
Adversarial Sampling and Training for
Semi-Supervised Information Retrieval

Dae Hoon Park
Huawei Research America
California, United States

dae.hoon.park@huawei.com

Yi Chang
School of Artificial Intelligence, Jilin University

Key Laboratory of Symbolic Computation and Knowledge
Engineering of Ministry of Education

China
yichang@jlu.edu.cn

ABSTRACT
Ad-hoc retrieval models with implicit feedback often have problems,
e.g., the imbalanced classes in the data set. Too few clicked docu-
ments may hurt generalization ability of the models, whereas too
many non-clicked documents may harm effectiveness of the models
and efficiency of training. In addition, recent neural network-based
models are vulnerable to adversarial examples due to the linear
nature in them. To solve the problems at the same time, we propose
an adversarial sampling and training framework to learn ad-hoc re-
trieval models with implicit feedback. Our key idea is (i) to augment
clicked examples by adversarial training for better generalization
and (ii) to obtain very informational non-clicked examples by ad-
versarial sampling and training. Experiments are performed on
benchmark data sets for common ad-hoc retrieval tasks such as
Web search, item recommendation, and question answering. Exper-
imental results indicate that the proposed approaches significantly
outperform strong baselines especially for high-ranked documents,
and they outperform IRGAN in NDCG@5 using only 5% of labeled
data for the Web search task.

CCS CONCEPTS
• Information systems → Retrieval models and ranking; •
Computing methodologies→ Learning from implicit feedback;
Semi-supervised learning settings.

KEYWORDS
ad-hoc retrieval, adversarial training, implicit feedback, adversarial
sampling
ACM Reference Format:
Dae Hoon Park and Yi Chang. 2019. Adversarial Sampling and Training
for Semi-Supervised Information Retrieval. In Proceedings of the 2019 World
Wide Web Conference (WWW ’19), May 13–17, 2019, San Francisco, CA, USA.
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3308558.3313416

1 INTRODUCTION
Ad-hoc retrieval systems provide a ranked list of documents given
a query, in which a user’s information need is expressed. Such ad-
hoc retrieval systems prevail in our daily lives, from Web search

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’19, May 13–17, 2019, San Francisco, CA, USA
© 2019 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-6674-8/19/05.
https://doi.org/10.1145/3308558.3313416

and question answering to product recommendation, which can be
regarded as ad-hoc retrieval with users being queries and products
being documents. Modern ad-hoc retrieval models are usually super-
vised or semi-supervised with training data to learn the relevance
of documents to a query, because of its outstanding performance
over unsupervised models.

Generally speaking, the training data are obtained for (semi-
)supervised ad-hoc retrieval models in two ways. Annotators can
explicitly label documents with their relevance to a query, and such
labels are called explicit feedback. It is, however, often too expensive
to obtain enough explicit feedback, and the labels may contain bias
from a few annotators. Instead, labels can be inferred from the user’s
reactions (e.g., clicks and views) on the given documents, and such
reactions are called implicit feedback. Implicit feedback is cheap
and reflects preference of actual users, so it has been widely studied
[17, 26, 32] and adopted in the industry. Typically, there are much
more non-clicked documents than clicked ones. Too few clicked
documents can be problematic for generalization of the learned
models. On the other hand, too many non-clicked documents can
slow down the training and harm effectiveness of the trained model.
Especially for ad-hoc retrieval tasks, the majority of the non-clicked
documents is often not informational, sampling informational non-
clicked documents is important for efficiency and effectiveness
[28, 42].

Meanwhile, ad-hoc retrieval models often have a problem in
themselves; their structures are vulnerable to adversarial examples.
That is, due to the linearity in many models, the output can be
dramatically changed by infinitesimal changes in input dimensions
[8]. Traditional models such as logistic regression and matrix fac-
torization work in a very linear way, and even recent deep neural
networks are also designed to work in a quite linear way [9] (e.g.,
ReLU [7] and LSTMs [15]).

To solve the aforementioned problems in implicit feedback and
ad-hoc retrieval models, we propose an adversarial sampling-based
adversarial training framework. On one hand, we generate adver-
sarial positive examples to augment labeled (or clicked) documents
with informational ones. On the other hand, to obtain informa-
tional negative examples, we first sample difficult examples ad-
versarially from unlabeled (or non-clicked) documents. Then, we
further generate adversarial negative examples, which are even
more informational, on top of the sampled negative examples. The
generated adversarial examples are supposed to be informational
and to remove the weakness in the model’s linearity. We also pro-
pose virtual adversarial training-based approach, which does not
require labels to generate adversarial examples and thus suitable

https://doi.org/10.1145/3308558.3313416
https://doi.org/10.1145/3308558.3313416


for semi-supervised learning, and its variant that is more efficient
and effective.

We perform experiments on benchmark data sets for three popu-
lar tasks: Web search, item recommendation, and question answer-
ing. Our proposed approaches are mainly compared with a strong
baseline, IRGAN [36], which adopts a different kind of adversarial
training to sample negative documents. Experimental results in-
dicate that our proposed approaches are very effective on ad-hoc
retrieval tasks and significantly outperform baselines especially on
Web search and item recommendation. Moreover, our proposed
approaches outperform IRGAN in NDCG@5 with only 5% of the
labeled data for Web search.

Our contributions in this paper include:
• We propose a novel framework for learning ad-hoc retrieval
models with implicit feedback. We generate very informa-
tional training examples by adversarial sampling and train-
ing. To the best of our knowledge, there has been no research
work that incorporates adversarial sampling with adversarial
training for ad-hoc retrieval models.

• We also propose virtual adversarial training and its variation
for ad-hoc retrieval models. They can generate adversar-
ial examples without labels, which may be ideal for noisy
implicit feedback.

• We perform experiments on benchmark data sets for popular
tasks. Experimental results indicate the proposed approaches
significantly outperform strong baselines. The proposed ap-
proaches are empirically shown to be data-efficient.

2 RELATEDWORK
2.1 Adversarial Training
It was found in [34] that several machine learning models, including
modern state-of-the-art neural networks, fail with adversarial ex-
amples. A slight adversarial perturbation in the original input was
enough to fake the models, meaning that the models classify the
adversarial example into a wrong class with high confidence. Then,
Goodfellow et al. hypothesized that the vulnerability of the models
come from the linear nature in the models [9]. That is, the adversar-
ial perturbation in each dimension adds up to a great change in the
output due to some extent of linearity in the models. Goodfellow et
al. also suggested to train a model by learning adversarial exam-
ples as well as original examples, where the adversarial examples
were generated with the proposed fast gradient sign method. The
trained model was reported more robust to adversarial examples.
Adversarial examples and adversarial training are surveyed in [37].
Meanwhile, the earlier adversarial training approaches required
labels of examples, and this is not ideal for semi-supervised learn-
ing where there are much more unlabeled data than labeled data.
Miyato et al. [23] proposed virtual adversarial training, where labels
are not required to generate adversarial examples. With its strength
in semi-supervised learning, it has been applied to semi-supervised
text classification [21] and image classification [22].

We adopt the ideas of adversarial training and virtual adversarial
training in our approaches. However, there are several differences
between our approaches and them. In our task, we assume that
training data in implicit feedback consist of relatively fewer single-
class labeled data and much more unlabeled data, where there exist

many non-informational unlabeled examples. Such informativeness
of unlabeled examples is not studied in the original works. We
pay attention to it in this paper, especially for ad-hoc retrieval
with implicit feedback. We further combine adversarial sampling
with adversarial training to boost the informativeness of unlabeled
examples. Meanwhile, virtual adversarial training iterates over all
unlabeled examples and thus may not be efficient and effective for
implicit feedback. Hence, we propose selective virtual adversarial
training that iterates over only labeled examples and adversarially
sampled unlabeled examples. Our problem, ad-hoc retrieval, also
makes our approaches different from original ones. In our problem,
there can be two input variables, queries and documents, instead
of one single variable. In addition, we apply adversarial training to
a pair-wise learning-to-rank framework.

2.2 Adversarial Training for Ad-hoc Retrieval
Recently, deep neural networks-based approaches have been suc-
cessfully adopted in information retrieval tasks such as Web search
[11, 16], clickmodeling [1], and query suggestion and auto-completion
[24, 33]. Adversarial training has recently gained popularity with
neural networks, and a few adversarial training-based approaches
have been proposed for ad-hoc retrieval tasks. For example, an idea
of generative adversarial networks (GAN) [8] has been adopted to
unify generative and discriminative information retrieval models
by IRGAN [36]. Its goal is indeed similar to ours, which is to build
effective ad-hoc retrieval models through difficult examples. The
generator of IRGAN tries to fool the discriminator by providing
adversarial negative examples while the discriminator tries to dis-
tinguish them from true positive examples so that the generator and
the discriminator can mutually enhance. Through dynamically sam-
pling more and more difficult examples by the evolving generator,
IRGAN achieves outstanding performance. However, IRGAN is dif-
ferent from our approaches in many aspects. Although it contains
a generator, IRGAN does not really generate negative examples
but samples them from unlabeled data according to the generator
model. On the other hand, our approach generates difficult examples
on top of existing examples by adding adversarial perturbation to
them. Incorporating adversarial sampling with adversarial training,
our approaches can generate even more difficult negative exam-
ples based on the adversarially sampled negative examples. Also,
our approaches require one single model whereas IRGAN consists
of two models: a generator and a discriminator; this means the
required number of parameters and hyperparameters can double,
and training both models at the same time can be more difficult.
Furthermore, IRGAN requires a pre-trained model to ensure sta-
bility during training, unlike our stand-alone model. [39] extends
IRGAN with a different neural network architecture for question
answering.

More recently, a simultaneous work but independent from ours
has proposed adversarial training for item recommendation [13].
It employs adversarial perturbation to build a robust model, and
the experiment results show that it is superior to existing models.
Despite its novel approach, our work is different from it in several
aspects. Their approach adds adversarial perturbation to the model
parameters while we add it to the input. Also, they do not have
the same assumption on data as ours, i.e., single-class labeled data



and much more unlabeled data, so they do not focus on sampling
difficult negative examples from unlabeled data. Their focus is on
item recommendation, but our focus is on ad-hoc retrieval with
implicit feedback. Lastly, we further explore virtual adversarial
training that can be promising for semi-supervised learning, which
is not in their scope.

2.3 Negative Sampling for Ad-hoc Retrieval
Negative example sampling techniques have been adopted for infor-
mation retrieval tasks as well as natural language processing tasks.
Word embedding models have sampled negative examples by their
frequency [10, 20], and [27] employs “max sampling” that samples
negative examples that are most similar to positive examples for
question answering. Generative Adversarial Networks-based neg-
ative sampling also has been proposed for ad-hoc retrieval tasks
[36].

Negative sampling techniques have been studied more exten-
sively for item recommendation. To train a model efficiently, nega-
tive sampling techniques have been employed. Traditional models
including Bayesian Personalized Ranking [29] rely on uniform sam-
pling for negative examples. Dynamic negative sampling techniques
[28, 42] that sample informational negative examples for the cur-
rent model also have been proposed. Recently, negative sampling
by leveraging view information has been proposed and empirically
shown to be effective for e-commerce data sets [5]. Hidasi and
Karatzoglou [14] recently proposed a BPR-max loss function that
assigns larger weights to more informative negative examples. To
the best of our knowledge, no previous ad-hoc retrieval models ad-
versarially generate negative examples on top of sampled negative
examples in order to generate even more informational examples,
as our approaches do.

3 PROBLEM DEFINITION
We study a typical ad-hoc retrieval problem. Given a query q that
contains a user’s information need and a set of documents D =
{di }

M
i=1, the goal is to retrieve and rank documents based on their

estimated relevance to q, where Probability Ranking Principle is
assumed. Ad-hoc retrieval problems are not limited to document
search, and q and D may be in other types. Item recommendation
can be regarded as an ad-hoc retrieval problem where q is a user
and D is a set of items. Question answering (retrieval-based) also
can fall within ad-hoc retrieval where q is a question and D is a set
of answer candidates.

We specifically study semi-supervised ad-hoc retrieval with im-
plicit feedback, where for each q, we have a set of labeled (clicked)
documents, which we assume relevant, and unlabeled (non-clicked)
documents. We also assume the number of labeled documents is
much less than that of unlabeled documents. Indeed, such configu-
ration is common in the industry. When the retrieved documents
are shown to users, the users usually click only a few of them
while many documents are not clicked. The non-clicked documents
are not necessarily irrelevant to q, so they are left unlabeled or
sometimes labeled as viewed.

The labeled and unlabeled documents for q are given to a model
as training data, whose example is in a form of triple (q,d,y), where

y is a relevance of d to q, and y = 1 if a user clicked d for q. Non-
relevant documents (y = 0) come from unlabeled documents. The
ad-hoc retrieval model learns a function fθ : (q,d) 7→ y, where
θ is a set of model parameters. The learned function fθ is then
employed to predict a relevance score of a test (q, d) pair.

There are challenges to learn ad-hoc retrieval models from im-
plicit feedback. If the number of clicked documents is small, it can
easily suffer from over-fitting. That means, the model will not gen-
eralize well on the test data. On the other hand, there are relatively
too many unlabeled documents, and many of the unlabeled doc-
uments are either redundant or obviously irrelevant. That is, the
unlabeled documents are not informational so that the model will
not learn effectively with them. Therefore, careful utilization of
the imbalanced data is desired to build an effective ad-hoc retrieval
model.

4 ADVERSARIAL SAMPLING AND TRAINING
FRAMEWORK FOR AD-HOC RETRIEVAL

In order to address the challenges in implicit feedback, we propose
a framework of adversarial sampling and training that are applied
differently for labeled and unlabeled documents. On one hand, we
employ adversarial training to build a generalizable model with
relatively few labeled documents. On the other hand, we first ad-
versarially sample informational examples, and on top of them, we
further generate even more informational examples by adversarial
training. The generated adversarial examples for both labeled and
unlabeled documents also help ad-hoc retrieval models cope with
the weakness in linearity of the models.

In this section, we first explain how adversarial examples can
cause a significant change in the output of models that have linear-
ity. We then propose multiple adversarial training methods that can
generate informational examples based on existing training exam-
ples. Then, adversarial sampling is incorporated with adversarial
training in order to amplify informativeness of unlabeled examples.
Pairwise learning is also proposed to effectively learn with implicit
feedback.

4.1 Adversarial Examples for Ad-hoc Retrieval
An adversarial example is defined as an example that is slightly per-
turbed from the original example but greatly changes the activation
and thus the output. Adversarial examples were first introduced
for neural networks in [34] and later found that they occur due to
linearity in models [9]. For an adversarial input x̃ = x + η, where
x is an original input vector and η is an adversarial perturbation
vector of the same shape, a dot product between x̃ and a weight
vector w becomes

w⊺x̃ = w⊺x +w⊺η.

The change of the activation by adversarial perturbation is thus
w⊺η. If the average magnitude of w and η are m and ϵ , respec-
tively, then the maximum change caused by perturbation can grow
linearly by ϵmn, where n is the number of dimensions in x. (We ex-
plain how to approximate the optimal η in the next section.) Hence,
small changes by perturbation can accumulate with dimensions to
a great change. Such a great change can propagate to an output of
more complicated models. For example, neural network activation



functions such as ReLUs [7] and sigmoid, which are widely used
in modern neural networks, are piece-wise linear or almost lin-
ear (in non-saturating section); hence, the great change can easily
propagate to the final output [9].

Such perturbations can also exist in ad-hoc retrieval systems. For
example, let’s assume x and x′ are topic probabilities estimated by
topic models for two semantically identical documents, where only
x is in the training data. A slight word change from x to x′ can cause
slight difference in each dimension of x and x′, and this may result
in a large change in the output, yielding wrong prediction on x′.
Similarly, less processed features such as raw text and TF-IDF values
can also cause such effect. For example, two semantically identical
documents may have different raw text features, by synonyms of
their words. Although their raw features are different, their latent
vectors may still be similar, but the subtle difference in the latent
vectors may eventually result in a great change in the output. This
is because the latent vectors still need to go through activation
functions that are linear or almost linear.

Unfortunately, recent ad-hoc retrieval models as well as several
traditional models are often vulnerable to adversarial examples.
Neural networks are recently employed for state-of-the-art perfor-
mance, and modern neural networks behave in a linear way (e.g.,
ReLUs) for more effective learning by avoiding vanishing gradients.
Earlier models such as RankNet [2], or matrix factorization [18]
also operate in a quite linear way.

4.2 Adversarial Training for Robust Ad-hoc
Retrieval Models

4.2.1 Adversarial Training. We propose to train ad-hoc retrieval
models with adversarial examples that can locate the weak points
in the models. In general, ad-hoc retrieval models are trained by
minimizing the following cost function

Eq,d,y∼pdata J(q, d,y;θ ) (1)

where q and d are feature vectors for q and d , respectively, and
y ∈ {0, 1} is a relevance label, and θ is a set of model parameters.1
J can be, for example, a cross entropy loss function. Hence, the goal
is to learn a function fθ : (q, d) 7→ y. Intuitively, in order to build a
model that is robust to adversarial perturbation, we can generate
adversarial perturbation and let the model learn from adversarial
examples that are generated by adding adversarial perturbation to
original training examples. That is, the adversarial examples still
keep the original labels, but their q and d are modified to become
more difficult (i.e., yield greater losses). Learning with more difficult
examples that attack themodel’s weaknesses, themodel can become
more robust to adversarial perturbation. Therefore, we can add a
cost for adversarial examples to the objective as follows:

Eq,d,y∼pdata J(q, d,y;θ ) + α J(q + ηq , d + ηd ,y;θ ) (2)

where ηq and ηd are adversarial perturbations for q and d, respec-
tively, and α is a hyperparameter, which is set to 1 in this work.
This objective means that regardless of adversarial perturbation,
the model should learn to predict the same relevance.

1If the given data consist of one input vector x instead of two vectors q and d for a
query and a document as in Section 4.1, x can replace q and d accordingly.

4.2.2 Generating Adversarial Perturbation. When generating ad-
versarial perturbation, the magnitudes of perturbation vectors need
to be limited so that the adversarial examples do not become too
similar to examples of the opposite classes. Thus, their magnitudes
are limited by a hyperparameter ϵ such that | |η | |p < ϵ . In order to
build a model that is robust to perturbation, we need to generate a
perturbation vector that can achieve the greatest loss within the
limit of ϵ . In other words, a model trained with more difficult ex-
amples can be more effective for the unseen test examples. Such
perturbation vectors are defined as

ηq ,ηd = argmax
ηq : | |ηq | |p<ϵ, ηd : | |ηd | |p<ϵ

J(q + ηq , d + ηd ,y; θ̂ ). (3)

We use the same ϵ for ηq and ηd in this paper, but different val-
ues can be used. Also, θ̂ denotes a copy of θ , in order to avoid
propagating gradients from this perturbation generation process
to θ . Note that the objective in (2) with the equation (3) can be
interpreted as a minimax game. Similar to the fast gradient sign
method [9], with first-order Taylor series approximation, equation
(3) is approximated as

ηq = argmax
ηq : | |ηq | |p<ϵ

J(q, d,y; θ̂ ) + ηq∇qJ(q, d,y; θ̂ )

ηd = argmax
ηd : | |ηd | |p<ϵ

J(q, d,y; θ̂ ) + ηd∇dJ(q, d,y; θ̂ ).
(4)

Its solution depends on the value of p in the p-norm as follows

ηq =

{
ϵsign(gq ) if p = ∞

ϵ
gq

| |gq | |2
if p = 2

where gq = ∇qJ(q, d,y; θ̂ ) (5)

where gq can be efficiently computed by backpropagation while
solving the first term of (2). That means, adversarial training re-
quires only a few additional computations that can be done effi-
ciently. ηd can be solved in the same way, so we do not include
its solution here. Regarding the choice of p, a max norm (p = ∞)
is used in [9] because the magnitudes of perturbation in image
pixels are supposed to be small. However, we do not have such
assumption for text; indeed, semantically similar documents can
have very different text at least in their raw representation. Also, L2
norm can sometimes perform better than max norm for adversarial
training [22], so we employ L2 norm in this work.

4.2.3 Virtual Adversarial Examples. The process for generating ad-
versarial examples requires labels of query-document pairs. How-
ever, the number of unlabeled (non-clicked) documents is usually
much greater than that of labeled (clicked) documents in implicit
feedback. Even if we regard unlabeled ones as negative examples,
the generated adversarial examples from the negative examples
may not be ideal due to the uncertainty in the assumed labels. Vir-
tual Adversarial Examples [23] may thus be useful in this case,
which do not require labels to generate adversarial examples. The
following cost function JKL is added to the objective in (1) for both
labeled and unlabeled data:
JKL(q, d;θ ) = KL

[
p(· |q, d;θ ) | |p(· |q + ηq, d + ηd ;θ )

]
, where

ηq, ηd = argmax
ηq :| |ηq | |<ϵ, ηd :| |ηd | |<ϵ

KL
[
p(· |q, d; θ̂ ) | |p(· |q + ηq, d + ηd ; θ̂ )

]
(6)

where KL
[
p | |p′

]
denotes KL divergence between conditional rel-

evance distributions p and p′. Basically, minimizing the objective



including this cost function means that we want to reduce the dis-
tribution difference that is caused by adversarial perturbation. In
other words, we want to enhance the model’s local smoothness
of conditional relevance distribution so that the model’s output
does not dramatically change by adversarial perturbation. The per-
turbation vector can be computed by a second-order Taylor series
approximation and a single iteration of power method on the KL di-
vergence function as in [23]. The solution thus can be approximated
as

ηq = ϵ
gq

| |gq | |2
, ηd = ϵ

gd
| |gd | |2

, where

gq = ∇q+eqKL
[
p(·|q, d; θ̂ )| |p(·|q + eq , d; θ̂ )

]
gd = ∇d+edKL

[
p(·|q, d; θ̂ )| |p(·|q, d + ed ; θ̂ )

] (7)

where eq and ed are small random vectors. This process does not
require labels, so the uncertainty of relevance in implicit feedback
is not a problem to generate perturbations, and thus all non-clicked
documents can be safely used for semi-supervised learning. How-
ever, trainingwith all non-clicked documents can be very inefficient,
so we discuss sampling approaches in Section 4.3.

4.2.4 Adversarial Examples for Discrete Input. If an input is a dis-
crete value such as a word or an item ID, where the value is con-
verted to a latent vector, one may consider to add a perturbation
vector to the latent vector (or embedding vector). However, adding
it to the perturbation vectors may be tricky because they may learn
to increase their magnitudes so that the amount of perturbation ϵ
becomes negligible. To avoid such phenomenon, it was proposed
in [21] to normalize the latent vector after adding a perturbation
vector to it. Meanwhile, ad-hoc retrieval models can have contin-
uous input as well as discrete one, e.g., TF-IDF features and other
pre-processed features. To serve both discrete and continuous input,
we employ another trick that adds adversarial perturbation to the
input. When the input is continuous, we can add the perturbation
vector as usual: x̃ = x +η. For discrete input, we are given x that is
a length-v one-hot encoded input vector, where v is the cardinality.
Instead of looking up the length-k embedding vector z ∈ Rk from
the embedding matrix Z ∈ Rv×k , we multiply x̃ and Z together to
obtain the perturbed embedding vector of x. That is, the perturbed
embedding vector z̃ is obtained by

z̃ = (x + η)Z. (8)

That means, for example, we make a mixture of words to generate a
perturbed embedding vector for the input word. The advantage of
this approach is that it can be extended to accommodate the input
that is combination of discrete values and continuous values. In
addition, this approach may potentially provide more interpretable
perturbation as it is engaged to the original input. For example, a
perturbation by “- man + woman” for the input “king” will indicate
that the perturbation changes the gender to generate the embedding
vector of “queen”. Such interpretability may be interesting since
that of neural networks-based classifiers has been weak and has
attracted attention [38, 41]. We do not explore these advantages
in this paper as they are out of its scope, but they are left for our
future work.

4.3 Adversarial Training with Adversarial
Sampling

Adversarial training can be interpreted as learning with difficult
examples that are generated to attack the current model’s weak-
ness. To amplify the effectiveness, we propose adversarial sampling-
based adversarial training that generates even more difficult exam-
ples from already difficult examples. In ad-hoc retrieval systems
with implicit feedback, labeled documents are mainly relevant but
the number of documents is relatively small. On the other hand,
unlabeled documents are more likely to be negative than positive
while the number of documents is much greater. As many of the
unlabeled examples may be either redundant or obviously irrele-
vant, finding informational examples may be the key to effective
and efficient model.

Therefore, we use existing labeled documents as positive exam-
ples, but we adversarially sample negative examples from unlabeled
documents. The optimization objective for adversarial training is
thus defined as∑
q

(
Ed∼pdata(d |q,y=1)

[
J(q, d,y = 1;θ ) + J(q + ηq , d + ηd ,y = 1;θ )

]
+

Ed∼pθ (d |q,y=1)
[
J(q, d,y = 0;θ ) + J(q + ηq , d + ηd ,y = 0;θ )

] )
(9)

where q and d are feature vectors for q and d , respectively, and the
adversarial perturbation vectors ηq and ηd are computed as in Sec-
tion 4.2 for each example. All positive examples are selected from
labeled data by pdata, whose distribution is uniform, and the nega-
tive examples are selected from unlabeled data by pθ . In practice,
the model goes through all positive examples in the labeled data
while it goes through the same number of negative examples that
are sampled from unlabeled data. Negative examples are sampled
by pθ (d |q,y = 1) to ensure the examples are adversarial (y = 1) so
that they are difficult for the current model. Note that the negative
examples are sampled dynamically for the current model, and more
efficient sampling can be done by estimating pθ (d |q,y = 1) for
every K epochs or estimating it for only C document candidates.
The conditional probability for sampling d can be estimated by the
following softmax function:

pθ (d |q,y = 1) =
exp(fθ (q, d)/τ )∑
d ′ exp(fθ (q, d′)/τ )

(10)

where τ is a temperature hyperparameter for controlling smooth-
ness of the distribution. A lower temperature will assign most of the
probability mass to a fewer documents while a higher temperature
will make the distribution more uniform. We employ cross entropy
loss for J, which is defined as

J(q, d,y;θ ) = − logp(y |q,d ;θ ) , where
p(y = 1|q,d ;θ ) = σ (fθ (q, d)) , p(y = 0|q,d ;θ ) = 1 − σ (fθ (q, d))

(11)
where σ is a sigmoid function, and fθ is defined in Section 5 for
each ad-hoc retrieval task.

The idea of adversarial sampling is not actually new. Dynamic
negative sampling ideas have been proposed by [28, 42], which
sample the most informational negative items at the moment. A
generator model of IRGAN [36] also plays a similar role. It builds
the generator that can adversarially fool the discriminator, and it



samples the negative examples according to the estimated generator.
Our framework is different from theirs in that we further generate
more difficult adversarial negative examples from the adversarially
sampled negative examples, and in that we generate adversarial
examples even for positive class for better generalization.

Selective Virtual Adversarial Training. Although the advantage
of virtual adversarial training is that it can be used for all unlabeled
documents, which is good for semi-supervised learning, it may
not be effective and efficient to process many non-informational
unlabeled documents. Therefore, we propose selective virtual adver-
sarial training based on adversarial sampling. Instead of generating
virtual adversarial perturbation for all unlabeled documents, we
selectively generate them for difficult ones. The objective is defined
as ∑

q

(
Ed∼pdata(d |q,y=1)

[
J(q, d,y = 1;θ ) + JKL(q, d;θ )

]
+

Ed∼pθ (d |q,y=1)
[
J(q, d,y = 0;θ ) + JKL(q, d;θ )

] ) (12)

where JKL is defined in equation (6). Similar to equation (9), we
sample one negative document from unlabeled data by pθ for each
positive document. This is more efficient than the original virtual
adversarial training [23] as it does not iterate over all unlabeled doc-
uments. In addition, it can also bemore effective because only highly
informational documents, which may result in a better decision
boundary, are selected to train the model. Indeed, we empirically
find that this approach is more effective than the original one in
Section 6.

4.4 Pairwise Training
Instead of collecting relevance level for each query-document pair, it
is often easier for ad-hoc retrieval systems to infer which documents
are more preferred than other documents for a query, leveraging
implicit feedback of users. In addition, users have biases, so one
user’s rating is often not compatible with another user, for exam-
ple, in item recommendation. Hence, it has been studied how to
exploit such relative preference instead of absolute relevance with
pairwise or listwise learning algorithms [19, 29]. We thus extend
our approaches to pairwise training.

There are several ways to form document pairs for pair-wise
training. For example, for a query q, we can build document pairs
such that {(di ,dj )|di ∈ Dc ∧ dj ∈ Dnc } where Dc is a set of docu-
ments clicked by users and Dnc is a set of documents that are not
clicked. There exist better ways to form such pairs, but they are not
within the scope of this work. The pairwise objective corresponding
to equation (9) can be defined as∑

q

(
Ed+∼pdata(d |q,y=1)

[
Ed−∼pθ (d |q,y=1)

[
J(q, d+, d−;θ ) + J(q + ηq , d

+ + ηd+ , d
− + ηd− ;θ )

] ] ) (13)

where a preferred document d+ is sampled from labeled data and
the corresponding non-preferred document d− is sampled from
unlabeled data according to pθ . The adversarial perturbations ηq ,
ηd+ , and ηd− can be computed in the same way as in equation (4).

The cost function J for pairwise training is defined as

J(q, d+, d−;θ ) = − logp(y+ ▷ y− |q,d+,d−;θ ) where

p(y+ ▷ y− |q,d+,d−;θ ) = σ (fθ (q, d
+) − fθ (q, d

−))

(14)
where y+ ▷ y− means d+ is preferred over d−.

As in our solution, the pairwise perturbation is proposed for pair-
wise training as it assumes relative relevance between document
pairs. However, virtual adversarial perturbation assumes no labels,
so pointwise learning makes more sense than pairwise learning.
Hence, we employ a hybrid learning whose objective is defined as∑

q

(
Ed+∼pdata(d |q,y=1)

[
Ed−∼pθ (d |q,y=1)

[
J(q, d+, d−;θ ) + JKL(q, d+;θ ) + JKL(q, d−;θ )

] ] ) (15)

where we sample one negative example from unlabeled data by pθ
for each positive example in the labeled data. Here, we still learn
from the pairwise loss with equation (14) while we also learn from
pointwise virtual adversarial loss (equation (6)) for each of positive
and negative examples.

5 APPLICATION TO AD-HOC RETRIEVAL
TASKS

We apply the proposed approaches to ad-hoc retrieval tasks. Among
various ad-hoc retrieval tasks, we chose three tasks: Web search,
item recommendation, and question answering. These three tasks
are specifically chosen because they are popular and actively stud-
ied, and they were also chosen by IRGAN [36], to which we mainly
compare our approaches.

IRGAN is chosen as the main baseline because (i) it is based on
a type of adversarial training too and it applies its unique negative
sampling, (ii) it recently attracted a great deal of attention at ACM
SIGIR 20172 with its novel approach and outstanding performance,
and (iii) the source code and the pre-processed data sets are pub-
lished3 so that it provides an excellent benchmark environment.
For a fair comparison, we apply our approaches to the same models
as IRGAN does, except for a small change in Web search model. As
the tasks and models are already described well in [36], we briefly
describe them in this section.

5.1 Web Search
For Web search task, input vectors for (q,d) can be formed as a
length-k vector xq,d ∈ Rk , where each dimension represents a
feature value of q and/or d . For example, TF-IDF scores of each
document part and a query or PageRank scores of d can be such
features. As in RankNet [2] and IRGAN[36], we adopt a two-layer
neural network as the model of Web search:

fθ (xq,d ) = w⊺
2 f1(W1xq,d + b1) + b2 (16)

where W1 ∈ Rl×k is a weight matrix and l is the number of nodes
in the hidden layer, b1 and b2 are a bias vector and a constant,
respectively, andw2 ∈ Rl is a weight vector for the output layer. For
the activation function in f1, the hyperbolic tangent was employed
2http://sigir.org/sigir2017/program/awards/
3Available at https://github.com/geek-ai/irgan except Netflix data for item
recommendation.

http://sigir.org/sigir2017/program/awards/
https://github.com/geek-ai/irgan


in RankNet and IRGAN, but we replace it with ReLU since it can
learn more effectively [7]. Although ReLU is quite linear so that it is
more vulnerable to adversarial examples, adversarial trainingmakes
the model robust to them, so it is not a concern. We also experiment
with ReLU version of IRGAN and compare the results. Our approach
is originally defined for two separate input vectors q, d of fθ , but
accommodating a single input vector instead is straightforward.

5.2 Item Recommendation
Item recommendation is a task where a ranked list of items are
recommended for a user. Thus, it can be regarded as an ad-hoc
retrieval task, where a query is a user, and a document is an item.
One simple but popular approach is matrix factorization [18] for
collaborative filtering. Given one-hot encoded vectors u and i for a
user u and an item i , respectively, the model is defined as

fθ (u, i) = v⊺uvi + bi (17)

where vu , vi ∈ Rk are latent vectors for u and i , respectively, and
bi is a bias for i . This model works in a linear way so that it is
vulnerable to adversarial perturbation, so adversarial training is
desired.

5.3 Question Answering
A retrieval-based question answering is a task where a ranked list
of answers are retrieved for a question. We employ a deep learning-
based end-to-end approach to estimate latent vectors vq , vd ∈ Rk .
Given one-hot encoded vectors q, d for a questionq and an answerd ,
respectively, the relevance ofd toq is modeled by a cosine similarity
between them:

fθ (q, d) =
v⊺qvd

| |vq | | | |vd | |
. (18)

Recent successful approaches adopt convolutional neural network
(CNN) [30, 31] or long short-term memory neural network (LSTM)
[35] to obtain the latent vectors. Although such models can achieve
great performances, they are vulnerable to adversarial perturbation
as they can behave in a linear way. We thus apply our adversarial
training to this model.

6 EXPERIMENTS ON THREE AD-HOC
RETRIEVAL TASKS

Weperform experiments with our pairwise approaches as they often
perform better than pointwise approaches. The main approach
uses the objective in equation (13), which is based on pairwise
adversarial training, and we call it AdvIR (Adversarial training for
Information Retrieval). We also experiment with selective virtual
adversarial training (AdvIR-SVAT) in equation (15) and virtual
adversarial training (AdvIR-VAT), which iterates over all unlabeled
examples. The code is available online.4

Due to the complexity of experiments, we borrow some base-
line results from [36]. In fact, the exact pre-processed data set is
published by [36], so we regard it as a concrete benchmark data
set, and we do not repeat experiments for some baselines that are
clearly inferior to IRGAN at least on those data sets. Indeed, IRGAN
is far superior to the baselines for Web search task. The strongest

4https://sites.google.com/site/daehpark/Resources

competitors for other tasks, which are LambdaFM [40] for item
recommendation and LambdaCNN [42] for question answering,
were actually proposed by some authors of IRGAN, so we can trust
their results in [36]. For other settings, we follow the settings in
[36].

6.1 Web Search
6.1.1 Experimental Design. The well-known benchmark data set
LETOR 4.0 [25] providesMQ2008-semi (Million Query track), which
is designed for semi-supervised learning. That is, it consists of a
relatively small number of labeled data and a much larger number
of unlabelled data. Specifically, a relevance in 4 levels (-1, 0, 1, or 2)
is given to each query-document pair, where -1 means unlabeled
and a greater number means more relevance. As we assume a single-
class labeled data, we regard query-document pairs with relevance
level 1 and 2 as ‘relevant’ and compile labeled data, and compile
unlabeled data with all other pairs. As a result, there are 784 unique
queries in total, and for each query, there are 5 labeled examples and
1,000 unlabeled examples on average. For each query-document pair,
there is a 46-dimension feature vector, which consists of continuous
features such as TF-IDF and language model values. The vector is
given to the two-layer neural network in equation (16). The number
of nodes in the hidden layer equals to the dimension size of the
feature vector. We set the perturbation size to 300 unless otherwise
specified.

Popular learning to rank approaches including RankNet [2],
LambdaRank [4], and LambdaMART [3] as well as IRGAN [36]
were employed as baselines. Note that a generator of IRGAN plays
a role of negative example sampler. As our neural network employs
ReLU [7] for an activation function instead of hyperbolic tangent,
we also train IRGAN with ReLU on both generator and discrimi-
nator, and we report their best measures. We measure statistical
significance of the improvement over this model with a paired t-test.
We adopt precision at N and Normalized Discounted Cumulative
Gain (NDCG) at N as performance metrics since they are standard
in ad-hoc retrieval.

6.1.2 Result Analysis. The overall results are shown in Table 1.
As described in [36], traditional learning to rank methods such as
LambdaMART do not perform well since it is not specifically effec-
tive for semi-supervised learning. IRGAN_ReLU does not seem to
differ much from IRGAN in terms of performance, but it performs
better than IRGAN in NDCG measures. Our proposed approaches
significantly outperform baselines in several measures. The im-
provement from our approaches except AdvIR_VAT is especially
good for high-ranked documents. This is expected because our
approaches train models with the generated very difficult examples,
so they are especially beneficial for distinguishing top documents,
who are more difficult to rank in general.

Among the proposed methods, AdvIR outperforms the other pro-
posed methods in general. AdvIR_SVAT outperforms AdvIR_VAT
especially for high-ranked documents, which can be identified by
P@3 and N@3. Similar to the previous analysis, this is reasonable
because it focuses on difficult unlabeled data so that it can affect
more in the high-ranked documents. On the other hand, AdvIR_VAT
learns from all unlabeled data, and the too easy examples may affect
the model in a negative way.

https://sites.google.com/site/daehpark/Resources


0 50 100 150 200 250 300
Training Epoch

0.08

0.10

0.12

0.14

0.16

0.18

Pr
ec
isi
on
 @

 5

AdvIR
IRGAN
LambdaRank

(a)

0 50 100 150 200 250 300
Training Epoch

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

ND
CG

 @
 5

AdvIR
IRGAN
LambdaRank

(b)

25 10 20 50 100
Percentage of labeled data

0.13

0.14

0.15

0.16

0.17

0.18

Pr
ec
isi
on

 @
 5

AdvIR
AdvIR_SVAT
AdvIR_VAT
IRGAN

(c)

25 10 20 50 100
Percentage of labeled data

0.18
0.19
0.20
0.21
0.22
0.23
0.24
0.25
0.26

ND
CG

 @
 5

AdvIR
AdvIR_SVAT
AdvIR_VAT
IRGAN

(d)

Figure 1: (a,b) Learning curves and (c,d) data efficiency on Web search

Table 1: Overall results on Web search. The best value
for each metric is bold-faced. ∗ indicates statistical signif-
icance over IRGAN_ReLU. Relative improvement over IR-
GAN_ReLU is shown in parentheses.

Prec@3 Prec@5 Prec@10
RankNet [2] 0.1619 0.1219 0.1010
LambdaRank [4] 0.1651 0.1352 0.1076
LambdaMART [3] 0.1368 0.1026 0.0846
IRGAN [36] 0.2000 0.1676 0.1248
IRGAN_ReLU 0.1937 0.1581 0.1286
AdvIR 0.2349∗ (21.3%) 0.1829∗ (15.7%) 0.1305 (1.5%)
AdvIR_VAT 0.2000 (3.3%) 0.1867∗ (18.1%) 0.1248 (-3.0%)
AdvIR_SVAT 0.2222 (14.7%) 0.1810∗ (14.5%) 0.1238 (-3.7%)

NDCG@3 NDCG@5 NDCG@10
RankNet [2] 0.1801 0.1709 0.1943
LambdaRank [4] 0.1926 0.1920 0.2093
LambdaMART [3] 0.1573 0.1456 0.1627
IRGAN [36] 0.2148 0.2154 0.2380
IRGAN_ReLU 0.2230 0.2185 0.2473
AdvIR 0.2682∗ (20.3%) 0.2568∗ (17.5%) 0.2696∗ (9.0%)
AdvIR_VAT 0.2390 (7.2%) 0.2512∗ (15.0%) 0.2527 (2.2%)
AdvIR_SVAT 0.2598∗ (16.9%) 0.2538∗ (16.2%) 0.2593∗ (4.9%)

The learning curves of AdvIR are depicted in Figure 1a and 1b.
The dotted horizontal lines indicate the baseline methods’ best
measures among all training epochs. We can see that from the early
part of the training (epoch=50), it already outperforms the baselines
on test data. As more training is done, it easily outperforms the
baselines.

In order to see how efficient the models are in terms of data, we
randomly removed labeled data and recorded their performance in
Figure 1c and 1d. Surprisingly, two of our models, AdvIR and Ad-
vIR_SVAT can still outperform IRGAN in NDCG@5, using only 5%
of labeled data. In Precision@5, they outperform IRGAN with only
20% of labeled data. Also, it is shown that AdvIR_SVAT consistently
outperforms AdvIR_VAT especially when the number of labeled
data is less. Our conjecture is that as there are fewer labeled data, it
is more important to focus on difficult unlabeled data to place the
relevant documents in the top.

The effect of negative sampling methods on our proposed ap-
proach is depicted in Figure 2. Even with uniform sampling for
negative examples, AdvIR outperforms IRGAN, which has its own
negative example sampling technique. Our approach “generates”

P@3 P@5 P@10 N@3 N@5 N@10
0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

0.300
IRGAN_ReLU
AdvIR w/ US
AdvIR w/ AS

Figure 2: Effect of negative sampling methods for Web
search. US stands for uniform sampling, and AS stands for
adversarial sampling.

difficult negative examples instead of only “sampling” them, which
is done by IRGAN. Through the dynamically generated difficult
examples, AdvIR can learn from diverse difficult examples. In ad-
dition, IRGAN uses positive examples as they are whereas AdvIR
generates difficult examples for even positive examples. These dif-
ferences can explain the superiority of AdvIR to IRGAN even when
uniform sampling is used for AdvIR. Switching from uniform sam-
pling to adversarial sampling, AdvIR performs even better. This
is reasonable because the difficult negative examples sampled by
adversarial sampling serve as great basis for generating even more
difficult negative examples by adversarial training.

6.2 Item Recommendation
6.2.1 Experimental Design. To perform experiments for the item
recommendation task, we apply our approaches on a popular bench-
mark data set, Movielens (100k) [12]. It consists of 943 users, 1,683
items, and 100,000 user-item ratings, where ratings are in 5 lev-
els. Following IRGAN [36], we regard the 4 and 5-star ratings as
single-class labeled data5 and all other entries as unlabeled data.
We employ exactly the same data set as in [36] where a 4:1 random
splitting is done for training/test data.

The input vectors, which are one-hot encoded vectors, for users
and items thus have length 943 and 1,683, respectively. The input
vectors are given to the matrix factorization model in equation (17).
The size of latent vectors is 5. We set the perturbation size to 0.01
unless otherwise specified.

5It is described in [36] that only 5-star ratings are regarded as labeled data, but their
published implementation regards both 4-star and 5-star ratings as labeled data.



Popular and state-of-the-art baselines are employed, including
Bayesian Personalised Ranking (BPR) [29], LambdaRank-based
collaborative filtering (LambdaFM) [40], and IRGAN [36]. Note
that BPR samples negative items from uniform distribution while
LambdaFM and IRGAN dynamically sample difficult negative items.
To measure the statistical significance of our approach’s improve-
ment over IRGAN, we re-run IRGAN with their implementation
and use the results to perform a paired t-test. Standard performance
metrics such as precision at N and NDCG at N are employed.

Table 2: Overall results on item recommendation. ∗ indicates
statistical significance over IRGAN_rerun.

Prec@3 Prec@5 Prec@10
BPR [29] 0.3289 0.3044 0.2656
LambdaFM [40] 0.3845 0.3474 0.2967
IRGAN [36] 0.4072 0.3750 0.3140
IRGAN_rerun 0.3999 0.3759 0.3217
AdvIR 0.4393∗ (9.9%) 0.4070∗ (8.3%) 0.3450∗ (7.2%)
AdvIR_VAT 0.4313∗ (7.9%) 0.4083∗ (8.6%) 0.3467∗ (7.8%)
AdvIR_SVAT 0.4466∗ (11.7%) 0.4066∗ (8.2%) 0.3485∗ (8.3%)

NDCG@3 NDCG@5 NDCG@10
BPR [29] 0.3410 0.3245 0.3076
LambdaFM [40] 0.3986 0.3749 0.3518
IRGAN [36] 0.4222 0.4009 0.3723
IRGAN_rerun 0.4166 0.4010 0.3779
AdvIR 0.4563∗ (9.5%) 0.4353∗ (8.6%) 0.4079∗ (7.9%)
AdvIR_VAT 0.4539∗ (8.9%) 0.4382∗ (9.3%) 0.4108∗ (8.7%)
AdvIR_SVAT 0.4641∗ (11.4%) 0.4383∗ (9.3%) 0.4183∗ (10.7%)

6.2.2 Result Analysis. The overall results are shown in Table 2. The
results indicate the dynamic negative item sampling approaches
(LambdaFM, IRGAN, and AdvIR) outperform BPR, showing that
negative item sampling is indeed important. Our proposed ap-
proaches significantly outperform baselines in all measures. Similar
to theWeb search task, our proposed approaches perform especially
well for high-ranked documents in general; the very difficult exam-
ples generated by them are supposed to be beneficial for ranking
top documents. Among our approaches, AdvIR_SVAT performs
the best for this task, but the difference is small. Again, AdvIR
and AdvIR_SVAT performs especially better for high-ranked items
(P@3 and N@3) than AdvIR_VAT, with its focus on more difficult
examples.

The learning curves of AdvIR_SVAT are depicted in Figure 3a
and 3b. At around only 100 epochs, it starts to outperform the best
measures of baselines. As more training is done, it shows better
performance on the test data, and it gains little after 300 epochs.
Different from Web search, the curves do not oscillate much for
item recommendation.

The data efficiency is depicted in Figure 3c and 3d. Using only 50%
of the labeled data, our proposed models outperform IRGAN in both
Precision@5 and NDCG@5. Although our proposed approaches
show significant improvements, its data efficiency for the item
recommendation task is not as good as that for the Web search
task. It is reasonable because it is more difficult to perform well
for collaborative filtering when the number of labeled data is less;
the information in transactions (user-item ratings) directly shrinks

so that the models suffer from the cold-start problem. In other
words, Web search can take advantage of text in the document
when matching a document with a query, but a user does not
have such information for collaborative filtering but has only user-
item ratings; hence, it is much more difficult to perform well for
item recommendation if there are fewer labeled data (user-item
ratings). Similar toWeb search results, it is shown that AdvIR_SVAT
consistently outperforms AdvIR_VAT especially for fewer labeled
data, with its focus on difficult unlabeled examples.

The effect of negative sampling methods is depicted in Figure
4. Similar to Web search results, AdvIR with uniform negative
sampling still outperforms IRGAN, which has its own dynamic neg-
ative sampling mechanism. IRGAN only samples negative examples
while AdvIR generates them on top of sampled negative examples.
AdvIR also generates difficult examples for positive examples while
IRGAN does not. These may have caused the superiority of AdvIR
to IRGAN. Adversarial sampling again seems to play an impor-
tant role in AdvIR for item recommendation. Adversarial sampling
helps AdvIR to generate more difficult examples compared to uni-
form sampling, so AdvIR with adversarial sampling consistently
outperforms that with uniform sampling.

6.3 Question Answering
6.3.1 Experimental Design. For question answering, we apply our
approaches to one of the popular benchmark data sets, Insurance
QA [6]. It consists of questions, which are submitted by users, and
high-quality answers, which are written by domain experts. Train-
ing data consist of 12,887 (question, answer) pairs, and development
data consist of 1,000 (question, answer) pairs. That is, a single-class
labeled data (answer) is given for the task. We can thus regard the
whole answer sets as unlabeled data to apply semi-supervised learn-
ing. There are two test sets (test-1 and test-2), each of which
consists of 1,800 (question, answer) pairs. The task is to retrieve the
one and only correct answer from 500 candidate answers. Hence,
we report precision @ 1 as the performance metric.

Both questions and answers are in raw text, so we apply the
end-to-end model based on convolutional neural networks (CNN).
The input vectors, which are one-hot encoded vectors, for questions
and answers thus have length that is the vocabulary size, and the
embedding vectors have 100 dimensions. We use the same CNN
architecture as in IRGAN. The convolutional layer consists of 4
different kernels with sizes 1, 2, 3, and 5, and the feature maps after
applying those kernels to the embedding are summarized by the
max-pooling-over-time. Then, the resulting vectors for a question
and an answer are given to equation (18) as vq and vd , respectively.
We set the perturbation size to 0.5 unless otherwise specified.

Strong baselines such as QA-CNN [30], LambdaCNN [30, 42]
that enhances QA-CNN with dynamic negative sampling, and IR-
GAN [36] are employed. Note that uniform negative sampling is
done by QA-CNN, and dynamic negative sampling is done in Lamb-
daCNN and IRGAN. To measure the statistical significance of our
approaches’ improvement over IRGAN, we re-run IRGAN with
their implementation and use the results to perform a paired t-test.

6.3.2 Result Analysis. The overall results on question answering
are shown in Table 3. Approaches based on dynamic negative sam-
pling techniques, including our approaches, IRGAN, and Lambda



0 50 100 150 200 250 300 350 400
Training Epoch

0.250

0.275

0.300

0.325

0.350

0.375

0.400

Pr
ec
isi
on
 @
 5

AdvIR_SVAT
IRGAN
LambdaFM

(a)

0 50 100 150 200 250 300 350 400
Training Epoch

0.250

0.275

0.300

0.325

0.350

0.375

0.400

0.425

ND
CG
 @
 5

AdvIR_SVAT
IRGAN
LambdaFM

(b)

30 40 50 60 70 100
Percentage of labeled data

0.32

0.34

0.36

0.38

0.40

Pr
ec
isi
on

 @
 5

AdvIR
AdvIR_SVAT
AdvIR_VAT
IRGAN

(c)

30 40 50 60 70 100
Percentage of labeled data

0.34

0.36

0.38

0.40

0.42

0.44

ND
CG

 @
 5

AdvIR
AdvIR_SVAT
AdvIR_VAT
IRGAN

(d)

Figure 3: (a,b) Learning curves and (c,d) data efficiency on item recommendation

P@3 P@5 P@10 N@3 N@5 N@10
0.300

0.325

0.350

0.375

0.400

0.425

0.450

0.475

0.500
IRGAN_rerun
AdvIR w/ US
AdvIR w/ AS

Figure 4: Effect of negative sampling methods for item rec-
ommendation. US stands for uniform sampling, and AS
stands for adversarial sampling.

Table 3: Overall results on question answering. Precision@1
is reported.

test-1 test-2
QA-CNN [30] 0.6133 0.5689
LambdaCNN [30, 42] 0.6294 0.6006
IRGAN [36] 0.6444 0.6111
IRGAN_rerun 0.6478 0.6028
AdvIR 0.6489 (0.2%) 0.6150 (2.0%)
AdvIR_VAT 0.6450 (-0.4%) 0.6083 (0.9%)
AdvIR_SVAT 0.6517 (0.6%) 0.6133 (1.7%)

CNN, outperform QA-CNN that is based on uniform negative sam-
pling, but the difference in performance is not as big as that of Web
search or item recommendation tasks. Although our proposed ap-
proaches outperform IRGAN in most measures, the improvements
are not statistically significant. The performance difference among
our proposed approaches is also small. There can be a couple of
reasons for these. As the negative answers in the test data come
from answers of other questions, the task is easier than other tasks.
Thus, the advantage comes from learning with difficult examples
may not be clearly shown in this data set. Indeed, the already high
measures in Precision@1 tells the task is relatively easy. Also, there
may not be negative examples that are difficult enough due to the
data setting. A small improvement by dynamic negative sampling
approaches compared to other tasks supports this.

The learning curves of AdvIR are depicted in Figure 5. Although
it does not take advantage of pre-trained model as in IRGAN, AdvIR

reaches high precision quickly (in 20 epochs). On the other hand,
IRGAN, which starts with Precision@1 of 0.6 by pre-trained model,
takes >30 epochs to reach Precision@1 >= 0.64 [36].

0 10 20 30 40 50
Training Epoch

0.40

0.45

0.50

0.55

0.60

0.65

Pr
ec

isi
on

 @
 1

AdvIR
IRGAN
LambdaCNN

0 10 20 30 40 50
Training Epoch

0.40

0.45

0.50

0.55

0.60

Pr
ec

isi
on

 @
 1

AdvIR
IRGAN
LambdaCNN

Figure 5: Learning curves on question answering for test-1
(left) and test-2 (right).

7 CONCLUSIONS
In this paper, we studied semi-supervised ad-hoc retrieval models
with implicit feedback, where there are relatively fewer single-class
labeled data and much more unlabeled data. We proposed an ad-
versarial sampling and training framework that handles labeled
data and unlabeled data differently. It adversarially generates in-
formational examples for the positive class; on the other hand, it
first adversarially samples informational examples for the negative
class and further adversarially generates even more informational
negative examples. We also proposed virtual adversarial training
and selective virtual adversarial training that is more effective and
efficient than the former, and they do not require labels to generate
adversarial examples.

Experiments were performed on public benchmark data sets for
three popular ad-hoc retrieval tasks such as Web search, item rec-
ommendation, and question answering. Experimental results show
that (i) our proposed approaches are effective on ad-hoc retrieval
tasks: they significantly outperform baselines on Web search and
item recommendation and are on par with IRGAN on question
answering, (ii) our proposed approaches perform especially well
for high-ranked documents, (iii) our proposed approaches are
data-efficient; (iv) adversarial sampling amplifies the effectiveness
of adversarial training, and (v) our proposed selective virtual adver-
sarial training is more effective and efficient than virtual adversarial
training.



REFERENCES
[1] Alexey Borisov, Ilya Markov, Maarten de Rijke, and Pavel Serdyukov. 2016. A

neural click model for web search. In Proceedings of the 25th International Confer-
ence on World Wide Web. International World Wide Web Conferences Steering
Committee, 531–541.

[2] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton,
and Greg Hullender. 2005. Learning to rank using gradient descent. In Proceedings
of the 22nd international conference on Machine learning. ACM, 89–96.

[3] Christopher JC Burges. 2010. From ranknet to lambdarank to lambdamart: An
overview. Learning 11, 23-581 (2010), 81.

[4] Christopher J Burges, Robert Ragno, and Quoc V Le. 2007. Learning to rank with
nonsmooth cost functions. In Advances in neural information processing systems.
193–200.

[5] Jingtao Ding, Fuli Feng, Xiangnan He, Guanghui Yu, Yong Li, and Depeng Jin.
2018. An improved sampler for bayesian personalized ranking by leveraging
view data. In Companion of the The Web Conference 2018 on The Web Conference
2018. International World Wide Web Conferences Steering Committee, 13–14.

[6] Minwei Feng, Bing Xiang, Michael R Glass, Lidan Wang, and Bowen Zhou. 2015.
Applying deep learning to answer selection: A study and an open task. arXiv
preprint arXiv:1508.01585 (2015).

[7] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. 2011. Deep sparse rectifier
neural networks. In Proceedings of the fourteenth international conference on
artificial intelligence and statistics. 315–323.

[8] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
nets. In Advances in neural information processing systems. 2672–2680.

[9] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and
harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014).

[10] Mihajlo Grbovic, Nemanja Djuric, Vladan Radosavljevic, Fabrizio Silvestri, and
Narayan Bhamidipati. 2015. Context-and content-aware embeddings for query
rewriting in sponsored search. In Proceedings of the 38th international ACM SIGIR
conference on research and development in information retrieval. ACM, 383–392.

[11] Jiafeng Guo, Yixing Fan, Qingyao Ai, and W Bruce Croft. 2016. A deep relevance
matching model for ad-hoc retrieval. In Proceedings of the 25th ACM International
on Conference on Information and Knowledge Management. ACM, 55–64.

[12] F Maxwell Harper and Joseph A Konstan. 2016. The movielens datasets: History
and context. Acm transactions on interactive intelligent systems (tiis) 5, 4 (2016),
19.

[13] Xiangnan He, Zhankui He, Xiaoyu Du, and Tat-Seng Chua. 2018. Adversarial
Personalized Ranking for Recommendation. In The 41st International ACM SIGIR
Conference on Research & Development in Information Retrieval. ACM, 355–364.

[14] Balázs Hidasi and Alexandros Karatzoglou. 2018. Recurrent neural networks
with top-k gains for session-based recommendations. In Proceedings of the 27th
ACM International Conference on Information and Knowledge Management. ACM,
843–852.

[15] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[16] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry
Heck. 2013. Learning deep structured semantic models for web search using
clickthrough data. In Proceedings of the 22nd ACM international conference on
Conference on information & knowledge management. ACM, 2333–2338.

[17] Thorsten Joachims, Laura Granka, Bing Pan, Helene Hembrooke, and Geri Gay.
2005. Accurately interpreting clickthrough data as implicit feedback. In Pro-
ceedings of the 28th annual international ACM SIGIR conference on Research and
development in information retrieval. ACM, 154–161.

[18] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-
niques for recommender systems. Computer 8 (2009), 30–37.

[19] Tie-Yan Liu et al. 2009. Learning to rank for information retrieval. Foundations
and Trends® in Information Retrieval 3, 3 (2009), 225–331.

[20] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems. 3111–3119.

[21] Takeru Miyato, Andrew M Dai, and Ian Goodfellow. 2016. Adversarial training
methods for semi-supervised text classification. arXiv preprint arXiv:1605.07725
(2016).

[22] Takeru Miyato, Shin-ichi Maeda, Shin Ishii, and Masanori Koyama. 2018. Virtual
adversarial training: a regularization method for supervised and semi-supervised

learning. IEEE transactions on pattern analysis and machine intelligence (2018).
[23] Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, Ken Nakae, and Shin Ishii.

2015. Distributional smoothing with virtual adversarial training. arXiv preprint
arXiv:1507.00677 (2015).

[24] Dae Hoon Park and Rikio Chiba. 2017. A neural language model for query auto-
completion. In Proceedings of the 40th International ACM SIGIR Conference on
Research and Development in Information Retrieval. ACM, 1189–1192.

[25] Tao Qin and Tie-Yan Liu. 2013. Introducing LETOR 4.0 datasets. arXiv preprint
arXiv:1306.2597 (2013).

[26] Filip Radlinski and Thorsten Joachims. 2005. Query chains: learning to rank
from implicit feedback. In Proceedings of the eleventh ACM SIGKDD international
conference on Knowledge discovery in data mining. ACM, 239–248.

[27] Jinfeng Rao, Hua He, and Jimmy Lin. 2016. Noise-contrastive estimation for
answer selection with deep neural networks. In Proceedings of the 25th ACM
International on Conference on Information and Knowledge Management. ACM,
1913–1916.

[28] Steffen Rendle and Christoph Freudenthaler. 2014. Improving pairwise learning
for item recommendation from implicit feedback. In Proceedings of the 7th ACM
international conference on Web search and data mining. ACM, 273–282.

[29] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian personalized ranking from implicit feedback. In Proceedings
of the twenty-fifth conference on uncertainty in artificial intelligence. AUAI Press,
452–461.

[30] Cicero dos Santos, Ming Tan, Bing Xiang, and Bowen Zhou. 2016. Attentive
pooling networks. arXiv preprint arXiv:1602.03609 (2016).

[31] Aliaksei Severyn and Alessandro Moschitti. 2016. Modeling relational informa-
tion in question-answer pairs with convolutional neural networks. arXiv preprint
arXiv:1604.01178 (2016).

[32] Xuehua Shen, Bin Tan, and ChengXiang Zhai. 2005. Context-sensitive informa-
tion retrieval using implicit feedback. In Proceedings of the 28th annual interna-
tional ACM SIGIR conference on Research and development in information retrieval.
ACM, 43–50.

[33] Alessandro Sordoni, Yoshua Bengio, Hossein Vahabi, Christina Lioma, Jakob
Grue Simonsen, and Jian-Yun Nie. 2015. A hierarchical recurrent encoder-decoder
for generative context-aware query suggestion. In Proceedings of the 24th ACM
International on Conference on Information and Knowledge Management. ACM,
553–562.

[34] Christian Szegedy,Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian Goodfellow, and Rob Fergus. 2013. Intriguing properties of neural networks.
arXiv preprint arXiv:1312.6199 (2013).

[35] Di Wang and Eric Nyberg. 2015. A long short-term memory model for answer
sentence selection in question answering. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing (Volume 2: Short Papers), Vol. 2.
707–712.

[36] Jun Wang, Lantao Yu, Weinan Zhang, Yu Gong, Yinghui Xu, Benyou Wang, Peng
Zhang, and Dell Zhang. 2017. Irgan: A minimax game for unifying generative
and discriminative information retrieval models. In Proceedings of the 40th In-
ternational ACM SIGIR conference on Research and Development in Information
Retrieval. ACM, 515–524.

[37] David Warde-Farley and Ian Goodfellow. 2016. 11 adversarial perturbations of
deep neural networks. Perturbations, Optimization, and Statistics (2016), 311.

[38] Kai Xu, Dae Hoon Park, Chang Yi, and Charles Sutton. 2018. Interpreting
Deep Classifier by Visual Distillation of Dark Knowledge. arXiv preprint
arXiv:1803.04042 (2018).

[39] Xiao Yang, Miaosen Wang, Wei Wang, Madian Khabsa, and Ahmed Awadallah.
2018. Adversarial Training for Community Question Answer Selection Based on
Multi-scale Matching. arXiv preprint arXiv:1804.08058 (2018).

[40] Fajie Yuan, Guibing Guo, Joemon M Jose, Long Chen, Haitao Yu, and Weinan
Zhang. 2016. Lambdafm: learning optimal ranking with factorization machines
using lambda surrogates. In Proceedings of the 25th ACM International on Confer-
ence on Information and Knowledge Management. ACM, 227–236.

[41] Quanshi Zhang, Ying Nian Wu, and Song-Chun Zhu. 2017. Interpretable convo-
lutional neural networks. arXiv preprint arXiv:1710.00935 2, 3 (2017), 5.

[42] Weinan Zhang, Tianqi Chen, Jun Wang, and Yong Yu. 2013. Optimizing top-n
collaborative filtering via dynamic negative item sampling. In Proceedings of
the 36th international ACM SIGIR conference on Research and development in
information retrieval. ACM, 785–788.


	Abstract
	1 Introduction
	2 Related Work
	2.1 Adversarial Training
	2.2 Adversarial Training for Ad-hoc Retrieval
	2.3 Negative Sampling for Ad-hoc Retrieval

	3 Problem Definition
	4 Adversarial Sampling and Training Framework for Ad-hoc Retrieval
	4.1 Adversarial Examples for Ad-hoc Retrieval
	4.2 Adversarial Training for Robust Ad-hoc Retrieval Models
	4.3 Adversarial Training with Adversarial Sampling
	4.4 Pairwise Training

	5 Application to Ad-hoc Retrieval Tasks
	5.1 Web Search
	5.2 Item Recommendation
	5.3 Question Answering

	6 Experiments on Three Ad-hoc Retrieval Tasks
	6.1 Web Search
	6.2 Item Recommendation
	6.3 Question Answering

	7 Conclusions
	References

