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ABSTRACT
In this paper, we introduce a novel framework for black-box prompt

tuning with a subspace learning and selection strategy, leveraging

derivative-free optimization algorithms. This approach is crucial for

scenarios where user interaction with language models is restricted

to API usage, without direct access to their internal structures or gra-

dients, a situation typical in Language-Model-as-a-Service (LMaaS).

Our framework focuses on exploring the low-dimensional subspace

of continuous prompts. Previous work on black-box prompt tuning

necessitates a substantial number of API calls due to the random

choice of the subspace. To tackle this problem, we propose to use a

simple zeroth-order optimization algorithm to tackle nonconvex

optimization challenges with nonsmooth nonconvex regularizers:

the Zeroth-Order Mini-Batch Stochastic Proximal Gradient method

(ZO-MB-SPG). A key innovation is the incorporation of nonsmooth

nonconvex regularizers, including the indicator function of the ℓ0
constraint, which enhances our ability to select optimal subspaces

for prompt optimization. The experimental results show that our

proposed black-box prompt tuning method on a few labeled sam-

ples can attain similar performance to the methods applicable to

LMaaS with much fewer API calls.

CCS CONCEPTS
• Theory of computation → Continuous optimization.
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1 INTRODUCTION
In the rapidly evolving landscape of natural language processing

(NLP), the advent of Large Language Models (LLMs) such as GPT-

4 has marked a significant milestone. These models, trained on

diverse datasets encompassing a broad spectrum of human knowl-

edge and language nuances, have demonstrated unprecedented

capabilities in understanding and generating human-like text. This

has opened new avenues for applying these models to a variety of

downstream tasks with task-specific tuning [5, 8, 9, 12, 20, 28, 41].

However, the traditional approach of fine-tuning LLMs for specific

applications poses significant challenges, particularly in scenar-

ios where direct access to the model’s parameters is restricted or

when the fine-tuning process requires substantial computational

resources and memory.

Prompt-based tuning methods [19, 21, 22] have emerged as a

potent alternative, offering a more parameter-efficient way to lever-

age LLMs for specific tasks. By carefully crafting prompts, users

can guide the model’s responses to fit particular applications, ef-

fectively adapting the model without retraining. This method not

only preserves the model’s general capabilities but also allows for

task-specific customizations with a fraction of the computational

cost associated with traditional fine-tuning methods. Moreover, the

prompt-based approach aligns well with the emerging model-as-a-

service (MaaS) paradigm, where users interact with LLMs through

cloud-based APIs, avoiding the overhead of hosting and computing

the models locally [36].
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However, the application of black-box optimization in the con-

text of LLMs, especially within the framework of Language Model

as a Service (LMaaS), faces its own set of challenges. The high di-

mensionality of continuous prompts, while offering a rich space

for finding effective prompts, also introduces difficulties for op-

timization algorithms, which tend to perform less efficiently in

high-dimensional spaces. This has led to a search for methods that

can effectively navigate these high-dimensional spaces without

incurring prohibitive computational costs.

The concept of intrinsic dimensionality offers a ray of hope in

this regard. Recent research suggests that despite the apparent

high dimensionality of the embedding space, the effective dimen-

sionality—i.e., the intrinsic dimensionality—required to capture the

significant variance in prompts may be much lower. This realiza-

tion opens the door to more efficient optimization strategies that

focus on this lower-dimensional subspace, potentially overcoming

the challenges posed by the curse of dimensionality. Recent ad-

vancements in black-box prompt tuning have shown promise in

automating this selection process, using derivative-free optimiza-

tion to identify optimal prompts in a low-dimensional subspace of

the original high-dimensional embedding space [34, 36, 39, 43]. To

be specific, instead of optimizing continuous prompts in its original

high-dimensional space, these methods optimize a latent represen-

tation of the prompt in a space characterized by its low intrinsic

dimensionality. Subsequently, a random low-rank matrix is em-

ployed to map this optimized latent representation back into the

original prompt space. This approach significantly reduces the com-

plexity and computational demands of the tuning process, making

it more accessible and practical for a wider range of applications.

Nonetheless, despite these advancements in black-box prompt tun-

ing, a significant challenge persists: the necessity for an extensive

number of API calls, which could be thousands, primarily attributed

to the randomness of the subspace generation process.

To tackle the above problems, our work builds on these insights

to propose a novel framework for black-box prompt tuning that

leverages the intrinsic dimensionality of LLMs as well as the sub-

space learning and subspace selection strategy. By focusing on this

reduced subspace, we aim to develop more efficient and effective

methods for customizing LLMs for specific tasks, making the power

of these models more accessible to users and applications in the

LMaaS ecosystem. Through experimental validation across various

tasks and models, we demonstrate the feasibility and effectiveness

of our approach, marking a step forward in the practical application

of LLMs in a world increasingly reliant on sophisticated language

processing capabilities. The main contributions of this work are

summarized as follows:

• We propose a novel black-box prompt tuning framework

that exploits the intrinsic low-dimensional subspace of large

language models (LLMs). This framework enables efficient

optimization of prompts without the need for gradient-based

methods, significantly reducing computational complexity

and resource requirements.

• We establish the convergence rate of the zeroth-order mini-

batch stochastic proximal gradient (ZO-MB-SPG) method

for solving general nonconvex optimization problems with

nonsmooth nonconvex regularizers. The theoretical result

shows that ZO-MB-SPG has a comparable convergence rate

with its first-order counterpart.

• The experimental results demonstrate that the proposed

black-box prompt tuning method, even with limited label

samples, can achieve performance comparable to existing

methods. This is particularly noteworthy in the context of

Language Model as a Service (LMaaS), where our approach

significantly reduces the number of required API calls, offer-

ing a more practical solution for real-world applications.

2 RELATEDWORKS
2.1 Black-Box Optimization.
Black-box optimization, also known as gradient-free optimization,

refers to a class of optimization methods used to optimize objective

function without requiring its gradient information. These methods

are particularly useful in scenarios where the objective function is

not explicitly known, is difficult to differentiate, or when gradients

are not readily available or reliable. The basic idea of the gradient-

free method is to approximate the true gradient using either a

one-point gradient estimator (e.g., Covariance Matrix Adaptation

Evolution Strategy (CMA-ES) [15] and Natural Evolution Strategy

(NES) are two types of evolution strategy-based black-box optimiza-

tion algorithms which iteratively maintain the search distribution

of parameters) or a two-point gradient estimator (e.g., simultaneous

perturbation stochastic approximation [33] and zero-order gradient

estimation [1, 11, 13, 25] use the difference of the two function

values to approximate the gradient). Many modern machine learn-

ing applications are associated with zeroth-order optimization, for

example, black-box adversarial attacks on deep neural networks [7],

policy search in reinforcement learning [31], neural network train-

ing with forward gradient [3, 6, 16, 29] and fine-tuning language

models [24].

2.2 Black-Box Prompt Learning.
The exploration of black-box prompt tuning of large language mod-

els (LLMs) has garnered significant attention in recent years. [36]

propose the black-box tuning framework (BBT) to optimize the

continuous prompt prepended to the input text via derivative-free

optimization in low-dimensional subspaces. This approach circum-

vents the need for backpropagation through the LLM, significantly

reducing memory consumption and computational overhead. The

study demonstrates that optimizing prompts within a carefully cho-

sen affine subspace can achieve performance on par with traditional

prompt-tuningmethods, underlining the potential of derivative-free

optimization (DFO) methods in high-dimensional search spaces.

[35] improve the framework above, which prepend continuous

prompts to each layer of the LLM and introduce a gradient-free

algorithm based on divide-and-conquer principles to alternately

optimize prompts at different layers. [43] propose a novel approach,

Black-box Prompt Tuning with Subspace Learning (BSL), which

leverages meta-learning to identify optimal subspaces for prompt

tuning. The study by [34] further extends the application of black-

box prompt tuning into the federated learning framework, propos-

ing a method that allows for efficient and privacy-preserving tuning

of prompts across decentralized datasets. Moreover, [10] establish
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the Black-box Discrete Prompt Learning (BDPL) framework to op-

timize the discrete prompts, which describes the the prompt word

choice as a reinforcement learning policy.

3 SUBSPACE LEARNING FOR PROMPT
LEARNING

In this section, we briefly revisit black-box prompt tuning and then

introduce the proposed subspace selection based black-box prompt

tuning method. The detailed algorithm pseudocode is shown in

Algorithm 1 and an illustration of our method is depicted on the

right side of Figure 1.

3.1 Brief Review of Black-Box Prompt Tuning
Previouswork Lester et al. [19] emphasized that a necessary number

of prompt tokens for prompt tuning to reach competitive perfor-

mance levels on specific downstream tasks is usually in the dozens.

Considering the prompt embedding dimension of pre-trained large

language models is usually one thousand. Consequently, the dimen-

sionality of the continuous prompts employed in these models can

extend into the tens of thousands. This high-dimensional represen-

tation facilitates the prompt-tuning process, allowing the model

to effectively adapt to a wide range of tasks with relatively minor

adjustments to its prompt embeddings.

Nevertheless, this high-dimensional framework poses challenges

for black-box optimization, especially within the context of Lan-

guage Model as a Service (LMaaS). Black-box optimization tech-

niques often struggle with high-dimensional spaces, encountering

what is known as the "curse of dimensionality." This phenome-

non can lead to increased complexity and computational demand,

making the optimization process less efficient and more resource-

intensive.

Fortunately, research by Aghajanyan et al. [2], Qin et al. [27]

has revealed that large-scale Pretrained Language Models (PTMs)

inherently possess a low intrinsic dimensionality. This refers to

a latent, lower-dimensional representation embedded within the

original, high-dimensional prompt space. Such a discovery paves

the way for employing derivative-free optimization algorithms that

can efficiently operate within these lower-dimensional subspaces.

By denoting the dimensionality of these subspaces as𝑑 (with𝑑 ≪ 𝐷 ,

where 𝐷 represents the original high-dimensional space), we can

formulate the objective of black-box prompt tuning as follows,

z∗ = argmin

z∈Z
L

(
𝑓

(
Az + p0; X̃

)
, Ỹ

)
, (1)

where A ∈ R𝐷×𝑑
is the random projection matrix, z ∈ R𝑑 the

learnable low dimensional latent variable, p0 ∈ R𝐷 is the initial

prompt,Z is the search space of z. This approach seeks to optimize

latent representations within the low intrinsic dimension subspaces,

offering a more practical and computationally feasible method for

tuning large-scale PTMs.

As shown on the left side of Figure 1, one iteration of the ap-

proach above includes: (i) Project z into the prompt space using

random matrix A and then add Az to p0. (ii) Concatenate Az + p0
with the embedding X̃ of input texts to obtain the final prompt

embeddings. (iii) Acquire the predictions by calling the black-box

API, which are used to calculate loss along with ground-truth labels.

(iv) The derivative-free optimizer, such as CMA-ES, uses the loss to

update z.

3.2 Our Algorithm of Prompt Tuning
As previously noted, BBT necessitates a substantial number of API

calls. To tackle this problem, we introduce our proposed method,

which consists of three phases: subspace learning, subspace selec-

tion, and prompt tuning. As shown in Figure 1, the process of our

method can be summarized as: (i) Learn a 𝑑′ dimensional subspace

represented by a project matrix Ã. (ii) Select 𝑘 dimensions from

the learned 𝑑′ dimensional subspace. (iii) Solve problem (1) in the

𝑘 dimensional space to obtain the final prompt.

3.2.1 Subspace Learning. The first phase of the proposed method

is subspace learning, whose goal is to learn a 𝑑′ (𝑑′ < 𝑑 ≪ 𝐷)

dimensional subspace spanned by {p1, p2, . . . , p𝑑 ′ }. In the initial-

ization step, we choose a random projection matrix A1 ∈ R𝐷×𝑑

from normal distribution N(𝜇A, 𝛼𝜎̂√
𝑑𝜎𝑧

) as suggested in [35], where

𝜎̂ is the observed standard deviation of word embeddings and

𝜎𝑧 is the initial standard deviation of the normal distribution of

z ∼ N(𝜇𝑧 , 𝜎2𝑧 ). Both 𝜇A and 𝜇z are set to be 0 initially. Then, we

generate {p1, p2, . . . , p𝑑 ′ } iteratively by the following way: at 𝑖-th

iteration, optimization parameter z𝑖 is obtained by optimizing the

loss function L(𝑓 (A𝑖z + p0; X̃), Ỹ) and compute p𝑖 = A𝑖z𝑖 . The
projection matrix A𝑖+1 is generated manually such that A𝑖+1⊥Ã,
where Ã = [p1, . . . , p𝑖 ]. After 𝑑′ iterations, we obtain a new projec-

tion matrix Ã ∈ R𝐷×𝑑 ′
, in which each column is orthogonal to the

others.

Algorithm 1 Subspace Learning for Prompt Tuning

Initialization: Ã = ∅, a random projection A1 ∈ R𝐷×𝑑
chosen

from normal distribution N(𝜇A, 𝛼𝜎̂√
𝑑𝜎𝑧

), initial random prompt

p0 ∈ R𝐷
Phase 1
for 𝑖 = 1 to 𝑑′ do

z𝑖 ∈ argminz∈R𝑑 L(𝑓 (A𝑖z + p0; X̃), Ỹ)
p𝑖 = A𝑖z𝑖
Update Ã = Concat(Ã, p𝑖 )
Construct A𝑖+1 such that A𝑖+1 ⊥ Ã

end for
Phase 2
z′ ∈ argminz∈R𝑑 L(𝑓 (Ãz + p0; X̃), Ỹ) + 𝑟 (z)
Construct Ã′

based on Ã and the non-zero components in z′

Phase 3
z′′ ∈ argminz∈R𝑑 L(𝑓 (Ã′z + p0; X̃), Ỹ)
p̃ = Ã′z′′

Output: p̃ ∈ R𝐷

3.2.2 Subspace Selection. The goal of the subspace selection phase

is to select 𝑘 dimensions from 𝑑′ dimensional subspace learned in

the first phase, to further reduce the dimensionality of the opti-

mization variables. We consider the objective of black-box prompt

tuning, then the selection subspace can be viewed as sparsifying z.
The most commonly used approach for sparsification is to add a
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Black Box API
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Input: 𝒙𝟏 𝒙𝟐…𝒙𝒏

finish

…

update 𝐀𝒍𝐳𝒍…

…
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𝐀෩ᇱ

𝐀෩𝐳ᇱ

𝐀𝐳 𝐀

𝐳

CMA-ES

Embedding𝐩

Input: 𝒙𝟏 𝒙𝟐…𝒙𝒏 Loss

Predictions

Labels

Black Box API

𝐩𝟎

𝐩𝟎

＋

𝐀෩

(a) BBT (b) Our method

Figure 1: Overview of BBT (left) and our method (right). Phase 1 (Subspace Learning): learn a projection matrix Ã by generating
A𝑖z𝑖 iteratively. Phase 2 (Subspace Selection): select 𝑘 columns from Ã through a sparsity-inducing regularizer. Phase 3 (Prompt
Tuning): optimize z′′ in the 𝑘 dimensional subspace to obtain the prompt.

sparsity-inducing regularizer to the objective function. As a conse-

quence, subspace selection becomes the task of solving problem (2)

in the black-box setting.

z′ = argmin

z∈R𝑑′
L

(
𝑓

(
Ãz + p0; X̃

)
, Ỹ

)
+ 𝑟 (z) (2)

Each component in z corresponds to a p𝑖 in Ã. We propose a

zeroth-order optimization algorithm named Zeroth-Order Mini-

Batch Stochastic Proximal Gradient method (ZO-MB-SPG) to solve

the problem above in section 4. After solving problem (2), we obtain

the sparse vector z′, where the non-zero components correspond to

the selected dimensions. We retain the dimensions corresponding

to non-zero components and discard the rest, i.e., we select the

corresponding p𝑖 from Ã based on the non-zero components in

z′ as the result of subspace selection, which are concatenated to

construct Ã′
and will be further utilized in the prompt tuning phase.

3.2.3 Prompt Tuning. The final phase of our method is prompt

tuning, and its goal is to obtain the final prompt p̃. We aim to

solve the same objective as black-box prompt tuning in this phase,

which is problem (1), but the difference is that we optimize z′′

to obtain the prompt in the 𝑘 dimensional subspace provided by

subspace selection phase and the projected matrix is Ã′
. The ultra-

low dimensional subspace significantly reduces the number of API

calls in this phase, representing a substantial advantage compared

to BBT. The optimization problem in this phase can be viewed as

the scenario where 𝑟 (z) ≡ 0 in problem (2). Therefore, we continue

to utilize ZO-MB-SPG to solve it.

Subspace learning and selection phases are part of the pre-training

in our method and the prompt tuning phase can be viewed as fine-

tuning based on the results of the first two phases in practical

applications. Therefore, we report the results of the prompt tuning

phase by default in section 5.

4 OPTIMIZATION ALGORITHM
In this section, we first define some common notations that will be

used throughout the section. Then we describe the formulation of

the problem of interest in this work. Finally, we propose a zeroth-

order algorithm to solve the nonconvex optimization problem with

a nonsmooth nonconvex regularizer.

4.1 Notations and Definitions
Throughout this paper, we use ∥x∥ to denote the Euclidean norm

of a vector x ∈ R𝑑 . Denote by S = {𝜉1, . . . , 𝜉𝑚} a set of random
variables, let |S| be the number of elements in set S and 𝑓S (x) =
1

|S |
∑
𝜉𝑖 ∈S 𝑓 (x; 𝜉𝑖 ). We denote by dist(x,S) the distance between

the vector x and a set S. Denote by 𝜕ℎ(x) the Fréchet subgradient
and 𝜕ℎ(x) the limiting subgradient of a nonconvex function ℎ(x) :
R𝑑 → R, i.e.,

𝜕ℎ(x) =
{
v ∈ R𝑑 : lim

x→x
inf

ℎ(x) − ℎ(x) − v⊤ (x − x)
∥x − x∥ ≥ 0

}
𝜕ℎ(x) =

{
v ∈ R𝑑 : ∃x𝑘

ℎ→ x, 𝑣𝑘 ∈ 𝜕ℎ (x𝑘 ) , v𝑘 → v
}

where x
ℎ→ x means x → x and ℎ(x) → ℎ(x).

We aim to find an 𝜖-stationary point of the problem (1), i.e., to find

a solution x such that dist(0, 𝜕𝐹 (x)) ≤ 𝜖 . Since 𝑓 is differentiable,
then we have 𝜕𝐹 (x) = 𝜕(𝑓 +𝑟 ) (x) = ∇𝑓 (x)+𝜕𝑟 (x). (see Exercise 8.8,
Rockafellar and Wets [30]). Thus, it is equivalent to find a solution
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x satisfying

dist(0,∇𝑓 (x) + 𝜕𝑟 (x)) ≤ 𝜖. (3)

4.2 Problem Formulation and Zero-Order
Gradient Estimation

In this subsection, we consider the following stochastic nonsmooth

nonconvex optimization problem:

min

x∈R𝑑
𝐹 (x) := E𝜉 [𝑓 (x; 𝜉)]︸        ︷︷        ︸

𝑓 (x)

+𝑟 (x) (4)

where 𝜉 is a random variable, 𝑓 (𝑥) is a smooth nonconvex function,

and 𝑟 (𝑥) is a proper nonsmooth nonconvex lower-semicontinuous

function. This formulation is particularly focused on the exploration

of sparsity-induced nonsmooth nonconvex regularizers, which play

a pivotal role in subspace selection. For example, ℓ𝑝 (0 ≤ 𝑝 ≤ 1)
norm, indicator function of a nonconvex constraint (e.g., ∥x∥0 ≤ 𝑘).

Given a black-box model parameterized by x ∈ R𝑑 and a loss

function 𝑓 . A random gradient estimator with mini-batch S is

defined as follows,

ˆ∇𝑓S (x) =
𝑓S (x + 𝜇u) − 𝑓S (x − 𝜇u)

2𝜇
u, (5)

where u ∈ R𝑑 is distributed in N(0, I).

4.3 Zeroth-Order Mini-Batch Stochastic
Proximal Gradient Method

The proposed algorithm for solving problem (4) is the zeroth-order

mini-batch stochastic proximal gradient method (ZO-MB-SPG),

which is presented in Algorithm 2. At the 𝑡-th iteration, ZO-MB-

SPG first computes a mini-batch stochastic gradient of 𝑓 (x) using
gradient estimator (5). Then the parameters are updated by per-

forming standard proximal gradient descent.

Algorithm 2 Zeroth-Order Mini-Batch Stochastic Proximal Gradi-

ent

Input: initial point x0 ∈ R𝑑 , step size 𝜂, mini-batch size𝑚, maxi-

mum number of iterations 𝑇

for 𝑡 = 0 to 𝑇 − 1 do
Draw samples S𝑡 = {𝜉1, . . . , 𝜉𝑚}
for 𝑖 = 1 to𝑚 do

Sample a random direction 𝒖𝑖 from a Gaussian distribu-

tion N(0, I)
Compute

ˆ∇𝑓𝝃𝒊 (x𝑡 ) through (5)

end for
Compute ĝ𝑡 = 1

𝑚

∑𝑚
𝑖=1

ˆ∇𝑓𝝃𝒊 (x𝑡 )
x𝑡+1 ∈ prox𝜂𝑟 [x𝑡 − 𝜂ĝ𝑡 ]

end for
Output: x𝑅 chosen uniformly randomly from {x𝑡 }𝑇𝑡=1.

Before delving into the theoretical result, we first make the fol-

lowing basic assumptions, which are standard in the literature on

stochastic gradient methods for nonconvex optimization [14, 38].

Assumption 1. Assume that the following conditions hold:

(1) E𝜉 [∇𝜉 𝑓 (x)] = ∇𝑓 (x) , and there exists a constant 𝜎 > 0, such
that E𝜉 [∥∇𝜉 𝑓 (x) − ∇𝑓 (x)∥2

]
≤ 𝜎2,∀x ∈ R𝑑 .

(2) Given an initial point x0, there exists Δ < ∞ such that 𝐹 (x0)−
𝐹 (x∗) ≤ Δ, where x∗ denotes the global minimum of (4).

(3) 𝑓 (x) is smooth with a 𝐿-Lipschitz continuous gradient, i.e., it
is differentiable and there exists a constant 𝐿 > 0 such that
∥∇𝑓 (x) − ∇𝑓 (y)∥ ≤ 𝐿∥x − y∥,∀x, y.

(4) There exists a constant𝑀 > 0 such that ∥∇𝑓 (x𝑡 )∥ ≤ 𝑀 .

Assumption 2. Assume that 𝑟 (x) is a proximal-friendly function
such that the proximal operator can be obtained in closed-form, i.e.,

prox𝜂𝑟 [x] = argmin

y∈R𝑑

{
1

2𝜂
∥y − x∥2 + 𝑟 (y)

}
.

We then establish the following general convergence theorem

of Algorithm 2.

Theorem 1. Suppose that Assumption 1 and 2, run Algorithm 1

with 𝜂 = 𝑐
𝐿

(
0 < 𝑐 < 1

2

)
, then the output x𝑅 of Algorithm 1 satisfies

E𝑅 [dist(0, 𝜕𝐹 (x𝑅))2] (6)

≤𝑐1
4(𝑑 + 4) (𝜎2 +𝑀2)

𝑚
+ (𝑑 + 6)3𝐿2𝜇2 + 𝑐2

Δ

𝜂𝑇
,

where 𝑐1 =
2𝑐 (1−2𝑐 )+2
𝑐 (1−2𝑐 ) , 𝑐2 =

6−4𝑐
1−2𝑐 .

Corollary 1. Under the same assumptions of Theorem 1, run Al-

gorithm 2 with 𝜂 = 𝑐
𝐿
(0 < 𝑐 < 1

2
), 𝑇 =

2𝑐2Δ
𝜂𝜖2

,𝑚 =
16𝑐1 (𝑑+4) (𝜎2+𝑀2 )

𝜖2
,

𝜇 = 𝜖

2

√
𝑐1 (𝑑+6)3𝐿

, then the output of Algorithm 2 satisfies

E𝑅 [dist(0, 𝜕𝐹 (x𝑅))2] ≤ 𝜖2 . (7)

Remark 1. According to the corollary above, the total oracle com-
plexity of Algorithm 2 for solving problem 4 is O(𝑑/𝜖4). The dimen-
sionality penalty term, 𝑑 , is a recurrent theme in zeroth-order opti-
mization literature [13, 25]. This highlights the challenges associated
with employing zeroth-order algorithms for high-dimensional con-
tinuous optimization tasks, underscoring the significance of subspace
learning strategies.

5 EXPERIMENTS
5.1 Setup
Dataset and Task. For a fair comparison, we conduct experiments

on various typical language understanding tasks as same as BBT

[36], including sentiment analysis, topic classification, and natural

language inference (NLI). In particular, we use SST-2 [32] and Yelp

polarity [42] in sentiment analysis tasks, AG’s News and DBPedia

[42] in topic classification, RTE [37] and SNLI [4] in natural lan-

guage inference(NLI). The input template and output label words

utilized in the experiment for all datasets are shown in Table 1.

Backbone Model. For comparison with BBT, we conduct exper-

iments using RoBERTaLarge [23], which has approximately 355M

parameters with relatively small intrinsic dimensions [2].

Baseline.We evaluate the proposed method in the black-box set-

ting and compare it with gradient-free baselines. We choose the

following methods as baselines: (1) Manual Prompt, which is a
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Table 1: Datasets, input templates, and output label words used in our experiments.

Task Dataset Input Template Output Label Words

sentiment

SST-2 ⟨𝑆⟩. It was [𝑀𝐴𝑆𝐾]. great, bad

Yelp P. ⟨𝑆⟩. It was [𝑀𝐴𝑆𝐾]. great, bad

topic

AG’s News [𝑀𝐴𝑆𝐾] News: ⟨𝑆⟩ World, Sports, Business, Tech

DBPedia [Category: [𝑀𝐴𝑆𝐾]] ⟨𝑆⟩ Company, Education, Artist, Athlete, Office, Transportation,

Building, Natural, Village, Animal, Plant, Album, Film, Written

NLI

RTE ⟨𝑆1⟩? [𝑀𝐴𝑆𝐾], ⟨𝑆2⟩ Yes, No

SNLI ⟨𝑆1⟩ ? [𝑀𝐴𝑆𝐾], ⟨𝑆2⟩ Yes, Maybe, No

prompt-based approach without learning. We directly evaluate per-

formance using human-written templates in Table 1. (2) Feature-
MLP and (3) Feature-BiLSTM [26], which are two feature-based

methods by utilizing features extracted from PTM to train MLP

and BiLSTM classifiers. MLP utilizes only the [𝐶𝐿𝑆] representa-
tion, while LSTM leverages the representation of all tokens in

the sequence. (4) BBT [36], which optimizes prompts in a low-

dimensional subspace and obtains continuous prompts in the origi-

nal prompt space through a projection matrix.

Evaluation Metrics. For all tasks, we measure performance using

test accuracy and further provide F1 and macro-F1 scores. We

conduct experiments with 3 different random seeds provided by

BBT and report the average performance and standard deviation

for all tasks. Additionally, the count of queries to the black-box

model is an important metric in evaluating black-box optimization

methods. Therefore, we also provide the mean number of API
calls in training or optimization under an early stopping strategy.

Few-shot learning settings. Few-shot learning has drawn inter-

est across various applications [40]. We construct the training and

development sets by randomly sampling𝑚 samples for each class

from the original training set. The original development sets are

used as test sets. For datasets lacking the development set, the orig-

inal test sets are used directly. Both the subspace learning phase

and the subspace selection phase use the same training and devel-

opment set, while the third phase uses different ones. The training,

development, and test sets used for all baselines are consistent with

the third phase.

Implementation Setting. Our method and all baselines are imple-

mented using pytorch and experimented on an NVIDIA GTX 3090

GPU in 16-shot (per class) setting. Specifically, we train Feature-

MLP and Feature-LSTM for 1000 epochs using an Adam optimizer

[18] with learning rate of 3e-4 and batch size of 16 [36]. The ex-

perimental setup of BBT and the subspace learning phase in our

method follows the implementation details in [36] and we set up

to learn 10 dimensional subspace by default. We consider the in-

dicator function of ℓ0 constraint 𝐼{ ∥x∥0≤𝜅 } (x) as the nonsmooth

nonconvex regularizer in subspace selection phase to select 2-3

dimensions, and further provide experimental results for ℓ0 regu-

larizer 𝜆∥x∥0 and ℓ0.5 regularizer 𝜆∥x∥0.5. The maximum iteration

of the second and third phases is 500 and the learning rate is 0.1.

All methods uniformly employ the cross-entropy loss function,

which is defined as LCE (ŷ, 𝑦) = − log Softmax𝑦̃ (ŷ) given the out-

put logits ŷ and the ground-truth labels 𝑦. Our code is available

at https://github.com/ZHZ-JLU/Subspace-Selection-based-Prompt-

Tuning.

5.2 Results
5.2.1 Comparison with Baseline. We report the results of our pro-

posed method along with all baselines on the 6 datasets in Table

2. It is worth noting that our method achieves the highest average

performance and the tunable parameters of our method are signifi-

cantly fewer compared to other methods, excluding Manual Prompt.

Furthermore, we have observed that our proposed method consis-

tently achieves performance comparable to that of BBT across all

datasets, and slightly outperforms it in the 5 datasets. The standard

deviation of our method is smaller in most cases compared to BBT,

demonstrating the higher stability of our method. In particular, our

method increases the test accuracy by 0.50%, 0.37%, 0.38%, 2.34%,

0.91% compared to BBT on the datasets of SST-2, AG’s News, DBPe-

dia, RTE, SNLI, respectively. The standard deviation of our method

drops by 2.02, and 2.40 when solving NLI tasks like RTE and SNLI.

The above results indicate that, while our method is based on BBT’s

framework for subspace learning, it outperforms BBT, especially in

addressing the RTE task where BBT performs less optimally and

demonstrates the most significant performance enhancement in

this task. We attribute this phenomenon to the high standard devia-

tion of BBT in NLI tasks, indicating that the learned p𝑖 have larger
differences than other tasks. In such cases, the advantages of our

subspace selection are more effectively showcased. However, on

tasks that can be effectively addressed with Manual Prompt, which

provides initial points of our method, and has a small standard devi-

ation in BBT, such as Yelp polarity, our method is extremely limited,

due to the smaller differences between learned p𝑖 . In comparison

to the feature-based method, our method falls short of Feature-

LSTM only on the DBPedia, while outperforming Feature-LSTM on

all other tasks. This phenomenon may suggest the feature-based

method has advantages in solving multi-classification tasks. Finally,

we show F1 and macro-F1 scores across various benchmarks in

table 3, which exhibit similar trends to those in Table 2.

5.2.2 Comparison on the Number of API Calls. We perform early

stopping for all methods and report the number of API calls for

all methods in Table 4 with the same experimental settings as the

experiments in Table 2. Since BBT sets 20,000 budgets for DBPedia

(8,000 for the rest of the datasets), we calculated two averages

based on whether DBPedia was included. In either case, the mean

number of API calls for our method is significantly lower than BBT,

at only 3.8% and 6.3%, and on the DBPedia task is only 1.3% of

BBT’s. Compared to the Feature-based method, our method still

has slightly fewer API calls. Although the mean number of API calls

for Feature-LSTM is similar to that of our method when DBPedia is
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Table 2: Comparison of test accuracy on various language understanding tasks. We report the mean and standard deviation of
test accuracy over 3 different seeds. All results are obtained using a pre-trained RoBERTaLarge model in 16-shot (per class)
setting. The last column shows the average accuracy across 6 datasets.

Method Tunable SST-2 Yelp P. AG’s News DBPedia RTE SNLI Avg.Params acc acc acc acc acc acc

Manual Prompt 0 79.70 89.65 76.96 41.33 51.63 31.09 61.73

Feature-MLP 1M 61.73 ±2.42 72.23 ±6.41 69.91 ±4.43 86.16 ±1.61 48.50 ±3.25 36.07 ±4.77 62.43

Feature-LSTM 17M 64.53 ±1.02 70.97 ±1.36 75.61 ±0.49 87.85 ±2.25 50.06 ±2.40 37.31 ±1.17 64.39

BBT 500 88.45 ±0.81 91.74 ±0.77 83.31 ±1.83 85.83 ±1.98 48.56 ±4.36 44.36 ±4.25 73.71

Ours <10 88.95 ±1.10 91.36 ±0.71 83.68 ±0.72 86.21 ±1.34 50.90 ±2.37 45.27 ±1.85 74.40

Table 3: Comparison of F1 and macro-F1 scores across various benchmarks under the same settings as experiments in Table 2.

Method Tunable SST-2 Yelp P. AG’s News DBPedia RTE SNLI Avg.Params f1 f1 macro-f1 macro-f1 f1 macro-f1

Manual Prompt 0 77.68 90.42 77.06 33.90 66.50 24.79 61.73

Feature-MLP 1M 62.94 ±8.77 73.38 ±6.21 70.24 ±4.19 86.20 ±1.42 44.08 ±15.10 32.21 ±8.41 61.51

Feature-LSTM 17M 64.18 ±6.22 72.23 ±0.91 74.91 ±0.63 87.76 ±2.28 49.10 ±13.10 35.98 ±2.77 64.03

BBT 500 89.15 ±0.54 92.25 ±0.66 83.26 ±1.79 85.66 ±2.04 50.82 ±16.50 43.30 ±3.04 74.07

Ours <10 89.74 ±0.93 91.91 ±0.46 83.58 ±0.72 86.08 ±1.39 64.30 ±3.17 44.99 ±2.21 76.77

Table 4: Comparison of the number of API calls during training or optimization under early stopping strategy. w/o DBPedia:
excluding the DBPedia when calculating the mean.

Method SST-2 Yelp P. AG’s News DBPedia RTE SNLI Avg. Avg.(-w/o DBPedia)
Feature-MLP 693 677 570 767 43 80 471 413

Feature-LSTM 103 457 460 700 157 20 316 239

BBT 3567 2767 4867 18133 3567 3467 6061 3647

Ours 366 340 207 233 20 214 230 229

not included, our method far exceeds its average performance. The

overall experimental results demonstrate that our proposed method

can effectively reduce the number of API calls while maintaining

performance.
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Figure 2: Train loss in subspace selection phase on SST-2. 𝑘:
The number of preserved dimensions

5.3 Ablations
In this section, we perform ablation experiments to investigate the

effect of the various components of our method on the performance.

All experimental settings, except for the parameters explicitly spec-

ified, remain consistent with the experiments in Table 2. For each

ablation, we conduct experiments on 3 different seeds and report

the mean and standard deviation of the results.

5.3.1 Effect of Subspace Selection. First, we compare the effect of

the number of preserved dimensions on the convergence of the

subspace selection algorithm, as shown in Figure 2, when the num-

ber of preserved dimensions 𝑘 = 2, 4, 6, 8, 10, the subspace selection

algorithms can all converge to approximately 0.1 on the train loss,

which proves that our subspace selection algorithm is capable of

selecting a specified number of dimensions and continuously op-

timize the corresponding components in z′′. We report the test

accuracy on all datasets in Table 5, both with or without using

the subspace selection phase. Most of the results show improve-

ment due to subspace selection, demonstrating that our subspace

selection algorithm is capable of identifying superior dimensions

provided by the subspace learning phase. It is worth noting that

the standard deviation of performance decreases on all 6 datasets

after subspace selection, indicating that subspace selection not only

enhances performance but also contributes to improved stability.
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Figure 3: Results after removing subspace learning phase on SST-2, AG’s News and Yelp P.

Table 5: Ablations of the subspace selection phase. We show
the mean and standard deviation of test accuracy over 3 dif-
ferent seeds across 6 datasets.

Datasets Subspace Selection
Y N

SST-2 88.95 ±1.10 88.38±1.23
Yelp P. 91.36 ±0.71 91.98 ±1.01

AG’s News 83.68 ±0.72 83.56 ±0.86
DBPedia 86.21 ±1.34 77.84 ±4.08
RTE 50.90 ±2.37 47.89 ±3.07
SNLI 45.27 ±1.85 45.21 ±2.96

5.3.2 Effect of Subspace Learning. We remove the subspace learn-

ing phase and instead use randomly generated projection matrix

Ã, in which each column is orthogonal to the others. We set 𝑑′

to 500 and the maximum number of iterations to 10,000. The re-

sults of the experiments when the number of preserved dimensions

𝑘 = 100, 200, 300, 400, 500 are shown in Table 6 and Figure 3. In

contrast to the original method that optimizes fewer than 10 param-

eters, the method excluding subspace learning requires expanding

the subspace dimension to 500 and increasing the number of it-

erations to 10,000 to attain comparable performance. This result

illustrates the irreplaceable role of the subspace learning phase in

improving performance and reducing subsequent training costs.

Moreover, from Table 6 and Figure 3, it can be observed that the

performance of the method excluding subspace learning decreases

with the reduction of 𝑘 , which indicates a failure in the subspace

selection phase. We attribute this phenomenon to the absence of

distinction in superiority or inferiority among dimensions because

the projected matrix Ã is randomly generated rather than learned,

in which case a higher dimensionality means a higher probability

of containing good solutions. So it can be concluded that the sub-

space learning phase is the prerequisite for subspace selection in

our method.

5.3.3 Effect of Subspace Dimensionality in Subspace Learning. In
the subspace learning phase, the actual optimization is performed

on a 𝑑 dimensional subspace. We keep the budget of API calls at
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8000 and vary the 𝑑 in the subspace learning phase to conduct

experiments to compare our method’s performance on SST-2, AG’s

News at 𝑑 = 100, 300, 500 and the results are shown in the table 7.

When 𝑑 = 100, 300, the performance of the method experienced

varying degrees of decline compared to 𝑑 = 500, which is because

it is challenging for a small subspace to contain a good solution.

On the other hand, the influence of dimensionality changes on

performance varies across datasets. For the SST-2, decreasing from

500 to 300 dimensions has little impact on the performance, while

decreasing from 300 to 100 dimensions reduces the performance by

2.72%. For the AG’s News, the decline trend is relatively smooth.

Table 6: Test accuracy after removing subspace learning
phase on SST-2, AG’s News and Yelp P.

𝑘
SST-2 AG’s News Yelp P.
acc acc acc

500 88.68 ±0.48 82.71 ±1.29 91.36 ±0.75
400 88.27 ±0.74 83.32 ±1.52 91.33 ±0.74
300 87.77 ±0.63 82.62 ±0.76 91.24 ±0.71
200 87.08 ±0.54 82.39 ±1.03 91.04 ±0.66
100 85.89 ±0.35 81.30 ±0.39 90.73 ±0.72

Table 7: Ablations of subspace dimensionality in subspace
learning phase on SST-2 and AG’s News.

Dimensionality (𝑑) SST-2 AG’s News
acc acc

500 88.95 ±1.10 83.68 ±0.72
300 88.80 ±1.53 82.62 ±2.51
100 86.08 ±1.68 81.60 ±1.01

5.3.4 Effect of Nonsmooth Nonconvex Regularizer. To investigate

the sensitivity of prompt performance to regularizer, we provide

experimental results for two other nonsmooth nonconvex regular-

izers, i.e., ℓ0 regularizer, ℓ0.5 regularizer, and compare them with

results of the indicator function of ℓ0 constraint. As shown in ta-

ble 8, the results on the 3 regularizers show minimal differences,

indicating that the prompt performance is relatively insensitive to

the choice of regularizer. In the context of such similar results, the

advantage of the indicator function of ℓ0 constraint in explicitly

specifying the number of preserved dimensions becomes apparent.

Table 8: Ablations of the 3 different nonsmooth nonconvex
regularizers, i.e., indicator function of ℓ0 constraint, ℓ0 regu-
larizer, and ℓ0.5 regularizer.

Datasets ℓ0 constraint ℓ0 regularizer ℓ0.5 regularizer
SST-2 88.95 ±1.10 88.88±1.21 89.03±0.47
Yelp P. 91.36 ±0.71 91.00 ±1.41 91.44±1.13

AG’s News 83.68 ±0.72 83.44 ±0.57 83.32±1.48
DBPedia 86.21 ±1.34 86.71 ±1.19 86.66±1.41
RTE 50.90 ±2.37 50.30 ±4.70 51.02±1.04
SNLI 45.27 ±1.85 44.78 ±2.83 45.59±0.56

6 CONCLUSIONS
It is challenging to obtain continuous prompts through black-box

optimization within the framework of Language Model as a Service

(LMaaS) due to the high dimensionality of continuous prompts.

To overcome this limitation, we propose a novel framework for

black-box prompt tuning, which is based on the fact that LLMs pos-

sess intrinsic dimensions significantly lower than the embedding

space. Our method acquires an ultra-low dimensional subspace

through subspace learning and subspace selection and then opti-

mizes prompts within this subspace. Simultaneously, we introduce

a zeroth-order optimization algorithm (ZO-MB-SPG) to achieve

subspace selection through sparsity-inducing nonsmooth noncon-

vex regularizers. Extensive experiment results on few-shot learning

demonstrate that our method attains performance comparable to

existing methods with much fewer API calls.
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APPENDIX
A PROOF OF THEOREM 1

Proof. Recall that the update of x𝑡+1 is

x𝑡+1 ∈ arg min

x∈R𝑑

{
𝑟 (x) + 1

2𝜂
∥x − (x𝑡 − 𝜂ĝ𝑡 )∥2

}
= arg min

x∈R𝑑

{
𝑟 (x) + ⟨ĝ𝑡 , x − x𝑡 ⟩ +

1

2𝜂
∥x − x𝑡 ∥2

}
,

(8)

then by Exercise 8.8 and Theorem 10.1 of [30] we know

−ĝ𝑡 −
1

𝜂
(x𝑡+1 − x𝑡 ) ∈ 𝜕𝑟 (x𝑡+1) , (9)

which implies that

∇𝑓 (x𝑡+1)− ĝ𝑡 −
1

𝜂
(x𝑡+1 − x𝑡 ) ∈ ∇𝑓 (x𝑡+1)+𝜕𝑟 (x𝑡+1) = 𝜕𝐹 (x𝑡+1) .

(10)

By the update of x𝑡+1 in Algorithm 1, we also have

𝑟 (x𝑡+1) + ⟨ĝ𝑡 , x𝑡+1 − x𝑡 ⟩ +
1

2𝜂
∥x𝑡+1 − x𝑡 ∥2 ≤ 𝑟 (x𝑡 ) . (11)

Since 𝑓 (x) is smooth with parameter 𝐿 , then

𝑓 (x𝑡+1) ≤ 𝑓 (x𝑡 ) + ⟨∇𝑓 (x𝑡 ) , x𝑡+1 − x𝑡 ⟩ +
𝐿

2

∥x𝑡+1 − x𝑡 ∥2 . (12)

Combining these two inequalities (11) and (12) we get

⟨ĝ𝑡 − ∇𝑓 (x𝑡 ) , x𝑡+1 − x𝑡 ⟩+
1

2

(1/𝜂−𝐿) ∥x𝑡+1 − x𝑡 ∥2 ≤ 𝐹 (x𝑡 )−𝐹 (x𝑡+1) .
(13)

That is

1

2

(1/𝜂 − 𝐿) ∥x𝑡+1 − x𝑡 ∥2

≤𝐹 (x𝑡 ) − 𝐹 (x𝑡+1) − ⟨ĝ𝑡 − ∇𝑓 (x𝑡 ) , x𝑡+1 − x𝑡 ⟩

≤𝐹 (x𝑡 ) − 𝐹 (x𝑡+1) +
1

2𝐿
∥ĝ𝑡 − ∇𝑓 (x𝑡 )∥2 +

𝐿

2

∥x𝑡+1 − x𝑡 ∥2 ,

where the last inequality uses Young’s inequality ⟨a, b⟩ ≤ 1

2
∥a∥2 +

1

2
∥b∥2 . Then by rearranging above inequality and summing it

across 𝑡 = 0, . . . ,𝑇 − 1 , we have

1 − 2𝜂𝐿

2𝜂

𝑇−1∑︁
𝑡=0

∥x𝑡+1 − x𝑡 ∥2 ≤ 𝐹 (x0) − 𝐹 (x𝑇 ) +
1

2𝐿

𝑇−1∑︁
𝑡=0

∥ĝ𝑡 − ∇𝑓 (x𝑡 )∥2

≤ 𝐹 (x0) − 𝐹 (x∗) +
1

2𝐿

𝑇−1∑︁
𝑡=0

∥ĝ𝑡 − ∇𝑓 (x𝑡 )∥2

≤ Δ + 1

2𝐿

𝑇−1∑︁
𝑡=0

∥ĝ𝑡 − ∇𝑓 (x𝑡 )∥2 ,

(14)

where the second inequality uses the fact that 𝐹 (x∗) ≤ 𝐹 (x) for
any x ∈ R𝑑 and the last inequality uses the Assumption of 𝐹 (x0) −
𝐹 (x∗) ≤ Δ.

On the other hand, multiplying by
1

𝜂 on both sides of (13), we

have

2

𝜂
⟨ĝ𝑡 − ∇𝑓 (x𝑡+1) , x𝑡+1 − x𝑡 ⟩ +

1 − 𝜂𝐿
𝜂2

∥x𝑡+1 − x𝑡 ∥2

≤ 2 (𝐹 (x𝑡 ) − 𝐹 (x𝑡+1))
𝜂

− 2

𝜂
⟨∇𝑓 (x𝑡+1) − ∇𝑓 (x𝑡 ) , x𝑡+1 − x𝑡 ⟩ .

(15)

Since

2

〈
ĝ𝑡 − ∇𝑓 (x𝑡+1) ,

1

𝜂
(x𝑡+1 − x𝑡 )

〉
=∥ĝ𝑡 − ∇𝑓 (x𝑡+1) +

1

𝜂
(x𝑡+1 − x𝑡 ) ∥2 − ∥ĝ𝑡 − ∇𝑓 (x𝑡+1)∥2

− 1

𝜂2
∥x𝑡+1 − x𝑡 ∥2,

then plugging above inequality into (15) and rearranging it we have



ĝ𝑡 − ∇𝑓 (x𝑡+1) +
1

𝜂
(x𝑡+1 − x𝑡 )





2
≤ ∥ĝ𝑡 − ∇𝑓 (x𝑡+1)∥2 +

1

𝜂2
∥x𝑡+1 − x𝑡 ∥2 −

1 − 𝜂𝐿
𝜂2

∥x𝑡+1 − x𝑡 ∥2

+ 2 (𝐹 (x𝑡 ) − 𝐹 (x𝑡+1))
𝜂

− 2

𝜂
⟨∇𝑓 (x𝑡+1) − ∇𝑓 (x𝑡 ) , x𝑡+1 − x𝑡 ⟩

≤2 ∥ĝ𝑡 − ∇𝑓 (x𝑡 )∥2 + 2 ∥∇𝑓 (x𝑡 ) − ∇𝑓 (x𝑡+1)∥2 +
1

𝜂2
∥x𝑡+1 − x𝑡 ∥2

− 1 − 𝜂𝐿
𝜂2

∥x𝑡+1 − x𝑡 ∥2 +
2 (𝐹 (x𝑡 ) − 𝐹 (x𝑡+1))

𝜂

− 2

𝜂
⟨∇𝑓 (x𝑡+1) − ∇𝑓 (x𝑡 ) , x𝑡+1 − x𝑡 ⟩

≤2 ∥ĝ𝑡 − ∇𝑓 (x𝑡 )∥2 + 2𝐿2 ∥x𝑡 − x𝑡+1∥2 +
1

𝜂2
∥x𝑡+1 − x𝑡 ∥2

− 1 − 𝜂𝐿
𝜂2

∥x𝑡+1 − x𝑡 ∥2 +
2 (𝐹 (x𝑡 ) − 𝐹 (x𝑡+1))

𝜂
+ 2𝐿

𝜂
∥x𝑡+1 − x𝑡 ∥2

=2 ∥ĝ𝑡 − ∇𝑓 (x𝑡 )∥2 +
2 (𝐹 (x𝑡 ) − 𝐹 (x𝑡+1))

𝜂
+

(
2𝐿2 + 3𝐿

𝜂

)
∥x𝑡+1 − x𝑡 ∥2 ,

where the second inequality is due to Young’s inequality ∥a±b∥2 ≤
2∥a∥2 + 2∥b∥2; the last inequality is due to the Assumption of

∥∇𝑓 (x) − ∇𝑓 (y)∥ ≤ 𝐿∥x − y∥ for any x, y ∈ R𝑑 and Cauchy-

Schwartz inequality. By summing up 𝑡 = 0, 1, . . . ,𝑇 − 1, we have

𝑇−1∑︁
𝑡=0





ĝ𝑡 − ∇𝑓 (x𝑡+1) +
1

𝜂
(x𝑡+1 − x𝑡 )





2
≤2

𝑇−1∑︁
𝑡=0

∥ĝ𝑡 − ∇𝑓 (x𝑡 )∥2 +
2 (𝐹 (x0) − 𝐹 (x𝑇 ))

𝜂

+
(
2𝐿2 + 3𝐿

𝜂

) 𝑇−1∑︁
𝑡=0

∥x𝑡 − x𝑡+1∥2

≤2
𝑇−1∑︁
𝑡=0

∥ĝ𝑡 − ∇𝑓 (x𝑡 )∥2 +
2 (𝐹 (x0) − 𝐹 (x∗))

𝜂

+
(
2𝐿2 + 3𝐿

𝜂

) 𝑇−1∑︁
𝑡=0

∥x𝑡 − x𝑡+1∥2

≤2
𝑇−1∑︁
𝑡=0

∥ĝ𝑡 − ∇𝑓 (x𝑡 )∥2 +
2Δ

𝜂
+ 2

𝜂2

𝑇−1∑︁
𝑡=0

∥x𝑡 − x𝑡+1∥2 ,

where the second inequality is due to 𝐹 (x∗) ≤ 𝐹 (x𝑇 ) ; the last

inequality holds by setting 𝜂 = 𝑐
𝐿
< 1

2𝐿
and Assumption of 𝐹 (x0) −

𝐹 (x∗) ≤ Δ . Combining the above inequality with (10) and (14) and

taking the expectation, we have
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E𝑅

[
dist

(
0, 𝜕𝐹 (x𝑅)

)
2

]
≤ 1

𝑇

𝑇−1∑︁
𝑡=0

E

[



ĝ𝑡 − ∇𝑓 (x𝑡+1) +
1

𝜂
(x𝑡+1 − x𝑡 )





2]
≤ 2

𝑇

𝑇−1∑︁
𝑡=0

E

[
∥ĝ𝑡 − ∇𝑓 (x𝑡 )∥2

]
+ 2Δ

𝜂𝑇

+ 2

𝜂2𝑇

(
2

1/𝜂 − 2𝐿
Δ + 1

𝐿/𝜂 − 2𝐿2

𝑇−1∑︁
𝑡=0

E

[
∥ĝ𝑡 − ∇𝑓 (x𝑡 )∥2

] )
=
2𝑐 (1 − 2𝑐) + 2

𝑐 (1 − 2𝑐)
1

𝑇

𝑇−1∑︁
𝑡=0

E

[
∥ĝ𝑡 − ∇𝑓 (x𝑡 )∥2

]
+ 6 − 4𝑐

1 − 2𝑐

Δ

𝜂𝑇
,

where 0 < 𝑐 < 1

2
. And then we can get

E∥ĝ𝑡 − ∇𝑓 (x𝑡 ) ∥2

=E∥ĝ𝑡 − ∇𝑓𝜇 (x𝑡 ) + ∇𝑓𝜇 (x𝑡 ) − ∇𝑓 (x𝑡 ) ∥2

=E∥ĝ𝑡 − ∇𝑓𝜇 (x𝑡 )∥2 + E∥∇𝑓𝜇 (x𝑡 ) − ∇𝑓 (x𝑡 ) ∥2

+ E
〈
ĝ𝑡 − ∇𝑓𝜇 (x𝑡 ),∇𝑓𝜇 (x𝑡 ) − ∇𝑓 (x𝑡 )

〉
=E∥ĝ𝑡 − ∇𝑓𝜇 (x𝑡 )∥2 + E∥∇𝑓𝜇 (x𝑡 ) − ∇𝑓 (x𝑡 ) ∥2

≤E∥ĝ𝑡 − ∇𝑓𝜇 (x𝑡 )∥2 +
𝐿2𝜇2 (𝑑 + 3)3

4

=E∥ 1
𝑚

𝑚∑︁
𝑖=1

ˆ∇𝑓𝜉𝑖 (x𝑡 ) − ∇𝑓𝜇 (x𝑡 )∥2 +
𝐿2𝜇2 (𝑑 + 3)3

4

=
1

𝑚
E∥ ˆ∇𝑓𝜉 (x𝑡 ) − ∇𝑓𝜇 (x𝑡 )∥2 +

𝐿2𝜇2 (𝑑 + 3)3
4

≤ 1

𝑚
E∥ ˆ∇𝑓𝜉 (x𝑡 )∥2 +

𝐿2𝜇2 (𝑑 + 3)3
4

≤ 1

𝑚
E𝜉

[
2(𝑑 + 4)∥∇𝑓𝜉 (x𝑡 )∥2 +

𝜇2𝐿2 (𝑑 + 6)3
2

]
+ 𝐿

2𝜇2 (𝑑 + 3)3
4

≤ 1

𝑚

[
2(𝑑 + 4)

(
2E𝜉 ∥∇𝑓𝜉 (x𝑡 ) − ∇𝑓 (x𝑡 )∥2 + 2∥∇𝑓 (x𝑡 )∥2

)
+ 𝜇

2𝐿2 (𝑑 + 6)3
2

]
+ 𝐿

2𝜇2 (𝑑 + 3)3
4

≤ 4(𝑑 + 4) (𝜎2 +𝑀2)
𝑚

+ (𝑑 + 6)3𝐿2𝜇2

where the first, the third and the last inequality use Lemma 6 in

[17]. Finally, we have

E𝑅

[
dist

(
0, 𝜕𝐹 (x𝑅)

)
2

]
≤ 2𝑐 (1 − 2𝑐) + 2

𝑐 (1 − 2𝑐)
1

𝑇

𝑇−1∑︁
𝑡=0

E

[
∥ĝ𝑡 − ∇𝑓 (x𝑡 )∥2

]
+ 6 − 4𝑐

1 − 2𝑐

Δ

𝜂𝑇

≤ 2𝑐 (1 − 2𝑐) + 2

𝑐 (1 − 2𝑐) 𝜎̂2 + 6 − 4𝑐

1 − 2𝑐

Δ

𝜂𝑇

where 𝜎̂2 =
4(𝑑+4) (𝜎2+𝑀2 )

𝑚 + (𝑑 + 6)3𝐿2𝜇2.
□
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