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Abstract

We address the collective matrix completion
problem of jointly recovering a collection of ma-
trices with shared structure from partial (and po-
tentially noisy) observations. To ensure well–
posedness of the problem, we impose a joint low
rank structure, wherein each component matrix
is low rank and the latent space of the low rank
factors corresponding to each entity is shared
across the entire collection. We first develop
a rigorous algebra for representing and manip-
ulating collective–matrix structure, and identify
sufficient conditions for consistent estimation of
collective matrices. We then propose a tractable
convex estimator for solving the collective ma-
trix completion problem, and provide the first
non–trivial theoretical guarantees for consistency
of collective matrix completion. We show that
under reasonable assumptions stated in Sec. 3.1,
with high probability, the proposed estimator ex-
actly recovers the true matrices whenever sample
complexity requirements dictated by Theorem 1
are met. The sample complexity requirement de-
rived in the paper are optimum up to logarithmic
factors, and significantly improve upon the re-
quirements obtained by trivial extensions of stan-
dard matrix completion. Finally, we propose a
scalable approximate algorithm to solve the pro-
posed convex program, and corroborate our re-
sults through simulated and real life experiments.

1 Introduction

Affinity relationships between a pair of entity types
(e.g. users, movies, documents, explicit features, etc.) are
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often represented in a matrix form. The standard ma-
trix completion task of predicting the missing entries of
a matrix from partial (and potentially noisy) observations
is at the core of a wide range of applications including
recommendation systems, recovering gene–protein inter-
actions, and modeling text document collections, among
others [21, 13, 36]. In many practical applications, data
from multiple matrices often share correlated information,
and leveraging the shared structure can potentially enhance
performance. For example, in e–commerce applications,
user preferences in multiple domains such as news, ads,
etc., and explicit user/item feature information such as de-
mographics, social network, text description, etc., are made
available in the form of a “collection of matrices” sharing
interactions among a common set of users/items.

Collective matrix completion involves simultaneously com-
pleting one or more partially observed matrices by leverag-
ing data from a set of correlated matrices. Each component
matrix, also called a view, represents pairwise affinity rela-
tion amongK types of entities. We assume a joint low rank
structure, wherein each entity type k has a low dimensional
latent factor representation Uk; and each view v represent-
ing the affinity between entity types k1 and k2 is a low rank
matrix given by Uk1

U>k2
. Leveraging such shared struc-

ture is especially attractive in scenarios where standard ma-
trix completion typically fails, such as: (i) Insufficient
Data: Data sparsity in one view can often be mitigated
by augmenting data from related views. For example, in
a multiple recommendation systems, user’s interests can be
better captured by combining data from multiple sources;
(ii) Cold Start: Recommendation for new users/items with
no prior ratings can be partially addressed in collective ma-
trix completion using additional data like explicit user/item
features.

However, the problem of collective–matrix completion,
like standard matrix completion, is statistically ill–posed
as: (a) only a decaying fraction of the number of entries
in a matrix are observed; (b) the observations are local-
ized (e.g. individual matrix entries as opposed to random
linear measurements). Recent works on matrix comple-
tion leverage the developments in high dimensional esti-
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mation [26, 9, 35, 4], and propose statistically consistent
tractable estimators under low rank and other structural as-
sumptions [6, 5, 19, 20, 27, 14, 25, 11, 18, 15, 10]. How-
ever, to the best of our knowledge, optimal sample com-
plexity requirements for statistically consistent recovery of
collective–matrices has not been previously analyzed.

In this paper, we propose a convex estimator for collec-
tive matrix completion and provide the first non–trivial the-
oretical guarantees for consistent recovery of collective–
matrices. In a close related work, Bouchard et al. [2] pro-
pose the first convex estimator for collective matrix com-
pletion without analyzing the consistency of the estimate.
In comparison to the analysis for standard matrix comple-
tion, several new challenges are encountered in collective
matrix completion:

(a) Trivial extensions of sample complexity from existing
results on standard matrix completion are suboptimal as
they do not consider the shared structure. Thus, fully lever-
aging the joint low–rank structure in the analysis is the key
to obtain optimal sample complexity.

(b) Unlike matrices, for collective matrices with joint low
rank structure, the entity factors Uk are not always unique
(upto signs and normalization). However, we observe that,
under the assumptions in Sec. 3.1, even when Uk are not
unique, the V relevant interactions are uniquely captured.

(c) For general collective–matrix structures, a joint factor-
ization may not always exist (even with full rank), and fur-
ther the proposed convex estimator can be badly behaved,
we enforce Assumption 3 to avoid these cases; although
this assumption can potentially be relaxed.

To summarize our contributions:

(i) In Sec. 2 and 3, we develop a rigorous algebra for repre-
senting and manipulating collective–matrices. We identify
sufficient conditions (Assumptions 1–3) under which con-
sistent recovery is feasible, and propose a tractable convex
estimator for collective matrix completion.

(ii) We provide the first theoretical guarantee for consistent
collective matrix completion (Theorem 1). Specifically, we
show that for a subset of collective–matrix structures, with
high probability, the proposed estimator exactly recovers
the true matrices whenever the sample complexity satis-
fies ∀k, |Ωk| ∼ O(nkRlogN), where nk is the number
of entities of type k, R is the joint rank of the collective
matrices, and |Ωk| is the expected number of observations
corresponding to entity k. We note that these rates are opti-
mal upto logarithmic factors. Although our analysis is for a
noise–free setting, analogous estimators for recovery under
non–adversarial noise are proposed without guarantees.

(iii) Finally, while the proposed convex program can be
solved by adapting the Singular Value Thresholding for
Collective Matrix Completion (SVT–CMC) algorithm pro-

posed by Bouchard et al. [2, 3, 34], this algorithm is not
scalable to large datasets. As a minor contribution, we
adapt Hazan’s algorithm [16] to provide an approximate
solution for the proposed convex program (Sec. 4.2). The
proposed algorithm has a significantly better per iteration
complexity as compared to SVT–CMC, and can be used
to tradeoff accuracy for computation in large datasets. We
conclude the paper by corroborating our results through ex-
periments on simulated and real life datasets (Sec. 6).

Besides the convex estimator, related work for collective
matrix completion includes various non–convex estimators
and probabilistic models. A seminal paper on low rank col-
lective matrix factorization is the work by Singh et al. [32],
wherein the views are parameterized by the shared latent
factor representation. The latent factors are learnt by min-
imizing a regularized loss function over the estimates. A
Bayesian model for collective matrix factorization was also
proposed by the same authors [30, 31]. Collective matrix
factorization is also related to applications involving multi–
task learning and tensor factorization [23, 22, 1, 37, 38].
For the special case of low rank matrix completion, be-
sides the theoretical guarantees, there are plenty of equally
significant work that propose effective and scalable algo-
rithms, including max–margin matrix factorization [33], al-
ternating minimization [21, 39], and probabilistic models
[24, 29], among others.

2 Collective–Matrix Structure

In this section we introduce equivalent representations for
the collective–matrix structure and develop basic algebra
for analyzing and manipulating collective–matrices.

2.1 Basic Notations

Matrices are denoted by uppercase letters, X , M , etc. Ma-
trix inner product is given by 〈X,Y 〉 =

∑
(i,j)XijYij . The

set of symmetric matrices of dimension N is denoted as
SN . For M ∈ Rm×n, with singular values σ1 ≥ σ2 ≥ . . .,
common matrix norms include the nuclear norm ‖M‖∗ =∑
i σi, the spectral norm ‖M‖2 = σ1, and the Frobenius

norm ‖M‖F =
∑
i σ

2
i =

∑
ijM

2
ij .

Definition 1 (Dual Norm). Given any norm ‖ · ‖ defined
on a metric space V , the dual norm, ‖ · ‖∗ defined on dual
space V∗ is given by ‖X‖∗ = sup‖Y ‖≤1〈X,Y 〉.
Definition 2 (Operator Norm). Given a linear operatorP :
V → W , the operator norm of P is given by ‖P‖op =

sup
X∈V\{0}

‖P(X)‖W
‖X‖V , where ‖.‖V and ‖.‖W are the Euclidean

norms in the respective spaces.

2.2 Collective–Matrix Representation

A collective–matrix, denoted using script letters, X , M,
etc., is a collection of affinity relations among a set of K
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types of entities; and is primarily represented as a list of V
matrices, X = [Xv]

V
v=1 = [Xv : v = 1, 2, . . . , V ]. Each

component matrix Xv , called a view, is the affinity matrix
between a pair of entity types denoted by rv (entity type
along rows) and cv (entity type along columns). We only
consider static undirected affinity relations, wherein, for a
given pair of entity types k1, k2 ∈ {1, 2, . . .K}, there is at
most one affinity relation Xv defined between k1 and k2.

The entity–relationship structure defining a collective–
matrix is represented by an undirected graph G, with nodes
denoting the K entity types, and an edge between nodes k1

and k2 implying that a viewXv with either (rv = k1, cv =
k2) or (rv = k2, cv = k1) exists in the collective matrix.
We assume that the graph G forms a single connected com-
ponent, if not, each connected component could be han-
dled separately without loss of generality. An illustration of
a collective matrix structure X and its entity–relationship
graph G is given in Fig. 1 (a)–(b).

For k = 1, 2, . . . ,K, denote the number of instances of the
kth entity type by nk; let N =

∑
k nk. Then, ∀v, Xv ∈

Rnrv×ncv , and collective–matrices with common entity–
relationship graph G belong to the space:

X = Rnr1
×nc1 × Rnr2

×nc2 × . . .× RnrV
×ncV .

Finally, ∀v, I(v) = {(i, j) : i ∈ [nrv ], j ∈ [ncv ]} =
[nrv ] × [ncv ] denotes the set indices representing the ele-
ments in view v, where [N ] = {1, 2, . . . , N}.

2.2.1 Equivalent Representations

For mathematical convenience, we introduce two alternate
(equivalent) representations for collective–matrices. These
are used interchangeably in the rest of the paper.

1. Entity Matrix Set Representation: A collective–
matrix X , can be equivalently represented as a set of K
matrices X = [Xk]Kk=1, such that Xk is a matrix formed
by concatenating (appropriately transposed) views involv-
ing the entity type k. Let 1E denote the indicator variable
for statement E, and the operator hcat{} denote horizontal
concatenation of a list. We then have the column dimension
of Xk given bymk =

∑V
v=1 ncv1(rv=k) +nrv1(cv=k), and

Xk := hcat
{

[Xv1(rv=k), X
>
v 1(cv=k)]

V
v=1

}
∈ Rnk×mk .

2. Block Matrix Representation: Collective–matrices
can also be represented as blocks in a symmetric matrix
of size N × N , where N =

∑
k nk [2]. For a symmet-

ric matrix Z ∈ SN , we identify K × K blocks, wherein
the (k1, k2) block, denoted as Z[k1, k2], is of dimension
nk1 × nk2 . Block matrix representation for X is given by:

B(X )[k1, k2] =





Xv if ∃v, s.t. rv = k1, cv = k2

X>v if ∃v, s.t. rv = k2, cv = k1

0 otherwise.

Figure 1: An illustration of the various collective–matrix
representations described in Section 2

We define operators Pv : SN → Rnrv×ncv , such that
Pv(Z) = Z[rv, cv]; and ∀Z ∈ SN , Z = [Pv(Z)]Vv=1 ∈ X.

These alternate representations for collective–matrix struc-
ture are illustrated in Figure 1 (c) and (d), respectively.

2.3 Collective–Matrix Algebra

Collective–Matrix Inner Product and Euclidean Norm

〈X ,Y〉 =

V∑

v=1

〈Xv, Yv〉, and ‖X‖F =
√
〈X ,X〉.

Note: We overload the notation for inner product 〈·, ·〉,
and the Frobenius norm ‖ · ‖F for matrices and collective–
matrices, with operands providing disambiguation.

Standard Orthonormal Basis The standard orthonormal
basis for X is given by {E(v,iv,jv) : v ∈ [V ], (iv, jv) ∈
I(v)}, where E(v,iv,jv) ∈ X has a value of 1 in the (iv, jv)

th

element of view v, and 0 everywhere else. Recall that [n] =
{1, 2, . . . , n}, and I(v) = [nrv ]× [ncv ].

Joint Factorization and Collective–Matrix Rank
A collective-matrix X ∈ X is said to possess an R–
dimensional joint factorization, if there exists a set of
factors {Uk ∈ Rnk×R}Kk=1, such that ∀v, Xv = UrvU

>
cv .

The set of collective–matrices in X that have a joint
factorization structure of finite dimension is denoted by
X̄ ⊆ X. For X ∈ X̄, the collective–matrix rank is defined
as the minimum value of R such that an R–dimensional
joint factorization exists for X .

2.4 Atomic Decomposition of Collective–Matrices

Consider the following set of rank–1 collective–matrices:

A = ext(conv{[Pv(uu>)]Vv=1 : u ∈ RN , ‖u‖2 = 1}),
(1)

where conv() and ext() return the convex hull and the ex-
treme points of a set, respectively. Recall thatN =

∑
k nk,
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and Pv : SN → Rnrv×ncv extracts the block corre-
sponding to the view v in an N × N symmetric matrix.
From the block matrix representation (Sec. 2.2.1), note that
X = aff(A ); and the following proposition can be easily
verified:

Proposition 1. A collective–matrix has a joint factoriza-
tion structure if and only if it belongs to the conic hull of
A , i.e. X̄ = cone(A ). �

We define the following quantities of interest:

Collective–Matrix Atomic Norm: also the gauge of A ,

‖X‖A := inf{t > 0 : X ∈ t · conv(A )}. (2)

Support function of A :

‖X‖∗A := sup{〈X ,A〉 : A ∈ A }. (3)

“sign” collective–matrices of X :

E (X ) = {E : ‖X‖A = 〈E ,X〉, ‖E‖∗A = 1}. (4)

Remarks

1. ‖X‖A is not always a norm. It is a norm if A is
centrally symmetric, i.e. if A ∈ A ⇔ −A ∈ A .

2. By convention, ‖X‖A =∞ if X ∈ X \ X̄.
3. However, ‖X‖A is always a convex function and ex-

hibits many norm–like properties. ∀X ∈ X, ‖X‖A ≥
0 and ‖X‖A = 0 iff X = 0; ∀a ≥ 0, ‖aX‖A =
a‖X‖A ; and ‖X + Y‖A ≤ ‖X‖A + ‖Y‖A .

4. If ‖X‖A is a norm, then ‖X‖∗A is its dual norm.

2.4.1 Primal Dual representation

For all X ∈ X̄, ‖X‖A < ∞, and the atomic norm defined
in (2), can be equivalently defined using the following pri-
mal and dual optimization problems.

(P ) ‖X‖A = min
{λr≥0}

∑
r λr s.t.

∑
r λrAr = X , (5)

(D) ‖X‖A = max
Y∈X

〈X ,Y〉 s.t. ‖Y‖∗A ≤ 1. (6)

Proposition 2. ∀X ∈ X̄, convex programs (P ) and (D)
defined above are equivalent to:

(P ) ‖X‖A = min
Z∈SN

tr(Z) s.t. Pv[Z] = Xv∀ v,

(D) ‖X‖A = max
Y∈X
〈X ,Y〉 s.t.

1

2
B(Y) 4 I.

3 Convex Collective–Matrix Completion

Denote the ground truth collective–matrix asM ∈ X̄. The
task in collective–matrix completion is to recoverM from
a subset of the (potentially noisy) entries ofM. Denote the
indices of observed entries by Ω = {(vs, is, js) : (is, js) ∈

I(vs), s = 1, 2, . . . , |Ω|}. For conciseness, we denote the
standard basis corresponding to indices in Ω as ∀s, E(s) =
E(vs,is,js). Further, we define the operator PΩ as:

PΩ(X ) =
∑|Ω|
s=1〈X , E(s)〉E(s). (7)

We consider two observation models:

1. Noise–free model: M is observed on Ω without any
noise, i.e. ∀s, ys = 〈M, E(s)〉.
2. Additive noise model: Entries ofM on Ω are observed
with additive random noise, i.e. ∀s, ys = 〈M, E(s)〉+ ηs.

3.1 Assumptions

Collective–matrix completion is in general an ill–posed
problem. However, recent literature on related tasks of
compressed sensing [12, 7, 8], matrix estimation [28, 6,
5, 19, 20, 25, 18, 15], and other high dimensional esti-
mation [26, 9, 4, 35] etc. propose tractable estimators
with strong statistical guarantees for such high dimensional
problems when low dimensional structural constraints are
imposed on the ground truth parameters.
Assumption 1 (R–dimensional joint factorization). We as-
sume that the ground truth collective–matrix M has a
collective–matrix rank of R � N , i.e. ∃{Uk ∈ Rnk×R},
such that ∀v, Mv = UrvU

>
cv . �

Analogous to matrices, ∀X ∈ X̄, we define the following:

T (X ) =aff{Y ∈ X̄ : ∀ v, rowSpan(Yrv ) ⊆ rowSpan(Xrv )

or rowSpan(Ycv ) ⊆ rowSpan(Xcv )}, (8)

T⊥(X ) ={Y ∈ X̄ : ∀ v, rowSpan(Yv) ⊥ rowSpan(Mv)

and colSpan(Yv) ⊥ colSpan(Mv)}, (9)

where we have used the entity matrix set representation in
(8) (See Sec. 2.2.1). In the rest of the paper, we denote
T (M) and T⊥(M) simply as T and T⊥, respectively. Let
PT and PT⊥ be projections onto T and T⊥, respectively.
Lemma 1. ∀X ∈ X̄, X ∈ T⊥ iff 〈X ,Y〉 = 0, ∀Y ∈ T .
The lemma is proved in the supplementary material. �

As with matrix completion, in a localized observation set-
ting, consistent recovery is infeasible if any entry inM is
overly significant. Such cases are precluded through the
following analogue of incoherence conditions [6, 14].
Assumption 2 (Incoherence). We assume that ∃ (µ0, µ1)
such that the following incoherence conditions with respect
to standard basis are satisfied for all E(v,i,j):

‖PT (E(v,i,j))‖2F ≤
µ0R

mrv

+
µ0R

mcv

, (10)

∃EM ∈ E (M) ∩ T , s.t. 〈E(v,i,j), EM〉2 ≤
µ1R

N2
. (11)

Recall E (M) from (4), and mk =
∑V
v=1 ncv1(rv=k) +

nrv1(cv=k).
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Note that ‖PT (E(v,i,j))‖2F is upper bounded by a sum of
norms of projections of mrv and mcv dimensional stan-
dard basis (in Rmrv and Rmcv , respectively) onto the R
dimensional latent factor space. Equation (10) ensures that
no single latent dimension is overly dominant. �

Further, in Section 2.3 it was noted that in general X̄ ⊆
X, and the set of atoms spanning X̄ defined in (1) need
not be centrally symmetric. This poses subtle challenges in
analyzing the consistency of collective–matrix completion.
To mitigate these difficulties, we consider a restricted set of
collective–matrix structures, under which X = X̄, and A
is centrally symmetric.
Assumption 3 (Bipartite G). Recall from Section 2 that the
entity–relationship structure of X is represented through
an undirected graph G. We assume that G is bipartite, or
equivalently G does not contain any odd length cycles.

Using induction, it can be easily verified that Assump-
tion 3 implies that X = X̄, and that A is centrally sym-
metric. Under this assumption, ‖.‖A and ‖.‖∗A are norms,
and ‖X‖∗A = 1

2λmax(B(X )) ≤ 1
2‖B(X )‖2. We also note

that for the well–posedness of collective–matrix comple-
tion, some variation of Assumptions 1, and 2 is necessary.
However, it is not clear if Assumption 3 is necessary. �

∀k, we define Ωk = {(vs, is, js) ∈ Ω : rvs = k or cvs}.
Let |Ωk| be the expected number of observations in Ωk.
Assumption 4 (Sampling). For s ∈ [|Ω|], independently
(a) sample ks : ks = k w.p. |Ωk|

2|Ω| ;
(b) sample iks ∼ uniform([nk]); and
(c) sample jks ∼ uniform([mk]).
(vs, is, js) is the index of (iks , jks) element in Mks .

Given v ∈ [V ] and (i, j) ∈ I(v), and s = 1, 2, . . . , |Ω|:

Pr
(
(v, i, j) = Ωs

)
=

|Ωrv |
2|Ω|nrvmrv

+
|Ωcv |

2|Ω|ncvmcv

. (12)

Remarks:

1. Note that we overload the notation for cardinality of the
set. |Ωk| in the sampling scheme is the expected cardinal-
ity of Ωk, not the true cardinality of Ωk. However, Hoeffd-
ings’s inequality can be used to show that the cardinality of
Ωk concentrates sharply around the expectation, |Ωk|.
2. Why |Ωk|?: For consistent recovery of M, the low di-
mensional factors ofM, {Uk ∈ Rnk×R} need to be learnt.
Given k, information on Uk is entirely contained in Mk.
Thus, the optimal sample complexity for consistent recov-
ery depends on individual |Ωk|. The assumed sampling
scheme is convenient for deriving bounds in terms of |Ωk|.

3.2 Atomic Norm Minimization

Collective–matrix rank ofM∈ X̄ is given by:

rank(M) = min
{λr≥0}

∑
r 1λr 6=0 s.t.

∑
r λrAr =M,

where Ar ∈ A . However, minimizing the rank of a
collective–matrix is intractable. We use the atomic norm
(2) as a convex surrogate for the rank function and propose
the following convex estimator for the noise–free model:

M̂ = argmin
X∈X̄

‖X‖A s.t. PΩ(X ) = PΩ(M). (13)

For the additive–noise model, we suitably modify the above
convex program to propose three equivalent estimators:

M̂ = argmin
X∈X̄

‖X‖A s.t. ‖PΩ(X −M)‖2F ≤ ω2, (14)

M̂ = argmin
X∈X̄

‖PΩ(X −M)‖2F s.t. ‖X‖A ≤ η, (15)

M̂ = argmin
X∈X̄

‖PΩ(X −M)‖2F + γ‖X‖A . (16)

The estimators are theoretically equivalent in the sense that
for some combination of ω, t, and γ we obtain the same
estimate from the three convex programs. In practice, the
parameters are set through cross validation, and the choice
of a convex program for noisy collective–matrix comple-
tion is often made by the algorithmic considerations.

4 Main Results

The main result of the paper states that under the assump-
tions stated in Sec. 3.1, the convex program in (13), exactly
recovers the ground truth collective–matrix with high prob-
ability. We then propose a scalable greedy algorithm with
convergence guarantees for solving noisy collective–matrix
completion using (15).

4.1 Consistency under Noise–Free Model

Recall: |Ωk| is the expected cardinality of Ωk =
{(v, i, j) ∈ Ω : rv = k or cv = k}, with the true car-
dinality concentrating sharply under the sampling scheme
(Assumption 4), and |Ω| is the cardinality of Ω; nk is the
number of instances of type k, and N =

∑
k nk; R is the

collective–matrix rank ofM; and µ0 and µ1 are the inco-
herence parameters (Assumption 2).
Theorem 1. Assume that the following sample complexity
requirements are met,

(i) ∀k, |Ωk| > c0µ0nkRβ logN log (NκΩ(N)),
(ii) |Ω| > c1 max{µ0, µ1}NRβ logN log (NκΩ(N)),

(iii) ∀k, |Ωk|
nkmk

≥ c |Ω|N2 for some constant c,

where κΩ(N) =
3|Ω|

√
maxk

|Ωk|
nkmk

mink
|Ωk|

nkmk

, which scales at most

as N4 for general Ω and as N2 under the above require-
ments. Then, under the assumptions in Sec. 3.1, for large
enough c0, and c1, and β > 1, and noise–free observa-
tion model, the convex program in (13) exactly recovers
the true collective–matrixM with probability greater than
1−N1−β − c2N1−β log (NκΩ(N)) for some constant c2.
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4.2 Algorithm

Recently, Jaggi et. al. [17] proposed a scalable approxi-
mate algorithm for solving nuclear norm regularized ma-
trix estimation, by adapting the approximate SDP solver
of Hazan [16]. We observe that using the alternate formu-
lation of collective–matrix atomic norm stated in Propo-
sition 2, the convex program for noisy collective–matrix
completion in (15) can be cast as the following SDP:

min
Z<0,

V∑

v=1

‖PΩv
(Mv − Pv(Z))‖2F s.t. tr(Z) ≤ η, (17)

where Ωv = {(vs, is, js) ∈ Ω : vs = v}. Hazan’s algo-
rithm for solving (17) is given in Algorithm 1.

Algorithm 1 Hazan’s Algorithm for Convex Collective–
Matrix Completion (17) (Hazans–CMC)

Rescale loss: f̂η(Z) =
∑
v ‖PΩv

(Mv − Pv(ηZ))‖2F
Initialize Z(1)

for all t = 1, 2 . . . , T = 4
ε do

Compute u(t) = approxEV
(
−∇f̂η(Z(t)), 1

t2

)
1

αt := 2
2+t

Z(t+1) = Z(t) + αtu
(t)u(t)>

return [Pv(Z
(T ))]Vv=1

Lemma 2. Algorithm 1 returns an ε approximate solution
to (15) in time O

( |Ω|
ε2

)

Proof: From Theorem 2 of Hazan’s work [16], the pro-
posed algorithm returns an estimate for a SDP with primal–
dual error of at most ε in 4Cf

ε iterations, where Cf is a
curvature constant of the loss function. For squared loss,
Cf ≤ 1 (Lemma 4 in [17]). Iteration t in Algorithm 1 in-
volves computing an 1

t2 –approximate largest eigen value of
a sparse matrix with |Ω| non–zero elements, which requires
O( |Ω|t ) computation using Lanczos algorithm. �

In comparison, the SVT–CMC algorithm proposed by
Bouchard et. al. [2] converges faster in O( 1√

ε
) iterations;

however, each iteration in SVT–CMC requires computing
all the non–zero eigen vectors of a N × N matrix, which
does not scale well with N . Hazan’s algorithm can be used
to trade–off computation for accuracy in large datasets.

4.3 Discussion and Directions for Future Work

A collective–matrix M of collective–matrix rank R lies
in a lower dimensional model space spanned by the en-
tity factors, {Uk ∈ Rnk×R}. Given k, Uk is estimated
entirely from PΩk

(Mk). Thus, an immediate lower bound
on the sample complexity for well–posedness is given by
|Ωk| ∼ O(nkR). The results presented in the paper are
optimal upto a poly–logarithmic factor.

A trivial estimate for collective–matrix completion is to
estimate each component matrices independently. Since
a joint low rank structure also imposes low rank struc-
ture on the component matrices, this is feasible if each
component matrix satisfies the sample complexity re-
quirements of standard matrix completion, i.e. |Ωv| >
C max {µ0, µ1}R(nrv +ncv ) log(nrv +ncv ). Another, es-
timate from standard matrix completion can be obtained by
completing each matrix {Mk} in the entity–matrix set rep-
resentation independently, this requires a sample complex-
ity of |Ωk| > C max {µ0, µ1}R(nk + mk) log(nk + mk)
for consistent recovery. In comparison to the sample com-
plexity in Theorem 1, these results are sub–optimal as they
do not completely leverage the shared structure introduced
by the jointly factorizability of collective–matrices.

Finally, the collective–matrix completion problem can also
be cast as standard matrix completion problem of com-
pleting an incomplete N ×N symmetric matrix, in which
blocks corresponding to the collective–matrix are partially
observed. However, the existing theoretical results on the
consistency of matrix completion algorithms require either
uniform random sampling [6, 19, 18], or coherent sampling
[10] of the entries of the matrix; and these results fail for
blockwise random sampled matrix. Thus, our results pro-
vide a strict generalization to existing matrix completion
results for the task of collective–matrix completion.

The key challenge in the analysis is to optimally leverage
the shared structure. In high dimensional recovery, sample
complexity depends on some complexity measure of the
model space T . Compared to trivial extensions, T defined
in (8) exploits the structure to give a narrow subspace for
optimal sample complexity.

As a part of future work, we would like to extend the anal-
ysis in this paper to general structures on G (i.e. elimi-
nate Assumption 3). Extension of the analysis to noisy–
observation models is also of interest.

5 Proof Sketch

Detailed proofs of lemmata are included in the supplemen-
tary material. The proof technique is analogous to the anal-
ysis for matrix completion.

Let M̂ = M + ∆ be the output of the convex program in
(13). The key steps in the proof are:

1. Show that under the sample complexity requirements of
Theorem 1, ‖PT (∆)‖F can be upper bounded by a finite
multiple of ‖PT⊥(∆)‖F . (T and T⊥ are defined in (8)).

2. Show optimality of M for (13) if a dual certificate Y
satisfying certain conditions exists.

3. Adapt the golfing scheme introduced by Gross et al. [14]
to construct Y .
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We define p(v, i, j) =
|Ωrv |

2nrvmrv
+

|Ωcv |
2ncvmcv

, and note that

for s = 1, 2, . . . , |Ω|, Pr((v, i, j) = Ωs) = p(v,i,j)
|Ω| . We

also define the following operators for s = 1, 2, . . . , |Ω|:
Rs : X → 1

p(vs,is,js) 〈X , E(s)〉 E(s), and (18)

RΩ : X →∑|Ω|
s=1Rs(X ) with E[RΩ] = I, (19)

where I is the identity operator, and E(s) = E(vs,is,js)

Lemma 3. Let ∀ k, |Ωk| ≥ c0µ0nkRβ logN for a
large constant enough c0. Then, under the assumptions in
Sec. 3.1, the following holds w. p. greater than 1−N1−β ,

‖PTRΩPT − PT ‖op ≤
1

2
.

Proof in the supplementary material. �

Let MΩ(v, i, j) denote the multiplicity of (v, i, j) in
Ω, i.e. MΩ(v, i, j) =

∑
s 1(v,i,j)=(vs,is,js); we have

MΩ(v, i, j) ≤ |Ω|. Also, note that mink
|Ωk|
nkmk

≤
p(v, i, j) ≤ maxk

|Ωk|
nkmk

. Thus, for all X ,

‖RΩ(X )‖F =
∥∥∥

∑

v∈[V ],
(i,j)∈I(v)

MΩ(v, i, j)

p(v, i, j)
〈X , E(v,i,j)〉E(v,i,j)

∥∥∥
F

≤ |Ω|
mink

|Ωk|
nkmk

‖X‖F , (20)

Further, using Lemma 3 we have the following w.h.p,

‖RΩPT (∆)‖2F ≥
1

maxk
|Ωk|
nkmk

〈RΩPT (∆), PT (∆)〉

=
1

maxk
|Ωk|
nkmk

〈PTRΩPT (∆), PT (∆)〉

≥ 1

2 maxk
|Ωk|
nkmk

‖PT (∆)‖2F . (21)

Combining (20) and (21), along with 0 = ‖RΩ(∆)‖F ≥
‖RΩPT (∆)‖F − ‖RΩPT⊥(∆)‖F , we have

‖PT (∆)‖F ≤
1

2
κΩ(N)‖PT⊥(∆)‖F , (22)

where κΩ(N) =
3|Ω|
√

maxk |Ωk|/nkmk

mink |Ωk|/nkmk
.

5.1 Optimality ofM

Lemma 4. Under the assumptions in Sec. 3.1, let ∀k,
|Ωk| ≥ c0µ0nkRβ logN for a sufficiently large constant
c0. If there exists a dual certificate Y satisfying the follow-
ing conditions, thenM is the unique minimizer to (13) w.p.
greater than 1−N1−β:

1. ‖PT (Y )− EM‖F ≤ 1
κΩ(N) , and

2. ‖PT⊥(Y )‖∗A ≤ 1/2,

where recall EM from Assumption 2.
Proof is in the supplementary material. �

5.2 Constructing Dual Certificate

The proof is completed by constructing a dual certificate
satisfying the conditions in Lemma 4. We begin by parti-
tioning each Ω into p = O(log (NκΩ(N))) partitions de-
noted by Ω(j), for j = 1, 2, . . . , p, such that for all j:

(a) ∀k, |Ω(j)
k | > c0µ0βRnk logN and |Ω

(j)
k |

nkmk
≤ c |Ω

(j)|
N2 ,

(b) |Ω(j)| > c2 max{µ0, µ1}βRN logN ,
where Ω

(j)
k = {(v, i, j) ∈ Ω(j) : rv = k or cv = k}.

Define W0 = EM where EM is the sign matrix from As-
sumption 2. We define a process for j = 1, 2, . . . s.t. :

Yj =
∑j
j′=1RΩ(j′)Wj′−1 = RΩ(j)Wj−1 + Yj−1,

Wj = EM − PT (Yj).
(23)

Note that ∀ j, PΩ(Yj) = Yj , and PT (Wj) = Wj . We
show that Yp for p = O(log (NκΩ(N))) satisfies the first
condition required in Lemma 4. The proof for second con-
dition follows directly from the analogous proof for stan-
dard matrix completion by Recht [27] and is provided in
the supplementary material.

It is easy to verify that 1
2E(v,i,j) ∈ A for all (v, i, j), and

by Assumption 3, − 1
2E(v,i,j) ∈ A . Thus, ∀X ∈ X̄,

‖X‖∗A ≥
1

2
max
v∈[V ]

(i,j)∈I(v)

|〈X , E(v,i,j)〉| ≥ 1

2N
‖X‖F .

Also, 1 = ‖EM‖∗A ≥ 1
2N ‖EM‖F , and PT (Yp) − EM =

Wp. Using the above inequalities, we have:

‖PT (Yp)− EM‖F = ‖Wp−1 − PTRΩ(p)Wp−1‖F
(a)

≤ 1

2
‖Wp−1‖F ≤

1

2p
‖EM‖F

(b)
<

1

κΩ(N)
(24)

where (a) follows from Lemma 3, and (b) follows for
large enough c1 s.t. p = c1 log (NκΩ(N)). Note that
we use union bound to bound the probability of failure in
O(log (NκΩ(N))) partitions.

6 Experiments

The simulated experiments are intended to corroborate our
theoretical results in Sec. 4. Experiments with commer-
cial news recommendation dataset is provided to show the
efficacy collective matrix completion over standard matrix
completion for cold–start scenarios.

6.1 Simulated Experiments

We create low–rank ground truth collective–matrices with
K = 4, V = 3, where view 1 is a relation between
entity types 1 and 2, view 2 is a relation between entity
types 1 and 3, and view 3 is a relation between entity
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types 2 and 4 respectively. For simplicity we assumed
a common nk = n. We create collective matrices with
n ∈ {100, 250, 500} and set the rank to R = 2 log n.
The matrices are partially observed with the fraction of ob-
served entries, |Ω|∑

v nrvncv
varying as [0.1, 0.2, . . . , 1]. We

plot the convergence of the errors against the unnormalized
fraction of observations, |Ω|∑

v nrvncv
in Fig. 2a, and against

the normalized sample complexity provided by the theoret-
ical analysis, mink

|Ωk|
nkR logN in Fig. 2b. It can be seen from

the plots that the error uniformly decays with increasing
normalized sample size, indeed |Ωk| > 1.5nkR logN, ∀k
samples suffice for the errors to decay to a very small value.
The aligning of the curves (for different n) given the nor-
malized sample size corroborates the theoretical sample
complexity requirements.
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Figure 2: Convergence of error measured against normal-
ized and unnormalized sample size

6.2 Experiments with Commercial News
Recommendation Dataset

We work with two datasets from a commercial news recom-
mendation engine. The entities include users, news articles,
and news–categories. The datasets consists of two views
(a) user–article click information in a 3hr time window, (b)
a dense and complete user–category preference obtained by
an aggregation of the categories clicked by users.

The first dataset “News–Cold–Start”, consists of ∼ 180K
users, ∼ 750 articles, and 34 categories. In this dataset,
∼ 25000 users have only one click. Randomly chosen neg-
ative samples were added to give dataset of ∼ 1.25 mil-
lion user–article ratings, and ∼ 1.4 million user–category
annotations. The dataset was split in 70 : 10 : 20 propor-
tion as training, validation and test set. The 20% of the
test dataset contains cold start users with no rating infor-
mation. In the second dataset “News–No–Cold–Start”, we
remove the cold start users in the test dataset. This leads to
a much smaller datasets consisting of ∼ 6500 users, ∼ 750
articles and 34 categories, with ∼ 150K user–article rat-
ings (including the randomly chosen negatives) and∼ 50K
user–category ratings. The negatives in each dataset were
sampled independently in each cross–validation iteration to
remove bias.

Mean absolute error (MAE) on the test dataset obtained
from the proposed Hazans algorithm for Collective–Matrix
Completion (CMF–Hazans) and Standard Matrix Factor-
ization (SMF) are reported in Table 1.

Method News–Cold-Start News–No-Cold-Start
CMF–Hazans 0.2741± 0.0002 0.2156± 0.0014
SMF 0.2905± 0.0007 0.2149± 0.0008

Table 1: MAE of the predictors on the two news recom-
mendation datasets

It is observed that collective matrix factorization does not
add much value for warm–start cases as the ratings give ac-
curate prediction. On the other hand, for test dataset con-
sisting on both warm–start and cold–start test cases, the
proposed joint estimation potentially leverages the infor-
mation in the user–category affinities and shows statisti-
cally significant improvement.
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