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Abstract Query understanding is to bridge the gap and establish the communication
channel between the searcher and the search engine. This raises a huge challenge

for going beyond traditional keyword query. One bigger challenge is to interact with

search engines in a more natural way, such as in the form of natural language, ques-

tion answering or conversation, and so on. In addition, how to employ additional

information, such as knowledge graph and cross-language, to assist query under-

standing, becomes more and more important. Moreover, there are a lot of related

questions and settings in query understanding that have not been yet fully explored.

We will review some of them in this chapter and hope that researchers interested

in query understanding will try to answer these challenging and exciting research

questions.

9.1 Personalized Query Understanding

Query understanding is essentially limited if the user’s personal perspective is not

taken into consideration. Different people specify the same information need in

different manners and the relevance of an item to the query is varied according to

the user’s private interests, prior knowledge, and the current context of the search

session.

Personalized query understanding (PQU) is the initial process of personalized

search which analyzes the user query according to the user’s specific needs, personal

knowledge, and the context she is currently involved with. Search personalization

has been extensively studied by the IR community (e.g., [62, 34]) and was invoked,
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to some extent, by all commercial search engines1. In this section we briefly discuss

our own anticipation how PQU is expected to emerge in the coming future.

Search Personalization can be done at certain levels of granularity. The most

basic one is session analysis, where the user’s query is analyzed with respect to

the previous queries submitted during the user’s current search session, and the

responses as reflected by the user feedback on the search results [18]. For example,

a user searching for “parking" while her previous query was “Golden Bridge, SF",

should only be exposed to parking lots in the Golden bridge area. Other parking

lots are unlikely to be relevant in this specific session. Similarly, previous search

results and the corresponding user feedback, should also be taken into account while

analyzing the current query, e.g., by downgrading results that have already been

clicked (or ignored) previously during the current search session [71].

While current instrumentation tools for session analysis are mostly based on

the user on-line feedback, as reflected through her clicks, mouse tracking, and her

abandonment rate [15], much better instrumentation tools for measuring user en-

gagement are expected to emerge, such as eye tracking, face expression analysis,

sentiment analysis, and many more. Such tools would let us better analyze the user

satisfaction (or dissatisfaction) with the search results, thus letting us tuning our

search engine for better understanding and serving our users.

The long history of the user interaction with the search engine also provides im-

portant clues about the user general interests [6]. Analyzing the current query in the

context of the user’s search history, e.g., by topic modeling, can assist in understand-

ing the user general topics of interests, thus assisting us in query disambiguation and

classification [29]. Current search personalization approaches are mostly based on

analyzing previous queries and previously visited Web pages. It is very likely that

in the close future many other types of user feedback, on any digital device, could

be tracked, aggregated, and be used for better modeling the user interests [79]. For

example, the list of applications that we use on our smart-phones on a daily basis

are extremely effective in identifying our interests and goals [4]. Another example is

the user activity on social media sites where the user posts, comments, and shares,

provide valuable data about her areas of interest. The user own social network can

be furthered analyzed for better understanding the topics and issues that are relevant

to the user in the context of her community [12]. Analyzing such rich types of data

sources will enrich our understanding of the users goals and preferences and will let

us to better serve their information needs.

While PQU is going to emerge significantly in the typical search scenario, it is also

critical and essential for personal digital assistants like Siri2, Cortana3, and Alexa4.

These agents are expected to answer our questions, make orders for us in on-line

shopping sites, recommend relevant content, assist us in organizing our travels, etc.

Such assistants require advanced personalization capabilities in order to keep track of

1 For example, https://googleblog.blogspot.co.il/2009/12/personalized-search-for-everyone.html

2 https://www.apple.com/ios/siri/

3 https://www.microsoft.com/en-us/windows/cortana

4 https://www.alexa.com/
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our knowledge, preferences, and the context we are currently involved with, in order

to serve us optimally. For example, when ordering coffee from our favorite coffee

shop, my personal assistance is expected to be aware of that I drink my coffee with

cream, no sugar, and very hot, while my wife drinks it black and weak. When asking

for recommendation for a birthday present for Jenny, my assistant should know that

Jenny is my fifth years old daughter. When asking our agent to order shampoo for our

family, it should be aware of the types of shampoo favored by all family members,

our favorite suppliers, as well as all other relevant details.

The main tool for capturing personalized data is a personalized knowledge graph

(PKG) which will encapsulate all related entities of the user such as family members,

friends, neighbors, contacts, as well as preferences, biases, and interests. The PKG

will complement the general knowledge graph (KG) that is already being widely

used by search engines for providing up-to-date information about popular entities

such as politicians, celebrities, organizations, products, locations, etc. The PKG

will be focused on entities strongly relevant to the user. Our personal social network,

locations (home, work, frequent visiting sites), medicines, dietary ingredients, media

preferred entities, should all be represented in our PKG. The PKG will be used by

the assistant agents to personalize the interaction with the user. Each query will be

analyzed by considering the personal entities in this graph, in addition to the entities

extracted from the general KG, and their relationships with the user.

To summarize, we can safely anticipate that query understanding will become

muchmore personalized in the coming future for supporting deep personalized search

experience, provided through general-purpose search engines as well as through

personal digital assistants.

9.2 Natural Language Question Understanding

Another popular trend in the IR domain is moving from keyword queries to natural

language questions. Current mobile devices enable users to input spoken language

queries into their search applications, taking advantage of recent developments in

speech recognition technology that exceeds human performance in spoken language

understanding [65]. Spoken queries are typically much longer and are usually pro-

nounced as natural language questions, rather the standard keyword queries that we

are used to issue in current Web search services [28].

In contrast to short keyword queries, long queries can benefit from Natural Lan-

guage Processing (NLP) methods. While NLP analysis for short queries typically

fails to bring significant improvement over shallow statistical-based methods, they

were found useful for long queries where syntactic analysis such as part-of-speech

tagging and dependency parsing complement standard statistical term weighting

methods [14].

Serving natural language questions strongly correspondswith the traditional ques-

tion answering task which has been mostly focused on answering factoid questions

[40]. The standard flow of question answering process begins with question anal-



210 9 Future Directions of Query Understanding

ysis for identifying the lexical answer type, i.e., the category type of the answer

expected for that question (e.g. country, capital city, date, distance). Then, passages

are identified in a given knowledge-base that are likely to contain an answer to the

question. Candidate answers are then extracted from the top retrieved passages and

are judged and scored according to many criteria. The top scored candidate is then

selected for the final answer. A typical judge, for example, will filter out candidates

not belonging to the question’s lexical category type identified during the question

analysis phase. This paradigm was successfully demonstrated by IBMWatson which

was able to outperform human trivia experts in the game of Jeopardy [24]. However,

even the extremely complicated Jeopardy questions are limited to factoid questions

only. More complex needs such as why questions, opinion and advice seeking ques-

tions, puzzles, and many other types, are still an open challenge and deserve further

research for understanding the actual information need behind them.

Another emerging direction for question understanding is the identification of

Web queries having a question intent which constitute about 10% of the issued

queries [80]. Such queries, even formulated as keyword queries, seek for a direct

and detailed answer rather than a list of search results. Current Web search engines

usually handle such queries by developing a specific tool for any specific question

type. Weather-based queries are served by the Weather agent while stock-based

queries are handled by the Finance agent. The same approach is taken for handling

named-entity queries where the entity’s relevant information, extracted from the

general-purpose knowledge graph, is directly displayed on the SERP enriching the

standard Web search results.

Furthermore, a new trend emerges recently of handling factoid questions by ex-

isting question answering techniques. This approach is immature yet and in its infant

stages but we can expect significant progress in the future. Complementary, any

question-intent queries can be served by searching over an archive of community

question answering sites, looking for similar questions that have already been man-

ually answered by humans. This approach was dominant among participants in the

TREC’s Live-QA track [1] where participants were challenged to answer real human

questions in real time (in less than one minute). Real human questions submitted

on the Yahoo Answers site, were submitted to participant systems during the con-

test and were answered automatically and immediately by the participant systems.

Most participants searched for the answer over a given archive of question-answer

pairs to provide the most appropriate human answer for similar questions. Many

approaches were examined for measuring the relevance of question-answer pairs to

the given question. One interesting technology presented in the track was a combi-

nation of automatic search with human judgment; a list of candidate answers were

retrieved by the search component and then were judged in real-time by crowd-

sourcing humans [66]. One of the conclusion of the Live-QA challenge was that

while previously-answered questions can be useful to answer popular questions, ad-

vanced answer generation techniques should be considered in order to answer, with

high quality, long-tailed questions.

To conclude, the trend of moving from keyword queries to natural language

questions enables users to better express their needs, and to easily provide their
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questions through much more diverse and highly accessible input devices. However,

these complicated questions open many new challenges in question analysis and

question understanding, and require the development of advanced techniques that

should be further explored.

9.3 Dialog Query Conversational Query Understanding

The current search engines mainly focus on one-shot search: the search results are

basically determined by the current query the user has formulated. Few attempts have

been made to engage a conversation with the user to better understand the search

intent of the user. The burden is on the user who has to learn to adapt to the search

systems: when a query was not successful, the user has to modify it based on an

analysis of the previous search results. Such modifications can be repeated several

times before the user can find the desired documents. Even though, it is not rare to

see frustrated users who fail to retrieve desired documents and to understand why

their queries have not been successful. The interface of search engines is not user

friendly and does not provide much help to the user to formulate better queries

Looking back into the history, IR was imagined as an intermediary between the

library system and the user – a role that was played typically by a librarian. To

understand what the user was looking for, the librarian usually held a conversation

(negotiation) with the user to understand the information need of the user and to

generate a good search query to be submitted to a library system [78]. Even though

we do not think about using a human intermediary for search nowadays, or have

the luxury to do it, the existence of a human intermediary provided at least several

advantages compared to the current interface:

• She/he knows better the useful search terms to use than most users, being familiar

with the data collections;

• She/he knows better databases to search (when there are multiple search systems);

• She/he understands the search intent of the user.

These advantages are precious for users who are not familiar with the search

engine, the documents indexed, or the searched topics. A conversational intermediary

can play a similar role as human librarian to help the user. Some typical cases where

the conversational assistance can be helpful are as follows:

• The user’s initial query is ambiguous: either ambiguous terms are used, or the

whole query may lead to very different types of documents. If ambiguity is

detected, a clarification question can be asked to the user [2].

• The query is under-specified: The query may be too general or too vague, leading

to too many search results. It may be useful to ask the user to provide more details

about the searched topics. For example, some choices can be offered to the user

based on the distribution of the corresponding topics [72].

• The formulated query does not contain the best search terms. When formulating a

query, a user may not have the experience to choose the best search terms. In this
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case, the conversational assistance can suggest better terms or a better formulation

of the query.

• A search topic may be strongly related to other topics, which could be of interest

to the user. For example, it may be useful to the user to also learn about the

background information when searching about an event, or to learn about its next

evolution [8]. The conversational assistance can take a proactive role to suggest

related topics to users.

While conceptually, the above assistance can be useful, it has to be implemented

correctly. A bad assistance tool can easily become annoying. To implement effec-

tive conversational assistance to understand search intents, we are faced with the

following technical challenges:

• How to detect is a conversational assistance is needed?

• How to determine the best action? Should the system ask a clarification ques-

tion? provide some results and see how the user interact with them? or suggest

alternative queries/topics?

• How to generate a natural and relevant reply or question? This aspect is par-

ticularly challenging for the current conversation technology, which is able to

generate replies in task-oriented conversation in limited domains with predefined

knowledge structure, but has difficulty to do it in open-domain conversation [2].

A key issue to investigate is whether it is possible to develop some general con-

versation patterns for general search tasks. For example, when a query ambiguity

is detected, a clarification question such as “do you mean X or Y by [original

query]?” can be generated. To suggest alternative queries, the system can suggest

“try the query [suggested query] that has been successful for other users”, or

“your search topic is related to [suggested query]”.

• How to judge the success of a conversational query understanding process? The

goal of new interaction methods, including conversational query understanding,

is to help the users to do more effective search. When the user is involved in the

loop, the current evaluation methodology becomes insufficient. Some attempts

have been made to evaluate the search process in which the user participate [37],

but there is still no general consensus on the appropriate methodology for con-

versational IR.

• Finally, we also have to think about the possible forms of a conversational assis-

tance. Dialog in natural language (either in speech or in text) is the first form of

conversation we can think about. Should we limit conversational assistance to this

narrow form, or should we give conversation a wider meaning, to include other

forms of interactions such as providing choices to the user, let the user click on

some results? [49]

In summary, conversational query understanding and assistance will likely change

the face of search engines in the future, but many underlying problems remain to be

explored and solved to make it effective in practice.
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9.4 Medical Query Understanding

Medical IR is an important application area. People often use search engine to locate

relevant information in addition to consulting physicians. However, the current search

engines are limited in providing appropriate search tools in this specific area. In most

cases, users are left with a search engine constructed with the general technology,

even though the documents in the database may be in the medical domain. A good

understanding ofmedical queries is particularly important becausemost users are not

familiar with the specialized concepts used in the medical documents. This situation

also makes the understanding very challenging. Some of the main difficulties are as

follows:

• Vocabulary mismatch: End users may not know the exact specialized term of

a medical concept. Even though some lexical resources have been constructed,

trying to bridge the vocabulary gap between specialized documents and non-

specialized end users [91], they are far from enough to solve the problem. The

problem of vocabulary mismatch is not limited to the level of words or terms, it

can be at a more global level. For example, a user may use several sentences to

explain a health condition, which could be described by a specialized term.

• Concept mapping: A strongly related problem is to recognize correctly the con-

cepts described in a text (a document or a query). This is a key step for correct

query understanding. Concept mapping in medical domain has attracted a large

amount of research work. Most approaches leverage the existing lexical resources

(e.g. UMLSMetathesaurus5) and make use of syntactic rules, variations on word

forms, and statistics to determine what concepts a sequence of words can cor-

respond to. MetaMap6 [3] is considered to be one of the best tools in this area.

However, its accuracy on query analysis was estimated at only about 70% [21, 67],

making it difficult to rely on for document matching.

• Exploring more resources to learn concept mapping: The existing research on

concept mapping has been limited to lexical mapping an observed sequence of

words to the possible expressions of a concept in a lexical resource. The recent

development on deep learning offers us a great opportunity tomatch a piece of text

with a concept in a latent representation space: Both concepts andwords/sentences

could be mapped into the same representation space, allowing them to be directly

compared.While some preliminary studies in this direction has been done [47, 48]

showing promising results, more investigations are required to fully explore the

potential of this approach.

• In addition to search queries, users tend to ask more complex questions. In

forums of discussions where users can ask questions to physicians or other peer

users, it is common to see long questions with a description about the patient

and the problem, and asking for advice. While we do not see, in the current

stage, that human replies can be completely replaced by automatic replies, it is

5 https://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/

6 https://metamap.nlm.nih.gov/
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useful to process such long and complex questions to help users locate the most

useful documents or pieces of information. We are then faced with the problem

of understanding complex medical questions, which is not limited to merely

identifying the key concepts involved, but also relate them so as to construct a

complete picture (graph) about the question. For example, we should not only

recognize that the user’s question involves the concept “pneumonia”, but also that

“pneumonia” happened to the patient one month ago rather than now, and the

patient is a 50 years-old adult. This fine-grained analysis is crucial in this area.

In addition to query understanding, documents should also be understood in a

similar way. Finally, newmatching processes are required to compare complex query

and document representations. All these problems require more research work.

9.5 Cross Language Query Understanding and Translation

In the majority of cases, users are interested in searching documents in the same

language as the query. However, this situation does not mean that there is no need for

searching documents in other languages. Cross-language and multilingual search is

needed in several typical cases [25]. For example, the topic may not be well covered

in the language of the query, but is well covered in another language; or the search

needs to be complete (recall-oriented search such as patent retrieval) in all languages.

In these typical cases, a search query has to be translated into one or several other

languages. Query translation is a challenging task.

A general machine translation can do a good job for translating most queries:

when there is no ambiguity and when terms in a query have a clear translation

in another language. However, we are often faced with the translation ambiguity

problem, especially for short queries which provide limited context information.

The existing approaches have explored the utilization of the following information

to select good translation terms:

• Translation probability

• How common a term is used in the target language

In addition to the problem of translation, query translation also plays the role of

selection of good search terms: When several translation alternatives exist, it may be

better to select the one that is more discriminative, or to combine all of them. The

inclusion of multiple translation terms in query translation has naturally produced a

desired effect of query expansion [25, 82].

Cross language query understanding is not limited to translation only. The search

behaviors in different language communities could be different. For example, while

people in North America are more concerned with water and soil pollution, people

in China can be more concerned with air pollution. So a search on “pollution” in

different language communities may lead to different results. Cross language query

understanding could be extended to the understanding of search intents in different
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language communities, and when possible, making the required adaptation. This has

been found very useful in some existing work [25].

The further development on cross language query understanding will certainly

benefit from the development of deep learning approaches. Indeed, if both the query

and the document can bemapped into a common representation space, whatever their

language is, then the translation problem does not exist anymore. Such interlingua

representation has been investigated in recent MT studies [23], which assumes that

different languages share a common representation space, in addition to a private

space specific to each language. However, much more investigations are required to

make the approach effective in practice.

9.6 Temporal Dynamics of Queries

TheWorldWideWeb is highly dynamic and is constantly evolving: as a large number

of new web pages are created or updated every second, information on those old web

pages are outdated quickly. At the same time, web search is strongly influenced by

time: some queries occasionally spike in popularity, some queries periodically spike,

and others remain relatively constant. In order to help search engine users to find the

latest updated information, it is foremost to detect those time-sensitive queries and

understand their temporal dynamics, which benefits not only search ranking [22],

but also query auto-completion [70, 11].

Given a query, we count its frequency during a pre-defined time interval, and

generate a time-series about this query. In order to model the temporal shapes,

power Law distribution is proposed as the function to model burst time-series [17],

and recently Hawkes process is leveraged to model temporal bursts with multiple

spikes [64]. Another useful approach is to model occurrence of spikes using infinite-

state automation approach [39]. Yet, the method uses spike locations as input, and

thus it is not possible to directly apply the infinite-state automation approach for raw

time-series data.

In addition, temporal information help us to group topics together. Once a sudden

spike appears on the extracted time-series, most likely, many of users are searching

the same topic or the same event, which indicates a strong relationship between

content information and temporal information. Therefore, it is necessary for us to

combine temporal information with content information into the same framework,

yet it is a very challenging and difficult task, as temporal shapes and textual content

are heterogeneous. To combine temporal modeling with content analysis is not brand

new, and there are a few excellent work [35, 42]. However, these existing work either

assumes topical distribution changes smoothly or just models temporal information

as a sequence of bursts, which could not explicitly model the temporal shapes with

the sudden spikes.

Furthermore, temporal dynamics of queries can be leveraged for prediction. Since

whether a query is triggered by an event can be successfully predicted [64], it

is possible to improved query auto-completion by leveraging terms related to the
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triggered event, or to enhance search result ranking via boosting documents related

to the triggered event, which are promising research ideas. Yet, how to handle

prediction with intent shifting or triggered by multiple events are still unsolved open

challenges.

9.7 Deep Learning for Query Understanding

With the success of deep learning in many research areas, Information Retrieval (IR)

community has started to explore deep learning based techniques to various query

understanding problems. The key features of deep learning are representation learn-

ing and end-to-end training. We begin by introducing different neural approaches

to learn vector representations of queries. We then review some shallow and deep

neural methods that employ pre-trained word embeddings as well as learn the end-

to-end query understanding task such as query expansion, spelling correction, query

classification, and so on.

Vector representations are fundamental to both information retrieval and deep

learning. Different vector representations exhibit different level of generalization

and could derive different level of similarity. In traditional IR, query and document

are represented as bag of words, and many approaches rely on exact term matching

between the query and the document text. To be able to perform soft term matching

between semantically similar words, a number of studies have focused in particular

on the use of word embeddings generated using shallow or deep NNs. For example,

the term ‘hotel’ and ‘motel’ are two separate words which cannot match each other

with bag of words, while ideally they could share a large similarity using word

embeddings. Word embedding, also known as distributed representation of words,

refers to a set of machine learning algorithms that learn high-dimensional real-

valued dense vector representation w ∈ 𝑅𝑑 for each vocabulary term 𝑤, where 𝑑
denotes the embedding dimensionality. Word2vec [52] and GloVe [60] are two well-

known word embedding algorithms that learn embedding vectors in an unsupervised

learning. The underlying idea is that the words that often appear in surrounding

contexts are similar to each other. Such word embeddings can be used to capture a

certain type of topical similarity, such as ‘hotel’ to be similar to ‘motel’, and ‘wife’

to be similar to ‘husband’. It is worth noting that learning different word embeddings

can capture different types of similarities, which may not be appropriate for a certain

retrieval scenario.

A better alternative is to learn embeddings as a set of parameters in an end-to-end

neural network model for a specific IR task [85, 19, 90]. The word embeddings can

be aggregated in different ways for estimating query embedding vectors, and using

the average word embeddings is quite popular [44, 81, 56]. In [88], a theoretical

framework has been proposed with different implementations for estimating query

embedding vectors based on individual word embeddings, which shows averageword

embeddings is a special case. In addition, Dehghani et al. [19] proposed to represent

query as a weighted sum of word embeddings by learning the global weight for each
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term in the vocabulary set. Training word embedding vectors based on additional

data, like query logs and click-through data, was also studied in [32, 73, 26]. Recently,

Grbovic et al. [27] used query embeddings to include session-based information

for sponsor search. Estimating accurate query embedding vectors can improve the

performance of many of the embedding-based methods that need to compute query

vectors. It should be noted that in a realistic case, many tail and rare queries are not

available during the training time of embedding vectors, which makes direct training

of query embedding vectors problematic. How to learn the embeddings for tail and

rare queries is still a very challenge task.

There are many existing works [73, 20, 43, 89, 5] that attempt to leverage word

embeddings for query expansion. One straightforward method [43, 89, 5] is to

employ the pre-trained term embeddings to select terms that are similar to the

query as a whole or its constituent terms, and then the selected terms are used to

expand the query in a unigram language model framework. For example, Zamani

and Croft [89] presented a set of embedding-based query language models using

the query expansion and pseudo-relevance feedback techniques that benefit from

the word embedding vectors. Diaz et al. [20] proposed to train word embeddings

on topically-constrained corpora, instead of large topically-unconstrained corpora.

These locally-trained embedding vectors were shown to perform well for the query

expansion task. Zheng and Callan [94] proposed a supervised embedding-based

term re-weighting technique applied to the language modeling and BM25 retrieval

models.

Convolutional neural networks (CNNs) and recurrent neural networks (RNNs)

are two most common architectures, where CNNs were originally developed for

image classification [33, 41] and RNNs have been successfully used in natural

language processing [31, 51]. Recently, a number of deep neural networks with deep

architectures have been applied to some specific query understanding approaches.

For example, CNN and RNNs have emerged as top performing architectures in query

classification and query intent detection [38, 36, 92, 30, 69]. Park and Chiba [59]

proposed a neural language model with recurrent layers for query auto-completion

task. Another special type of neural network architecture is Siamese networks. A

Siamese networks consists of two identical neural networks, each taking one of the

two inputs, such as the query and the document. The last layers of the two networks

are then fed to a contrastive loss function, which calculates the similarity between

the two inputs. The Deep Semantic Similarity Model (DSSM) [32] is on such

architecture that trains on query and document title pairs and learns the similarity

between them. Convolutional-DSSM (CDSSM) [68] employs more sophisticated

architectures involving convolutional layers. Mitra and Craswell [54] trained the

same CDSSM architecture using query prefix-suffix pairs and leveraged the model

to suggest query completions for rare query prefixes. Obviously, an appropriate

network architecture makes big difference for end-to-end training, but it can be

difficult to determine when to use which kind of network architectures. For a given

query understanding task, predicting in advance which will work best is usually

impossible, and how to design an appropriate network architecture remains an open

question.
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Some deep learning methods operate at the character-level or character n-

gram [32, 68, 55]. For instance, the deep learning method for spelling correction is

usually sequence-to-sequence models. A sequence-to-sequence model [76] consists

of an encoder and decoder. The encoder converts a sequence of characters or tokens,

into a single vector, while the decoder begins with this vector, and it keeps generating

characters or tokens until it generates a special stop symbol. Note that the lengths of

the source and target sequences don’t need to be the same. Both the encoding and

decoding are done using RNNs. Xie et al. [84] presented an encoder-decoder RNN

with an attention mechanism by operating at the character level. Sordoni et al. [74]

formulated a hierarchical recurrent encoder-decoder architecture and used it to pro-

duce query suggestions which takes account for sequences of previous queries of

arbitrary lengths as context. Another advanced query reformulation system proposed

by Nogueira and Cho [57] is to train neural network with reinforcement learning.

The actions correspond to selecting terms to build a reformulated query, and the

reward is the document recall.

9.8 Semantic Understanding and Matching for Search Queries

Semantic matching is one of the most difficult challenges especially for tail

queries [45]: query document mismatch occurs when the queries and documents

use different terms to describe the same concept. For instance, for the query “how

much is tesla”, relevant documents may contain the term “price” rather than “how

much”, so the widely used bag-of-words approach is insufficient to solve this chal-

lenge [87].

The basic idea of semantic matching is to project a query or a document directly

or indirectly into its semantic space separately, and then match the query and the

document on their semantic spaces. The traditional semantic matching approach can

be grouped into the following categories:

Semantic Matching with Machine Translation Model. Its basic idea is to leverage
machine translation models to deal with query and document mismatching, which

is a supervised learning method. In particular, queries are considered as the source

language, while the clicked documents derived from click-through data are consid-

ered as the target language, then search can be formulated as a statistical machine

translation problem [7], which query q is translated into document d with the largest

conditional probability 𝑃(𝑑 |𝑞).
Semantic Matching with Topic Model. It is well known that queries and documents

with the same topic are more likely to be considered as relevant, as their semantic

are consistent at the topic level. The basic idea of this approach is to use topic

models, such as LDA or PLSI, to obtain the topics of each query or each document,

then leverage topic matching techniques to deal with query document mismatching,

which could successfully improve search relevance [86]. Generally speaking, this

approach belongs to unsupervised learning.
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Semantic Matching with Latent Space Model. In this approach, queries and doc-
uments are trained to mapped into the same latent space, and the semantic matching

function is defined as the inner product between the projection of the query and the

projection of the document in the latent space, while each dimension of the latent

space does not necessarily have its corresponding semantic meaning [32]. Generally

speaking, this approach is a supervised learning approach.

Semantic Matching with Deep Learning Model. Recently work on semantic

matching mainly based on deep learning algorithms [58], which can automatically

learn relations among words from vast amount of search log data, and make a

fully use of information from phrase patterns and text hierarchical structures, and

experimental results usually show a better performance.

In fact, these different approaches of semantic matching are complementary, and

how to effectively combine them into one generic framework is an open question. In

addition, how to handle the semantic matching when queries are too short is still a

challenging problem, since deep learning based text matching approach works well

when the queries are relatively lengthy. Furthermore, how to handle multimodal

semantic matching is another challenging problem, such as the semantic matching

between a text query and an image, or between an image query and a text document,

which is critical for image search and video search in commercial search engines.

9.9 Query Understanding with Knowledge Graph

Knowledge bases, better known as knowledge graphs, such as Wikipedia, DBpedia,

Freebase [10] and Yago [75], have emerged in recent years. Most of them are

encyclopedic knowledge bases, containing entities and facts such as Barack Obama’s

birthday and birthplace. The knowledge graphs have been utilized for enhancing

query understanding in an entity-aware way for the rich facts organized around

entities. For example, Google took the first step understanding and answering queries

with the knowledge graph in 2012, and they started by providing information on

individual entities like “Barack Obama" or “Brad Pitt". Recently, search engines

become a little bit smarter, and could answer simple questions about those entities,

such as “How old is Barack Obama?" or “Who are the author of Harry Potter?". All

of these works rely on query understanding with knowledge graph. There are a few

challenges as listed below:

First, a widely accepted way to use knowledge graph is to annotate the entities

in the query and link them to a knowledge base, also known as entity linking.

TagME [61] is a very early work on entity linking in queries. It generates candidates

by searching Wikipedia page titles, anchors and redirects, then exploit the structure

of the Wikipedia graph for disambiguation. Entity linking in queries is also viewed

as the problem of finding multiple query interpretations [13], usually with three

phrases: fetching, candidate-entity generation and pruning. One challenge is that the

queries are usually very short and contain insufficient information, thus it becomes
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very important to leverage additional information, such as Wikipedia [16, 77], query

log and search results [9].

Second, quite a few non-entity words are barely included in knowledge graph,

and knowledge about how words interact with each other in a language (instead

of encyclopedia knowledge) plays an important role in query understanding. As

we discussed above, the encyclopedia knowledge base contains entities and facts,

while the other type of knowledge base is mainly about common sense or linguistic

knowledge among terms, such as KnowItAll [50], NELL [53] and Probase [46]. For

non-entity words, recently there appears a tendency to mine a variety of relations

among terms and map them to related concepts [83] or intent topics [93], then

propagate the enriched features in a graph consisting of concepts or intent topics

using an unsupervised algorithm. How to effectively extract knowledge of non-entity

words and represent them in a unified knowledge graph remains a challenging task

for query understanding.

Third, with the extensive knowledge graph, structured query understanding is a

critical component to improve the relevance of search engines. For example, identi-

fying attributes in a query for e-commerce platforms could significantly improve the

performance in connecting users to relevant items. In many cases, the queries might

have multiple attributes, and some of them will be in conflict with each other. Lever-

aging the e-commerce catalog [63] as an additional knowledge base to supplement

the textual information can help to resolve conflicting query attributes. Similarly, ad-

ditional domain-specific knowledge graph will be very valuable for structured query

understanding in other domains, such as healthcare.

As discussed above, the knowledge graph makes it possible to break down a query

to understand the semantics of each piece and get the intent behind the entire query.

Moreover, that makes it reliable to traverse the knowledge graph to find the right

facts and compose a useful answer for a given query.
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