑
i=1

cr,ui

• Discounted clicknum: In addition to click numbers,
the positions of documents in the ranking list are also
important. Ideally we should rank documents with a
large number of clicks higher; hence we need to penal-
ize these documents with a large number of clicks but

lower positions. With these intuitions, the discounted
clicknum strategy defines yq,r from Cr as:

yq,r :=

k∑
i=1

cr,ui

i+ 1
,

where the contribution of cr,ui in yq,r is penalized by
its position in the ranking list.

• Discounted log clicknum: Click numbers in Cr could
vary dramatically. Some have an extremely large num-
ber of clicks; while others have a few. In this scenario,
the documents with large numbers of clicks could dom-
inate the learning target. Therefore the discounted log
clicknum strategy applies a log function to click num-
bers as:

yq,r :=

k∑
i=1

log2(cr,ui)

i+ 1
.

• Logdiscounted log clicknum: The Discounted clicknum
strategy could over-penalize the click numbers. Similar
to Discounted log clicknum, Logdiscounted log click-
num also applies a log function to positions as:

yq,r :=

k∑
i=1

log2(cr,ui)

log(i+ 1)
.

In some cases, we might not need to rewrite the origi-
nal query q. For example, the quality of q could be better
than that of all available rewrite candidates. Therefore in
practice, we also assign the original query q as one rewrite
candidate. Following the same procedure to generate the
point-wise learning target for the query rewrite r, we can
generate one for the original query as yq,q. If r is better than
q, the documents retrieved by r should be more relevant and
the number yq,r should be higher than yq,q. Similarly, if r
is worse than the original query or even changes the query
intent, the documents retrieved by r should be less relevant
and the number yq,r should be lower than yq,q. Therefore
by treating the original query q as a rewrite candidate, the
proposed framework allows rewriting as the original query.

We maintain the intent of the original query q by using
(q, ui) instead of (r, ui); thus we can directly obtain pair-wise
and list-wise learning targets from the point-wise targets.
For example, the pair-wise labels of two rewrite candidates
ri and rj can be obtained by comparing yq,ri and yq,rj ; and
similarly we can get an order of the quality of all rewrite
candidates of q.

3.2.3 Feature Functions
To find the best scoring function, we need to solve the opti-
mization problem (1) in the functional space F , which is
usually very challenging. A practical way to reduce the
complexity of the optimization problem is to assume that
the scoring functions in F have some special structures and
then search for the optimal F in the constrained space. A
common approach is to assume that every f ∈ F is a linear
combination of m feature functions, namely:

f(q, r) =

m∑
i=1

λihi(q, r), (3)

where each hi(q, r) is the i-th feature function and λi con-
trols the contribution of hi(q, r). There are also other ap-

Figure 3: Generating click numbers Cr from the query-document click graph

proaches to build the scoring functions. For example we can
assume the scoring functions in F are ensembles of decision
trees such that the search space is constrained by the num-
ber of trees and the depth of the decision trees; and a gra-
dient boosting algorithm can be applied to find the optimal
scoring function. In this paper, we focus on the approach
in Eq. (3) while we would like to leave the investigation of
other approaches as one future work.

For each pair of query and rewrite candidate (q, r), we can
build three groups of feature functions – (1) query features:
features are extracted from only the original query q; (2)
rewrite features: features are extracted from only the rewrite
candidate r and (3) pair features: features are extracted
from both q and r. Before introducing the details about
these features, we first introduce notations we use in their
definitions. Let fq and fr be the query frequencies obtained
from the search log. LetW = {W1,W2, . . . ,WN} be the dic-
tionary with N words. We use q = {wq,1, wq,2, . . . , wq,N}
to indicate the vector representation of q where wq,i is the
frequency of Wi in q. Similarly we represent r as r =
{wr,1, wr,2, . . . , wr,N}. We further assume that Uq and Ur
are the sets of URLs connecting to q and r in the query-
document graph, respectively. The definitions and descrip-
tions of these features are summarized in Table 1.

4 Experiment

In this section, we conduct experiments to validate the effec-
tiveness of the proposed framework via a commercial search
engine. In particular, this section mainly aims to answer
the following three questions – (1) what is the quality of the
rewriting query created by the proposed framework? (2)
what is the impact of different learning targets on the per-
formance of the proposed framework and (3) what are the
effects of the feature functions? To answer the first question,
we compare the proposed framework with the state-of-the-
art baseline. Then we study the effects of different learning
target generating strategies and feature functions on the per-
formance of the proposed framework to answer the second
and third questions, respectively. We begin by introducing
the experimental settings.

4.1 Experimental Settings

In the candidate generating phase, we choose two candidate
generators – (1) the statistical machine translation (SMT)
based query rewriter [18, 8] and (2) the LSTM based query
rewriter that is introduced in Subsection 3.1. We need a
large parallel training data with queries and the correspond-
ing written queries to train both SMT and LSTM. Follow-
ing the common practice in [18, 8], we prepare the training
data for candidate generators from the query-document click
graph that is collected from the query log of a commercial
search engine. We first get query and document pairs that
have co-clicks from the query-document click graph. Typ-
ically titles of documents are very informative and repre-
sentative; hence we can consider the title of a document as
an ideal query to retrieve this document. Therefore from
the extracted query and document pairs, we form a paral-
lel training data with queries and titles. In this work, we
extract 800 millions of query and title pairs from the query-
document graph to train both SMT and LSTM models. To
obtain the score function, we use each of these two candi-
date generators to generate 10 rewrite candidates for a given
query and the learning targets are generated from the query-
url graph with more than 2 billions of queries. Note that in
this work, we only focus on the point-wise label since pair-
wise and list-wise labels can be obtained from the point-wise
label as discussed in Subsection 3.2.

In this work, we aim to use query rewriting to boost the
relevance performance. Meanwhile it is very challenging for
human editors to judge the quality of rewriting candidates
in terms of relevance performance. For example, it is diffi-
cult for editors to reach an agreement about the quality of
“how much tesla” and “price tesla” from the relevance per-
spective since the relevance performance strongly depends
on many components of a given search engine. Hence we
propose to evaluate the quality of query rewriting via rele-
vance performance. We further use Discounted cumulative
gain (DCG) as the metric to assess the search relevance per-
formance. DCG has been widely used to assess relevance in
the context of search engines [13]. For a ranked list of N

Table 1: Summary of Group of Features for a Pair of Query and query rewrite (q, r)

Feature Group Feature

Query Features

h1 – Number of words in q as
∑N

i=1 wq,i

h2 – Number of stop words in q: Sq

h3 – Language model score of the query q: Lq

h4 – The query frequencies of the query q: fq
h5 – The average length of words in q: Aq

Rewrite Features

h6 – Number of words in r as
∑N

i=1 wr,i

h7 – Number of stop words in r: Sr

h8 – Language model score of the query rewrite r:Lr

h9 – The query frequencies of the query rewrite r:fr
h10 – The average length of words in r: Ar

Pair Features

h11 – Jaccard similarity of URLs as
|Uq∩Ur|
|Uq∪Ur|

h12 – Difference between the frequencies of the original query q and the rewrite candidate q: fq − fr
h13 – Word-level cosine similarity between q and r:

∑N
i=1 wq,iwr,i√∑N

i=1 w2
q,i

√∑N
i=1 w2

r,i

h14 – Difference between the number of words between q and r:
∑N

i=1 wq,i −
∑N

i=1 wr,i

h15 – Number of common words in q and r
h16 – Difference of language model scores between q and r: Lq − Lr

h17 – Difference between the number of stop words between q and r: Sq − Sr

h18 – Difference between the average length of words in q and r: Aq −Ar

documents, we use the following variation of DCG,

DCGN =

N∑
i=1

Gi

log2(i+ 1)

where Gi represents the weight assigned to the label of the
document at position i, e.g. 10 for Perfect match, 7 for
Excellent match, 3 for Good match, etc. Higher degree of
relevance corresponds to higher value of the weight. We
use the symbol DCG to indicate the average of this value
over a set of testing queries in our experiments. To evaluate
the search relevance performance, 2407 queries are sampled
from the first 75% traffic of the total query list (sorted by
search frequency) of a commercial search engine and seg-
ment queries into 959 top queries (0−40%), 751 torso queries
(40%− 60%) and 697 tail queries (60%− 75%). Web docu-
ments are retrieved from a multiple billion index and ranked
by a fine-tuned commercial ranking system. For each pair
of original query q and retrieved document d, highly trained
human editors are requested to assign one of the five grades
to determine the relevance of the document given the query.
In this paper, we report the relevance performance in terms
of DCG1, DCG3 and DCG5.
4.2 Quality of Query Rewriting
We can reuse most of existing query rewriters in the can-
didate generating phase and we choose the state-of-the-art
query rewriter, i.e., the SMT method proposed in [18] as
one of our candidate generators, hence we compare the pro-
posed framework with the SMT method in terms of rele-
vance performance. Note that we do not compare the pro-
posed framework with other query rewriters such as those
in [6, 14] since we only used the SMT method as the candi-
date generator except the newly proposed LSTM candidate
generator. For the proposed framework, we create two vari-
ants – (1) LQRW-SMT that only uses SMT to generate 20
rewrite candidates; and (2) LQRW-SMT-LSTM that uses
each of SMT and LSTM to generate 10 rewrite candidates,
respectively. In this experiment, we adopt the Logdiscounted
log clicknum strategy to generate the learning target and use

all feature functions defined in Table 1. More details about
the effects of the learning target generating strategies and
feature functions on the proposed framework will be inves-
tigated in the following subsections.

The performance comparison over all 2407 queries is re-
ported in Table 2. We cannot report absolute DCG numbers
for confidentiality reasons; hence we report the DCG rela-
tive improvement compared to SMT. Note that it is evident
from t-test that all improvement is significant.

From Table 2, we make the following observations:

• With SMT as the only candidate generator, LQRW-
SMT obtains remarkable improvement compared to
SMT. SMT query rewriter does not consider relevance;
hence rewrite candidates from SMT are not optimal for
the relevance performance. While LQRW-SMT explic-
itly incorporates the relevance performance into query
rewriting;

• By combining candidates generated by SMT and LSTM,
LQRW-SMT-LSTM outperforms LQRW-SMT. Although
SMT and LSTM are trained with the same set of train-
ing data, candidates from LSTM are complementary
to these from SMT.

Table 2: Overall Search Performance Improvement
(%) in terms of DCG Compared to the Query
Rewriter SMT.

Methods DCG1 DCG3 DCG5

LQRW-SMT +3.01% +2.65% +2.38%
LQRW-SMT-LSTM +3.03% +3.14% +2.95%

The relevance performance of modern search engines is
strongly dependent on user behavior data. However, for
torso and tail queries, the user behavior data is very sparse
and noisy; hence the relevance performance may be not good
for these queries. It is therefore interesting to show the
effects of query rewriting methods on different query traffic

bands. The performance comparisons for top, torso and tail
queries are shown in Table 3 and it can be observed that:

• Both LQRW-SMT and LQRW-SMT-LSTM consistently
outperform SMT for all traffic bands, i.e., top, torso
and tail queries;

• The improvement of LQRW-SMT and LQRW-SMT-
LSTM on torso and tail queries is higher than that
on top queries. This property of the proposed frame-
work has its practical significance since improving the
relevance of torso and tail queries are usually difficult.

Table 3: Search Performance Improvement (%) in
terms of DCG in Different Traffic Bands Compared
to the Query Rewriter SMT.

Top
Methods DCG1 DCG3 DCG5

LQRW-SMT +0.72% +1.48% +1.51%
LQRW-SMT-LSTM +0.66% +1.62% +1.84%

Torso
LQRW-SMT +4.64% +3.43% +3.23%

LQRW-SMT-LSTM +4.93% +4.31% +3.97%
Tail

LQRW-SMT +6.14% +4.13% +3.53%
LQRW-SMT-LSTM +8.22% +5.46% +4.55%

To deeply understand above observations, we calculate
the coverage of different query rewriters in different traffic
bands and the results are shown in Table 4. Note that here
the coverage of a query rewriter is defined as the percentage
of queries whose rewrite candidates generated by the query
rewriter are different from themselves. We note that (1) all
query writers have higher coverage for torso and tail queries
than top queries; (2) the coverage of LQRW-SMT-LSTM
is consistently higher than LQRW-SMT; and (3) the cover-
age of both LQRW-SMT and LQRW-SMT-LSTM increases
more for torso and tail queries than top queries compared
to SMT.

Table 4: Coverage of Query Writing in Different
Traffic Bands.

Methods Top Torso Tail
SMT 10.9% 20.7% 29.5%

LQRW-SMT 14.8% 30.4% 43.2%
LQRW-SMT-LSTM 16.1% 37.5% 51.9%

4.3 The Impact of Learning Target Generat-
ing Strategies

In Subsection 3.2, an automatic approach with four strate-
gies is proposed to generate the learning targets. In this
subsection, we investigate the impact of these learning tar-
get generating strategies on the performance of the proposed
framework. We choose the Logdiscounted log clicknum as
the basic strategy and the performance comparison of other
strategies against the baseline is shown in Table 5. Note that
“+” and “-” indicate performance improvement and decline,
respectively.

We make the following observations from Table 5:

• Clicknum obtained the largest performance reduction.
This result suggests that in addition to click numbers,
it is also necessary and important to consider docu-
ment positions when generating the learning target

• Discounted log clicknum outperforms Discounted click-
num which indicates that the learning targets could be
dominated by these documents with extremely large
numbers of clicks.

• The performance of Discounted log clicknum degrades
slightly compared to Logdiscounted log clicknum. Dis-
counted log clicknum could over-penalize the click num-
bers by positions.

Table 5: The Relative Performance Changes Com-
pared to Logdiscounted log clicknum. Note that “+” and
“-” indicate performance improvement and decline,
respectively.

Learning target DCG1 DCG3 DCG5

Clicknum -2.04% -1.79% -1.58%
Discounted clicknum -0.95% -0.73% -0.77%

Discounted log clicknum -0.43% -0.34% -0.47%

4.4 The Impact of Feature Functions
The parameter λi controls the contribution of the feature
function hi. Therefore in this subsection, we study the im-
pact of feature functions via model parameters λi. We first
rank features by the absolute values of the t-statistic for
model parameters and the top 10 features are shown as fol-
lows:

1. h11: Jaccard similarity of URLs of q and r;

2. h12: Difference between the frequencies of q and r;

3. h13: Word-level cosine similarity between q and r;

4. h9: The query frequencies of the query rewrite r;

5. h8: Language model score of the query rewrite r;

6. h14: Difference between the number of words between
q and r;

7. h15: Number of common words in q and r

8. h7: Number of stop words in r

9. h17: Difference between the number of stop words be-
tween q and r

10. h3: Language model score of the query q

Among top 10 features, there are 6 pair features, 3 rewrite
features and 1 query feature. This result indicates the im-
portance of pair features. We also investigate the perfor-
mance of the proposed framework with only pair features
and top 10 features, respectively. The performance changes
compared to the proposed framework with all features are
shown in Table 6. Note that “*” in the table indicates that
the changes are not significant. When we only use pair fea-
tures, the performance reduces slightly; while there is no
significant performance reduction when we only use top 10
features.

Table 6: The Relative Performance Changes Com-
pared to the Proposed Framework with All Features.
Note that “*” indicates the changes are not signifi-
cant.

Features DCG1 DCG3 DCG5

Pair Features -0.44% -0.52% -0.61%
Top 10 Features -0.15%* -0.13%* -0.17%*

5 Conclusion
This paper proposes a learning to rewrite framework that
is flexible to incorporate existing query rewriting algorithms
such as statistical machine translation and recent advanced
methods in deep learning such as sequence to sequence LSTM.
The framework formulates the query rewriting problem as
an optimization problem of finding a scoring function to op-
timize the relevance performance explicitly. One innovation
of the proposed method is that the supervised information
could be cheaply constructed from the click graph. Experi-
ments conducted on a commercial search engine demonstrate
that the framework is very effective to improve search rele-
vance.

In this future, we plan to explore the framework from
three perspectives. First, we plan to investigate other forms
of scoring functions. Second, we plan to investigate the ef-
fect of including more candidate generating methods in our
framework. Third, we will study methods for generating
pair-wise and list-wise learning targets that are complemen-
tary to the point-wise learning target generated from the
click graph.

6 References

[1] I. Antonellis, H. G. Molina, and C. C. Chang.
Simrank++: query rewriting through link analysis of
the click graph. Proceedings of the VLDB Endowment,
1(1):408–421, 2008.

[2] R. Baeza-Yates, C. Hurtado, and M. Mendoza. Query
recommendation using query logs in search engines. In
Current Trends in Database Technology-EDBT 2004
Workshops, pages 588–596. Springer, 2005.

[3] R. Baeza-Yates, B. Ribeiro-Neto, et al. Modern
information retrieval, volume 463. ACM press New
York, 1999.

[4] R. Baeza-Yates and A. Tiberi. Extracting semantic
relations from query logs. In Proceedings of the 13th
ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 76–85. ACM, 2007.

[5] H. Cao, D. Jiang, J. Pei, Q. He, Z. Liao, E. Chen, and
H. Li. Context-aware query suggestion by mining
click-through and session data. In Proceedings of the
14th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 875–883.
ACM, 2008.

[6] H. Cui, J.-R. Wen, J.-Y. Nie, and W.-Y. Ma.
Probabilistic query expansion using query logs. In
Proceedings of the 11th international conference on
World Wide Web, pages 325–332. ACM, 2002.

[7] B. M. Fonseca, P. Golgher, B. Pôssas,
B. Ribeiro-Neto, and N. Ziviani. Concept-based
interactive query expansion. In Proceedings of the 14th

ACM international conference on Information and
knowledge management, pages 696–703. ACM, 2005.

[8] J. Gao, X. He, S. Xie, and A. Ali. Learning lexicon
models from search logs for query expansion. In
Proceedings of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and
Computational Natural Language Learning, pages
666–676. Association for Computational Linguistics,
2012.

[9] J. Gao and J.-Y. Nie. Towards concept-based
translation models using search logs for query
expansion. In Proceedings of the 21st ACM
international conference on Information and
knowledge management, page 1. ACM, 2012.

[10] A. Graves et al. Supervised sequence labelling with
recurrent neural networks, volume 385. Springer, 2012.

[11] M. Grbovic, N. Djuric, V. Radosavljevic, F. Silvestri,
and N. Bhamidipati. Context-and content-aware
embeddings for query rewriting in sponsored search.
In Proceedings of the 38th International ACM SIGIR
Conference on Research and Development in
Information Retrieval, pages 383–392. ACM, 2015.

[12] C.-K. Huang, L.-F. Chien, and Y.-J. Oyang. Relevant
term suggestion in interactive web search based on
contextual information in query session logs. Journal
of the American Society for Information Science and
Technology, 54(7):638–649, 2003.

[13] K. Järvelin and J. Kekäläinen. Cumulated gain-based
evaluation of ir techniques. ACM TOIS.

[14] R. Jones, B. Rey, O. Madani, and W. Greiner.
Generating query substitutions. In Proceedings of the
15th international conference on World Wide Web,
pages 387–396. ACM, 2006.

[15] T.-Y. Liu. Learning to rank for information retrieval.
Foundations and Trends in Information Retrieval,
3(3):225–331, 2009.

[16] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and
J. Dean. Distributed representations of words and
phrases and their compositionality. In Advances in
neural information processing systems, pages
3111–3119, 2013.

[17] T. Qin, X.-D. Zhang, M.-F. Tsai, D.-S. Wang, T.-Y.
Liu, and H. Li. Query-level loss functions for
information retrieval. Information Processing &
Management, 44(2):838–855, 2008.

[18] S. Riezler and Y. Liu. Query rewriting using
monolingual statistical machine translation.
Computational Linguistics, 36(3):569–582, 2010.

[19] S. Riezler, Y. Liu, and A. Vasserman. Translating
queries into snippets for improved query expansion. In
Proceedings of the 22nd International Conference on
Computational Linguistics-Volume 1, pages 737–744.
Association for Computational Linguistics, 2008.

[20] A. Sordoni, Y. Bengio, H. Vahabi, C. Lioma,
J. Grue Simonsen, and J.-Y. Nie. A hierarchical
recurrent encoder-decoder for generative context-aware
query suggestion. In Proceedings of the 24th ACM
International on Conference on Information and
Knowledge Management, pages 553–562. ACM, 2015.

[21] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to
sequence learning with neural networks. In Advances

in neural information processing systems, pages
3104–3112, 2014.

[22] F. Xia, T.-Y. Liu, J. Wang, W. Zhang, and H. Li.
Listwise approach to learning to rank: theory and
algorithm. In Proceedings of the 25th international
conference on Machine learning, pages 1192–1199.
ACM, 2008.

[23] J. Xu and W. B. Croft. Query expansion using local
and global document analysis. In Proceedings of the
19th annual international ACM SIGIR conference on
Research and development in information retrieval,
pages 4–11. ACM, 1996.

[24] W. V. Zhang and R. Jones. Comparing click logs and
editorial labels for training query rewriting. In WWW
2007 Workshop on Query Log Analysis: Social And
Technological Challenges, 2007.

[25] Z. Zheng, K. Chen, G. Sun, and H. Zha. A regression
framework for learning ranking functions using
relative relevance judgments. In Proceedings of the
30th annual international ACM SIGIR conference on
Research and development in information retrieval,
pages 287–294. ACM, 2007.

