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ABSTRACT
In feeds recommendation, users are able to constantly browse items
generated by never-ending feeds using mobile phones. The implicit
feedback from users is an important resource for learning to rank,
however, building ranking functions from such observed data is
recognized to be biased. The presentation of the items will influ-
ence the user’s judgements and therefore introduces biases. Most
previous works in the unbiased learning to rank literature focus
on position bias (i.e., an item ranked higher has more chances of
being examined and interacted with). By analyzing user behaviors
in product feeds recommendation, in this paper, we identify and
introduce context bias, which refers to the probability that a user
interacting with an item is biased by its surroundings, to unbi-
ased learning to rank. We propose an Unbiased Learning to Rank
with Combinational Propensity (ULTR-CP) framework to remove
the inherent biases jointly caused by multiple factors. Under this
framework, a context-aware position bias model is instantiated to
estimate the unified bias considering both position and context
biases. In addition to evaluating propensity score estimation ap-
proaches by the ranking metrics, we also discuss the evaluation
of the propensities directly by checking their balancing properties.
Extensive experiments performed on a real e-commerce data set
collected from JD.com verify the effectiveness of context bias and
illustrate the superiority of 𝑈𝐿𝑇𝑅 −𝐶𝑃 against the state-of-the-art
methods.
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• Information systems → Learning to rank; Information re-
trieval; •Computingmethodologies→Learning from implicit
feedback.
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1 INTRODUCTION
Recommender systems have become an increasingly attractive way
for customers to discover interesting products on e-commerce sites,
such as Amazon, JD, Alibaba, and Walmart [14, 31]. Recently, feeds
recommendation has emerged, where customers are able to con-
stantly browse products generated by never-ending feeds using
mobile phones. During their interactions with product streams, cus-
tomers can click on the products of interests, or skip uninterested
items and keep scrolling. This customer click data is essentially free
and abundant, which is usually leveraged for learning to rank (LTR)
models by treating the clicked customer-product pairs as positives
and non-clicked pairs as negatives. However, this treatment of train-
ing data can be heavily biased [6, 20, 28], since the relevance is not
the only factor that influences the customers’ behaviors. For exam-
ple, customers are more likely to click on higher-ranked products
(i.e., position bias), and they might only click on products to which
they have previously been exposed (i.e., a type of presentation bias).
In order to accurately estimate the relevance between a product and
a customer from click behaviors, we need to identify and remove
the bias factors in LTR.

To eliminate this bias, recent unbiased LTR approaches treat click
bias as a counterfactual effect and debias user feedback byweighting
each click with their inverse propensity weights (IPW) [20, 35, 36].
However, most previous literatures on unbiased LTR focus on the
position bias [3, 4, 10, 36] (i.e., an item ranked higher has more
chances of being examined and interacted with).
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Figure 1: CTR and the position bias obtained from 20 days
user click log across the portal.
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Unlike web search where users locate and click web pages in
top positions (e.g., ten or twenty), customers using feeds recom-
mendation tend to view more products (hundreds, or even more)
by scrolling down. We observe from Figure 1(a) that as the user
browses more deeply, the click-through rate (CTR) significantly
drops for items in high-ranked positions (e.g., around position 20),
whereas it stays in a similar range beyond position 20. Here we only
show the tendency of CTR due to privacy reasons. This implies that
position bias might not always be significant. Figure 1(b) shows
position bias (obtained by the method in [36]) in feeds recommen-
dation. This verifies that position bias will become trivial when
the position goes beyond 20. That is, position bias does not have
much effect when the customers browse deeply. Position bias is
one of the various presentation biases, depending on specific sce-
narios. In feeds recommendation, e-commerce customers usually
compare products before making decisions. Specifically, in mobile
feeds recommendation, four grids with pictures are usually dis-
played on the same phone screen, as shown in Figure 2. In this
example, the Timex watch is surrounded by non-similar products
in Figure 2(a), whereas in Figure 2(b), it is placed close to a similar
product (i.e., another Timex watch). For a target product, its sur-
rounding products refer to those appear on the same screen. We
say it is a similar product when its cosine similarity with the target
product is larger than a given threshold. Otherwise, we say it is a
non-similar product. Our experiment shows that customers behave
quite differently under different contexts in relation to the product,
the CTR of target products surrounded by non-similar products
is consistently higher than that of target products surrounded by
similar products. The detailed explanations of similar product and
the existence of context bias will be given in Section 6.2.

We refer to such a phenomenon as context bias. Intuitively, we
know that context bias is also significant, and becomes even more
important than position bias when the user browses more deeply.
Unfortunately, existing work on unbiased LTR [3, 20, 35, 36] mainly
focuses on position bias and neglects other biases, e.g. context bias.

To address this problem, in this paper we identify and introduce
context bias, which refers to the probability that a user interacting
with an item is biased by its surroundings, to unbiased LTR. First,
an Unbiased LTR with Combinational Propensity (𝑈𝐿𝑇𝑅−𝐶𝑃 ) frame-
work is proposed to remove the unified bias composed of multiple
types of biases. Then, the proposed context bias is instantiated and
estimatedwithin the framework.We assume the probability of a cus-
tomer clicking on a product depends on three factors: examination,
relevance, and comparison. Since the relevance between a product
and a user request is difficult to obtain directly, we leverage the
regression-based expectation-maximization (EM) algorithm [36]
to estimate these three factors. Finally, a unified bias, composed
of both the position and context biases, is estimated and further
eliminated in LTR in feeds recommendation. In unbiased LTR, the
propensity weighting is usually indirectly evaluated on the LTR task
by ranking metrics such as precision, recall, and mean reciprocal
rank (𝑀𝑅𝑅), etc. Under such settings, the ranking metrics are highly
dependent on the ranking models adopted. In order to understand
the estimated propensity weightings more straightforwardly, we
also discuss the evaluation of the propensities directly by checking
their balancing properties. In particular, we establish a connection
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Figure 2: A target product surrounded by non-similar prod-
ucts v.s. similar products: the CTR of target products sur-
rounded bynon-similar products is consistently higher than
that of target products surrounded by similar products.

between balancing checking in causal inference and feeds recom-
mendation. A better propensity estimation should better balance
the covariates between the treated and controlled sub-populations
for similar propensity scores. The main contributions of this work
are summarized as follows:

• In the scenario of e-commerce feeds recommendation, we
identify and estimate context bias. To the best of our knowl-
edge, this is the first study to eliminate context bias in LTR
for feeds recommendation.

• Theoretically, a unified unbiased LTR framework,𝑈𝐿𝑇𝑅−𝐶𝑃 ,
is introduced to integrate multiple types of biases. Context
bias is instantiated under this framework.

• Experimental results on real data sets show improvements
of the proposed methods against the state-of-the-arts. The
propensity scores are evaluated both directly via balancing
checking and indirectly via ranking metrics1.

2 RELATEDWORK
In this section, we briefly review research related to our study, i.e.,
unbiased learning to rank. There are two kinds of approaches, online
and offline, to learn unbiased LTR systems. Online LTR [27, 38]
interact with users directly and performs randomization, enabling
them to deal with several biases, while this approach is beyond the
scope of this paper so for more information, please refer to [17, 25].
Offline LTR take users’ feedback, such as user click log, as relevance
indicators to learn a ranking model. Though users’ feedback is easy
to obtain and in low cost [20], they often contain different types of
biases [23, 39], including position bias [18, 19], selection bias [28,
35], trust bias [1, 26], among others. For example, selection bias

1https://github.com/flamewei123/Unbaised-LTR-in-Feeds-Recommendation-
WSDM21.



problem is that queries are under-sampled to different extents and
thus biased when click data is collected to learn ranking functions,
which injects a presentation bias in the collected data [35].

In order to learn an unbiased ranker from biased user feedback,
researchers have proposed click models to extract unbiased rele-
vance feedback [8, 11, 12]. Themain procedures are tomake assump-
tions about the causes of the bias, construct a probabilistic model for
the bias, and then use statistical inference to get unbiased estima-
tion of relevance. Another solution is to construct unbiased learning
algorithm [1, 3–5, 15, 20, 35, 36]. Wang et al. [35] adopted inverse
propensity weighting approach in debiasing method. Joachims et
al. [20] proposed an IPW framework to correct position bias, and
prove the method can reach ideal expectations. Wang et al. [36]
used a regression-based EM method to solve the sparsity of query
and document pair without randomized tests. Then dual learning
algorithm is proposed by Ai et al. [4] to estimate propensities while
training the ranker. Most unbiased LTR works belong to the point-
wise category [24, 37]. Hu et al. [15] introduced a method that
jointly estimates position bias and train a ranker by using pair-
wise LTR function. Our work is partially inspired by [36], where
regression-based EM method is proposed to estimate position bias
in personal search. We extend this idea to estimate a more general
combinational bias in the scenario of e-commerce feeds recommen-
dation, and instantiated with a novel bias, i.e., context bias.

3 ULTR-CP FRAMEWORK
To unify different types of biases, we propose an unbiased LTR
with combinational propensity (𝑈𝐿𝑇𝑅−𝐶𝑃 ) framework. Under this
framework, multiple biases that affect users’ behaviors are aligned.
Here ’customer’ refers specifically to ’user’ on e-commerce sites. In
this work, we will use ’customer’ and ’user’ interchangeably.

3.1 Unbiased Learning to Rank
The IPW is a commonly used technique to correct the bias in many
applications, and now is being applied to unbiased LTR [35]. Here
we use IPW to estimate the unified bias, which includes all the
possible biases occurred during the user interactions, including but
not limited to the position bias and context bias. In this section, we
formally define the unified unbiased LTR problem where different
types of biases can be considered in different scenarios.

Given a user request 𝑢𝑖 , we denote with 𝑟𝑖 (𝑥) the relevance of
item 𝑥 for user request 𝑢𝑖 . The relevances can be used to compute
the loss 𝑙 (𝒙 |𝑢𝑖 , 𝑟𝑖 ) of any ranking 𝒙 . Following previous work, we
assume that the relevances are binary, i.e., 𝑟𝑖 (𝑥) ∈ {0, 1}. We define
the performance measure 𝑙 (𝒙 |𝑢𝑖 , 𝑟𝑖 ) as follows.

𝑙 (𝒙 |𝑢𝑖 , 𝑟𝑖 ) =
∑
𝑥 ∈𝒙

𝑀 (𝑟𝑎𝑛𝑘 (𝑥 |𝒙)) · 𝑟𝑖 (𝑥), (1)

where𝑀 (·) can be any weighting function that depends on the rank
𝑟𝑎𝑛𝑘 (𝑥 |𝒙) of item 𝑥 in ranking 𝒙 . For instance, setting𝑀 (𝑟𝑎𝑛𝑘) =
𝑟𝑎𝑛𝑘 gives the sum of relevant ranks metric (also called average
rank), and 𝑀 (𝑟𝑎𝑛𝑘) = − 1

log(1+𝑟𝑎𝑛𝑘) gives the DCG metric. For a
ranking system 𝑓 that returns ranking 𝑓 (𝑢,𝑋 ), the risk is

L(𝑓 ) =
∫

𝑙 (𝑓 (𝑢,𝑋 ) |𝑢, 𝑟 )d𝑃 (𝑢, 𝑟 ), (2)

where 𝑋 is the set of products recommended for user request 𝑢 (i.e.,
the recalled products for 𝑢). We suppress the dependence of 𝑓 on
𝑋 and 𝑢 in L(𝑓 ).

We first assume that there is a given ranking list �̄�𝑖 . On one
hand, the relevance signals for top-ranked results are more likely
to be observed than those for bottom-ranked results in feeds rec-
ommendation. On the other hand, the probability of observing
the relevance signal of a certain item will be influenced by its
surroundings. Let 𝑂𝑖 denote the 0/1 vector indicating which rele-
vance values are revealed. We have 𝑂𝑖 ∼ 𝑃 (𝑂 |𝑢𝑖 , �̄�𝑖 , 𝑟𝑖 , 𝐵𝑖 ), where
𝐵𝑖 is a set of bias factors which could cause different types of bi-
ases, e.g., the rank for position bias [36], the figures for marketing
bias [34], and the context for context bias (which we will explain
and study in latter sections), etc. For each element of𝑂𝑖 , we denote
𝑄 (𝑂𝑖 (𝑥) = 1|𝑢𝑖 , �̄�𝑖 , 𝑟𝑖 , 𝐵𝑖 ) the marginal probability of revealing the
relevance 𝑟𝑖 (𝑥) of the item 𝑥 for user request 𝑢𝑖 , if the user was
presented the ranking �̄�𝑖 with set 𝐵𝑖 . We call this probability value
a combinational propensity of the observation.

With the help of IPW technique, we can obtain an unbiased
estimate of 𝑙 (𝒙 |𝑢𝑖 , 𝑟𝑖 ) for any new ranking 𝒙 . The IPW loss for a
unified unbiased ranking model is defined as

𝑙𝐼𝑃𝑊 (𝒙 |𝑢𝑖 , �̄�𝑖 ,𝑂𝑖 ) =
∑

𝑥 :𝑂𝑖 (𝑥)=1

𝑀 (𝑟𝑎𝑛𝑘 (𝑥 |𝒙)) · 𝑟𝑖 (𝑥)
𝑄 (𝑂𝑖 (𝑥) = 1|𝑢𝑖 , �̄�𝑖 , 𝑟𝑖 , 𝐵𝑖 )

. (3)

Assume there is a sample of 𝑁 user requests 𝑢𝑖 . Then, the em-
pirical risk of a system is the average of the IPW loss over user
requests:

L̂𝐼𝑃𝑊 (𝑓 ) = 1
𝑁

𝑁∑
𝑖=1

∑
𝑥 :𝑂𝑖 (𝑥)=1

𝑀 (𝑟𝑎𝑛𝑘 (𝑥 |𝑓 (𝑢𝑖 , 𝑋𝑖 ))) · 𝑟𝑖 (𝑥)
𝑄 (𝑂𝑖 (𝑥) = 1|𝑢𝑖 , �̄�𝑖 , 𝑟𝑖 , 𝐵𝑖 )

.

The goal of unified unbiased LTR is to find the best scoring
function 𝑓 . A commonly used learning strategy is empirical risk
minimization (ERM) [33], i.e., 𝑓 = arg min𝑓 {L̂𝐼𝑃𝑊 (𝑓 )}. Please
note that only the clicked items contribute to empirical risk (i.e.,
𝑂𝑖 (𝑥) = 1 ∧ 𝑟𝑖 (𝑥) = 1). For simplicity, the clicked item is assumed
to be relevant, which can be further relaxed.

3.2 Combinational Propensity Weighting
The unified bias (i.e., combinational propensity) discussed in the
previous section includes all possible presentation biases, and in
this section, we discuss how to estimate it. The notation 𝑄 (𝑂 (𝑥) =
1|𝑢, �̄�, 𝑟 , 𝐵) is a combinational propensity of all bias factors in 𝐵

when a ranking �̄� is presented to user request 𝑢. We assume that
different types of biases are independent of each other (the indepen-
dence test with Chi-square test is included in Section 6.2). Let’s take
position bias and presentation bias as an intuitive example. When
the user browses top pages, the presentation of product pictures
will affect the user’s behavior. Similarly, when users browse deeply,
users will also be influenced by the product pictures in a similar
way. Therefore, combinational propensity weight can be defined as
the product of propensities for all considered bias factors.

𝑄 (𝑂 (𝑥) = 1|𝑢, �̄�, 𝑟 , 𝐵) ≡
∏
𝑏∈𝐵

𝑄 (𝑂 (𝑥) = 1|𝑢, �̄�, 𝑟 , 𝑏). (4)

Specifically, we aim to study position bias and context bias in this
work, which is a special case of the unified unbiased LTR problem.



Then the combinational propensity becomes
𝑄 (𝑂 (𝑥) = 1 |𝑢, �̄�, 𝑟 , 𝐵) = 𝑄 (𝑂 (𝑥) = 1 |𝑢, �̄�, 𝑟 , 𝑏1) ·𝑄 (𝑂 (𝑥) = 1 |𝑢, �̄�, 𝑟 , 𝑏2),

where 𝑄 (𝑂 (𝑥) = 1|𝑢, �̄�, 𝑟 , 𝑏1) and 𝑄 (𝑂 (𝑥) = 1|𝑢, �̄�, 𝑟 , 𝑏2) represent
the propensity of position bias and context bias, respectively. We
will discuss how to estimate them in Section 4 in detail.

3.3 Unbiased Ranking
The ranking problem can be optimized by utilizing a LTR approach
with combinational propensity. First, combinational propensity
𝑄 (𝑂 (𝑥) = 1|𝑢, �̄�, 𝑟 , 𝐵) is estimated using a probabilistic model (e.g.,
click model) from a user implicit feedback data set. Denote 𝜑 (𝑢, 𝑥)
as the feature vector of a user request and an item. Then, given
the estimated combinational propensity and the training data set
{𝜑 (𝑢, 𝑥)}, a ranking scoring function 𝑓𝑤 (𝑢, 𝑥) can be learnt. The
relevance signals are not directly obtained from the click signals,
but they are adjusted by the combinational propensity. The debi-
ased rank of 𝑥 in training becomes 𝑟𝑎𝑛𝑘 (𝑥 |𝑓𝑤 (𝑢, 𝑥)), where𝑤 is a
parameter for the ranking scoring function. The ranking scoring
function can be instantiated in conventional ranking models, such
as LambdaMART [7], SVM-Rank [22], etc., or deep neural network
based approaches.

4 AN INSTANTIATION OF ULTR-CP
FRAMEWORK

In this section, we provide an instantiation of the proposed𝑈𝐿𝑇𝑅−
𝐶𝑃 framework, which debiases the effects of position and context
for feeds recommendation. We first propose a context-aware po-
sition bias model, then introduce the estimation of context-aware
propensity and give the unbiased SVM-rank subsequently.

4.1 Context-Aware Position Bias Model
We first propose a context-aware position bias model by assuming
that the probability of a customer clicking on a product depends on
three factors, i.e., examination, relevance, and comparison, which
are denoted by 𝐸, 𝑅, and 𝐻 , respectively. Consider formulating the
probability of a product 𝑥 being clicked as follows:

𝑃 (𝐶 = 1|𝑢, 𝑥, 𝑘, 𝑧) = 𝑃 (𝐸 = 1|𝑘) · 𝑃 (𝑅 = 1|𝑢, 𝑥) · 𝑃 (𝐻 = 1|𝑧) . (5)

The symbol 𝐶 denotes the observed click Bernoulli variable, which
indicates whether it is clicked or not, 𝑃 (𝐸 = 1|𝑘) represents the
probability of a customer examining the product at position 𝑘 and
𝑃 (𝑅 = 1|𝑢, 𝑥) represents the probability that product 𝑥 is relevant to
user request 𝑢. Given context 𝑧, 𝑃 (𝐻 = 1|𝑧) denotes the probability
of whether the user’s attention on item 𝑥 is kept when comparing
it with its surroundings. We identify the context of a target item
by judging whether there exists similar items in its surroundings,
which is specifically described in Section 6.2.

Different from the existing studies which only consider examina-
tion (𝐸) and relevance (𝑅) [9], the proposed context-aware position
bias model considers the impact of with-similar context on user
click behaviors. For simplicity, we use the following shorthand
notations for derivation:

𝛼𝑘 = 𝑃 (𝐸 = 1|𝑘), 𝛽𝑢,𝑥 = 𝑃 (𝑅 = 1|𝑢, 𝑥), 𝛾𝑧 = 𝑃 (𝐻 = 1|𝑧) .
In this model, we have equivalence between 𝑂 and 𝐸 ∧ 𝐻 , i.e.,
𝑄 (𝑂 (𝑥) = 1|𝑢, �̄�, 𝑟 , 𝐵) = 𝑃 (𝐸 (𝑥) = 1|𝑘) ·𝑃 (𝐻 (𝑥) = 1|𝑧). In this case,

the set 𝐵 consists of the rank factor 𝑘 and the context factor 𝑧. This
is consistent with previous independent assumption in Section 3.2.

We denote click logs as 𝜋 = {(𝑐,𝑢, 𝑥, 𝑘, 𝑧)}, which records click
event 𝑐 from user request 𝑢 on item 𝑥 under the condition of po-
sition 𝑘 and context 𝑧. Then, the log likelihood of generating 𝜋 is∑

(𝑐,𝑢,𝑥,𝑘,𝑧) ∈𝜋 𝑐 log𝛼𝑘𝛽𝑢,𝑥𝛾𝑧 + (1 − 𝑐) log(1 − 𝛼𝑘𝛽𝑢,𝑥𝛾𝑧). Given the
click logs, the EM algorithm can find the parameters that maximize
the log likelihood. In the following section, we will describe the
details of parameter estimation.

4.2 Context-Aware Propensity Estimation
It is difficult to obtain the relevance between recommended prod-
ucts and customer’s interests (i.e., 𝛽𝑢,𝑥 ), since the exposed product
list for every user request is entirely different even for multiple
requests from the same customer. This leads to a non-trivial direct
estimation of parameters 𝛼𝑘 , 𝛽𝑢,𝑥 , and 𝛾𝑧 using the standard EM
algorithm. Therefore, based on the idea of regression-based EM
algorithm [36], we propose to estimate the parameters simultane-
ously by estimating 𝛽𝑢,𝑥 with a regression function. In the following,
we first describe the standard EM algorithm, then introduce the
modified Maximization step in detail.
Expectation Step: In each iteration, the distribution of variables
𝐸, 𝑅, and 𝐻 are estimated, given click logs 𝜋 and parameters 𝛼𝑘 ,
𝛽𝑢,𝑥 and 𝛾𝑧 from the previous iteration in the Maximization step.
𝑃 (𝐸 = 1, 𝑅 = 1, 𝐻 = 1 |𝐶 = 1,𝑢, 𝑥, 𝑘, 𝑧) = 1,

𝑃 (𝐸 = 1, 𝑅 = 1, 𝐻 = 0 |𝐶 = 0,𝑢, 𝑥, 𝑘, 𝑧) =
𝛼𝑘𝛽𝑢,𝑥 (1 − 𝛾𝑧 )
1 − 𝛼𝑘𝛽𝑢,𝑥𝛾𝑧

,

𝑃 (𝐸 = 1, 𝑅 = 0, 𝐻 = 1 |𝐶 = 0,𝑢, 𝑥, 𝑘, 𝑧) =
𝛼𝑘 (1 − 𝛽𝑢,𝑥 )𝛾𝑧
1 − 𝛼𝑘𝛽𝑢,𝑥𝛾𝑧

,

𝑃 (𝐸 = 1, 𝑅 = 0, 𝐻 = 0 |𝐶 = 0,𝑢, 𝑥, 𝑘, 𝑧) =
𝛼𝑘 (1 − 𝛽𝑢,𝑥 ) (1 − 𝛾𝑧 )

1 − 𝛼𝑘𝛽𝑢,𝑥𝛾𝑧
,

𝑃 (𝐸 = 0, 𝑅 = 1, 𝐻 = 1 |𝐶 = 0,𝑢, 𝑥, 𝑘, 𝑧) =
(1 − 𝛼𝑘 )𝛽𝑢,𝑥𝛾𝑧
1 − 𝛼𝑘𝛽𝑢,𝑥𝛾𝑧

, (6)

𝑃 (𝐸 = 0, 𝑅 = 1, 𝐻 = 0 |𝐶 = 0,𝑢, 𝑥, 𝑘, 𝑧) =
(1 − 𝛼𝑘 )𝛽𝑢,𝑥 (1 − 𝛾𝑧 )

1 − 𝛼𝑘𝛽𝑢,𝑥𝛾𝑧
,

𝑃 (𝐸 = 0, 𝑅 = 0, 𝐻 = 1 |𝐶 = 0,𝑢, 𝑥, 𝑘, 𝑧) =
(1 − 𝛼𝑘 ) (1 − 𝛽𝑢,𝑥 )𝛾𝑧

1 − 𝛼𝑘𝛽𝑢,𝑥𝛾𝑧
,

𝑃 (𝐸 = 0, 𝑅 = 0, 𝐻 = 0 |𝐶 = 0,𝑢, 𝑥, 𝑘, 𝑧) =
(1 − 𝛼𝑘 ) (1 − 𝛽𝑢,𝑥 ) (1 − 𝛾𝑧 )

1 − 𝛼𝑘𝛽𝑢,𝑥𝛾𝑧
.

Therefore, we have the following results:

𝑃 (𝐸 = 1 |𝐶 = 0,𝑢, 𝑥, 𝑘, 𝑧) =
𝛼𝑘𝛽𝑢,𝑥 (1 − 𝛾𝑧 )
1 − 𝛼𝑘𝛽𝑢,𝑥𝛾𝑧

+
𝛼𝑘 (1 − 𝛽𝑢,𝑥 )
1 − 𝛼𝑘𝛽𝑢,𝑥𝛾𝑧

,

𝑃 (𝑅 = 1 |𝐶 = 0,𝑢, 𝑥, 𝑘, 𝑧) =
𝛼𝑘𝛽𝑢,𝑥 (1 − 𝛾𝑧 )
1 − 𝛼𝑘𝛽𝑢,𝑥𝛾𝑧

+
(1 − 𝛼𝑘 )𝛽𝑢,𝑥
1 − 𝛼𝑘𝛽𝑢,𝑥𝛾𝑧

,

𝑃 (𝐻 = 1 |𝐶 = 0,𝑢, 𝑥, 𝑘, 𝑧) =
𝛾𝑧 (1 − 𝛼𝑘𝛽𝑢,𝑥 )

1 − 𝛼𝑘𝛽𝑢,𝑥𝛾𝑧
.

Maximization Step: Given the above probabilities, parameters 𝛼𝑘 ,
𝛽𝑢,𝑥 , and 𝛾𝑧 can be updated accordingly.

𝛼𝑘 =

∑
𝑐,𝑢,𝑥,𝑘′,𝑧 I𝑘′=𝑘 · [𝑐 + (1 − 𝑐) · 𝑃 (𝐸 = 1 |𝑐,𝑢, 𝑥, 𝑘, 𝑧) ]∑

𝑐,𝑢,𝑥,𝑘′,𝑧 I𝑘′=𝑘
, (7)

𝛽𝑢,𝑥 =

∑
𝑐,𝑢′,𝑥′,𝑘,𝑧 I𝑢′=𝑢,𝑥′=𝑥 [𝑐 + (1 − 𝑐) · 𝑃 (𝑅 = 1 |𝑐,𝑢, 𝑥, 𝑘, 𝑧) ]∑

𝑐,𝑢′,𝑥′,𝑘,𝑧 I𝑢′=𝑢,𝑥′=𝑥
,

𝛾𝑧 =

∑
𝑐,𝑢,𝑥,𝑘,𝑧′ I𝑧′=𝑧 [𝑐 + (1 − 𝑐) · 𝑃 (𝐻 = 1 |𝑐,𝑢, 𝑥, 𝑘, 𝑧) ]∑

𝑐,𝑢,𝑥,𝑘,𝑧′ I𝑧′=𝑧
.



Algorithm 1: Context-Aware Unbiased LTR
1 Input: 𝜋 = {(𝑐,𝑢, 𝑥, 𝑘, 𝑧) }, {𝜑 (𝑢, 𝑥) }, 𝜆, {𝛼𝑘 }, {𝛽𝑢,𝑥 }, {𝛾𝑧 }
2 Output: {𝛼𝑘 }, 𝑔 (𝜑 (𝑢, 𝑥)) , {𝛾𝑧 }, and 𝑓𝑤 (𝑢, 𝑥)

1: Let𝐺 (𝜑) = 0
2: repeat
3: Compute the hidden probability by Eq. (6)
4: Let R={ }
5: for all (𝑐,𝑢, 𝑥, 𝑘, 𝑧) ∈ 𝜋 do
6: Sample 𝑟 ∈ {0, 1} from 𝑃 (𝑅 = 1 |𝑐,𝑢, 𝑥, 𝑘, 𝑧)
7: 𝑅 = 𝑅

⋃(𝜑 (𝑢, 𝑥), 𝑟 )
8: end for
9: 𝐺 (𝜑) = 𝐺𝐵𝐷𝑇 (𝐺 (𝜑), 𝑅)
10: Update {𝛼𝑘 }, {𝛾𝑧 } by Eq. (7)
11: Update {𝛽𝑢,𝑥 = 𝑔 (𝜑 (𝑢, 𝑥)) }
12: until Convergence
13: return {𝛼𝑘 }, 𝑔 (𝜑) and {𝛾𝑧 }
14: for the 𝑖-th (𝑢, 𝑥, 𝑘, 𝑧) ∈ 𝜋 do
15: Compute 𝜂𝑖 = 𝛼𝑘 · 𝛾𝑧
16: end for
17: 𝑓𝑤 (𝑢, 𝑥) =Unbiased SVM-rank(𝜑 (𝑢, 𝑥), {𝜂𝑖 }, 𝜆)
18: return 𝑓𝑤 (𝑢, 𝑥)

However, due to the sparseness and noisiness of the data, we learn
a function instead to estimate the relevance 𝛽𝑢,𝑥 = 𝑔(𝜑 (𝑢, 𝑥)) in
the Maximization step [36], where 𝜑 (𝑢, 𝑥) is a feature vector of
user request 𝑢 and item 𝑥 . The goal is to find a regression function
𝑔(𝜑) to maximize the likelihood given the estimation from the
Expectation step. We sample relevance label 𝑟 ∈ {0, 1} based on
probability 𝑃 (𝑅 = 1|𝑐,𝑢, 𝑥, 𝑘, 𝑧) for each (𝑐,𝑢, 𝑥, 𝑘, 𝑧) ∈ 𝜋 . Then, we
obtain a training set {(𝜑, 𝑟 )}, which can be used to train 𝑔(𝜑) by
maximizing the log-likelihood

∑
{(𝜑,𝑟 ) } 𝑟 log𝑔(𝜑) + (1 − 𝑟 ) log(1 −

𝑔(𝜑)), where 𝑔(·) is the Sigmoid function 𝑔(𝜑) = 1
1+exp(−𝐺 (𝜑)) . The

function 𝐺 (𝜑) can be learnt by any regression models. We follow
the previous work [1] and use Gradient Boosted Decision Tree
(GBDT) model in this work. Please refer to Algorithm 1.

4.3 Unbiased SVM-rank
Given the combinational propensity estimated by regression-based
EM, we optimize the ranking problem via SVM-rank with linear ker-
nels [2]. SVM-rank learns a scoring function 𝑓𝑤 (𝑢, 𝑥) = 𝑤 · 𝜑 (𝑢, 𝑥),
where𝑤 is a weight vector learnt from the training data. Unbiased
SVM-rank [20] optimizes the following objective function:

�̂� = arg min
𝑤,𝜉
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𝑠.𝑡 .∀𝑥 ∈ 𝑋1\ {𝑥1 } : 𝑤 · [𝜑 (𝑢1, 𝑥1) − 𝜑 (𝑢1, 𝑥) ] ≥ 1 − 𝜉1𝑥 ,

· · ·
∀𝑥 ∈ 𝑋𝑛\ {𝑥𝑛 } : 𝑤 · [𝜑 (𝑢𝑛, 𝑥𝑛) − 𝜑 (𝑢𝑛, 𝑥) ] ≥ 1 − 𝜉𝑛𝑥 ,

∀𝑖∀𝑥 : 𝜉𝑖𝑥 ≥ 0.

where ∥·∥ denotes 𝐿2 norm, 𝜆 is a regularization parameter, 𝜉 is
a slack variable, and 𝜂𝑖 is the combinational propensity where
𝑖 ∈ {1, 2, . . . , 𝑛} denotes the 𝑖-th click. Finally, unbiased SVM-Rank
is able to learn a ranking scoring function from an implicit feedback
data set, in which all types of biases have been corrected by the

combinational propensity weight. In the experiment, we consider
optimizing average rank, i.e., setting𝑀 (𝑟𝑎𝑛𝑘) = 𝑟𝑎𝑛𝑘 .

5 PROPENSITY CHECKING FOR LTR
Previous unbiased LTR approaches evaluate the estimation by the
final ranking performance. However, we can see from Algorithm 1
that the propensity estimation approach (inner steps 1-16) and the
LTR model (inner step 17) are independent, and the propensity
weightings are served as input for the LTR model. In fact, any
LTR approach could be adopted here with the training samples
adjusted by propensity scores. Researchers have found that a slight
mis-specification of the propensity score model can result in sub-
stantial bias of the estimated treatment effects [21, 32]. Therefore,
we argue that it is also crucial to check the estimated propensity
scores directly, so that the propensity estimation evaluation does
not rely on the performance of the LTR approaches. Inspired by
the properties of propensity score, in this section, we introduce
balance checking to compare the estimation of the propensity score
for different models under the scenario of LTR.

5.1 Balancing Property
First, let’s briefly review causal inference using a simple example.
One may want to analyze the effect of participation in a job training
program on individual earnings. There are three basic elements
for causal inference: treatment, outcome, and covariates. The goal
is to analyze the causal effect of treatment on outcome. For this
example, the treatment is whether to participate in a job training
program or not, the outcome is individual earnings, and the covari-
ates of a person could be age, years of education, etc. Generally
speaking, causal effects involve a comparison of the outcome actu-
ally observed with other potential outcomes that could have been
observed had the treatment taken on a different level (but that are
not observed in fact). However, as the data we have usually come
from observational studies but not randomized trials, there will be
bias in the estimation of treatment effects with observational data
sets. Propensity-based approaches have been widely used in causal
inference from observational studies [16, 30], such as in medical
trials and the evaluation of economic policy interventions.

In causal inference study, the propensity score represents the con-
ditional probability of assignment to a particular treatment given a
vector of observed covariates [30]. The propensity score could be
regarded as a balancing score, which is used to group treatment and
control units so that direct comparisons are more meaningful. Thus,
the propensity score satisfies the following balancing property: the
treatment assignment and the observed covariates are conditionally
independent given the propensity score, that is

𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠 ⨿ 𝑇 | 𝑃 (𝑇 = 1|𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠),

where 𝑇 is treatment, and 𝑃 (𝑇 = 1|𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠) is the propensity
score. Simply speaking, the conditional distribution of covariates
given 𝑃 (𝑇 = 1|𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠) should be the same for treatment (𝑇 = 1)
and control (𝑇 = 0) units. For unbiased LTR, the propensity score
needs to be estimated. Naturally, if the estimated propensity scores
can better balance the covariates, then the propensity estimation
approach is more appropriate for the designated ranking problem.



The corresponding balancing checking method will be discussed in
detail in Section 5.2.

5.2 Balancing Checking Method
In this subsection, we describe the detailed balancing checking
method for feeds recommendation. We aim to find estimates of
the propensity score that can balance the covariates between the
treatment and control sub-populations. The balancing property can
be investigated by stratifying the units into blocks with propensity
scores of similar values, and then testing independence of treatment
and covariates within each resulting block [13]. For each covariate,
we can test whether the means for the treatment and control are
different in all blocks. If the difference of the means is smaller, then
the covariates achieve more balance, which indicates propensity
estimation is more appropriate for the problem.

To connect with the concepts in causal inference, our outcome in
feeds recommendation is the relevance 𝑟 of a product. The treatment
is 𝑂 ∈ {0, 1}, i.e., whether the relevance of a product 𝑥 is revealed.
The goal is to analyze the causal effect of treatment 𝑂 on outcome
𝑟 . Our propensity score is defined as 𝑄 (𝑂 (𝑥) = 1|𝑢, �̄�, 𝑟 , 𝐵). Thus,
the covariates among 𝐵 are those factors that have influences on
propensity. For example, the position 𝑘 is a covariate for position
bias model [36], since propensity only depends on the rank of
product 𝑥 in ranking list �̄� . To check the balancing property of the
estimated propensity score for the proposed ULTR-CP framework,
we first divide the products into several subsets, where products
within one subset have propensity scores of similar values. Then,
for each covariate among 𝐵, we test whether its mean values for the
treatment (the clicked products) and the controls (the non-clicked
products) are different in all subsets. Taking the position bias model
as an example, for products with similar propensity, we compare
the average ranks of the clicked and the non-clicked products. Now
we are ready to compare the estimation of propensity scores under
any two models. The degree of balance of covariates is used to
distinguish which propensity estimation is more appropriate, i.e., a
smaller difference of the average covariate values means a better
balance for the estimated propensity score.

6 EVALUATION
In this section, we first describe the experimental settings including
data set, baselines, and evaluation metrics, then conduct experi-
ments with the aim of answering the following research questions:
RQ1: Does context bias exist in feeds recommendation applica-
tions? RQ2: How does our proposed approach perform compared
with the state-of-the-art bias estimation methods? RQ3: How does
the effectiveness of position bias and context bias vary with differ-
ent ranking positions? RQ4: Does the estimated propensity score
satisfy the balancing property? RQ5:Whether the proposed model
is stable enough to be applied in practice?

6.1 Experimental Settings
6.1.1 Data Set. We collect data from JD.com, which is one of the
largest E-commerce sites in the world. When a customer accesses
JD.com, a list of recommended products is given to the customer
and this list is extended when the customer browses more products.
The logged data set includes the entire list and the clicked products.

We collected 171,226,678 records with 735 features on 9,105,498
products for 16 consecutive days in September 2019.

The dataset is split into training and testing datasets by date,
where data from the first 7 days are used for bias estimation and
training, and data from the last 9 days are used for testing. We take
the top 100 records exposed to a customer request. The experiments
are conducted by predicting online recommendation results on each
day in the testing time period.

6.1.2 Baselines. We compare our proposed context-aware position
bias model (𝑈𝐿𝑇𝑅 −𝐶𝑃 ) with the following three baselines:

• Naive SVM-Rank (𝑆𝑉𝑀 − 𝑟𝑎𝑛𝑘) [22]: a conventional LTR
model based on kernel functions, which does not consider
any bias and is shown to be effective for large and sparse data.
It is adopted as the ranking model for all unbiased learning
approaches.

• Context-based unbiased LTR (𝑈𝐿𝑇𝑅 − 𝑐𝑥𝑡 ): a comparison
model to verify the performance of individual context bias.

• Position-based unbiased LTR (𝑈𝐿𝑇𝑅 − 𝑝𝑜𝑠) [36]: a state-of-
the-art unbiased LTR model, which only considers position
bias when calculating product rankings.

6.1.3 Evaluation Metric. We use a weighted Mean Reciprocal Rank
(𝑀𝑅𝑅) [36], which is the inverse rank of the clicked item of the
𝑖-th recommendation list weighted by 𝜈𝑖 , to evaluate the ranking
effectiveness. A higher 𝑀𝑅𝑅 indicates better ranking performance.
The formulation of weighted𝑀𝑅𝑅 is

1∑𝑁
𝑖=1

1
𝜈𝑖

𝑁∑
𝑖=1

1
𝜈𝑖

· 1
𝑅𝑎𝑛𝑘𝑖

.

The weight 𝜈 in weighted 𝑀𝑅𝑅 affects model performance [1].
When 𝜈 = 1, it becomes the original𝑀𝑅𝑅. The results under 𝑛𝑎𝑖𝑣𝑒
𝑀𝑅𝑅 are not referential to evaluate the unbiased LTR models, since
it does not consider the inherent biases in the test data. Previous
work has estimated the weight 𝜈 by online randomization exper-
iments [36] or by EM estimated propensity [5]. Since online ran-
domization experiments will cause great loss in e-commerce,

we study the following different estimations of 𝜈 as the metric
weights:

(i) 𝐶𝑃 − 𝑏𝑎𝑠𝑒𝑑 𝑀𝑅𝑅 uses the propensity estimated by our pro-
posed context-aware position bias model;

(ii) 𝑃𝑜𝑠 − 𝑏𝑎𝑠𝑒𝑑 𝑀𝑅𝑅 exploits the propensity estimated by posi-
tion based model [36];

(iii)𝐶𝑇𝑅 −𝑏𝑎𝑠𝑒𝑑 𝑀𝑅𝑅 is firstly proposed in our paper to use the
statistical CTR as a more objective approach.

6.2 Verification of Context Bias (RQ1)
We analyze the CTR distributions of the recommended products
exposed within different contexts to answer RQ1. Then, we verify
the independence between position bias and context bias.

6.2.1 Definition. Context bias in this paper refers to the probability
of a user interacting with an item is biased with the displacement
of its surroundings. Particularly, in our dataset, 4 products are
displayed on a cell phone screen at the same time. For a target item,
its surrounding is defined as the set of the other items on the same
screen.We represent each item by a 50-dimension embedding vector



Table 1: The distribution of items in different contexts and positions

Contexts Positions
[1,10] [11,20] [21,30] [31,40] [41,50] [51,60] [61,70] [71,80] [81,90] [91,100] total

with-similar-item 12903 3418 1995 1397 1193 808 636 566 451 352 23719
without-similar-item 340145 184179 130154 98745 77842 62323 50963 42555 35583 29993 1052482

total 353048 187597 132149 100142 79035 63131 51599 43121 36034 30345 1076201

(estimated by item information using𝑤𝑜𝑟𝑑2𝑣𝑒𝑐 [29]), then compute
the cosine similarity between the target item and the surrounding
items. If there exists at least one item with high similarity to the
target item, we say the target item is in a with-similar-item context.
Otherwise, we say it is in a without-similar-item context. Here the
similarity threshold is set to be 0.9.

6.2.2 Existence of Context Bias . Using our training set up, we com-
pare the products in with-similar-item contexts with the products
in without-similar-item contexts to observe the existence of context
bias. Figure 3 shows the CTRs of these two groups at different posi-
tions averaged over every 10 positions. For the sake of privacy, the
absolute values of the CTRs are not shown in the figure, but we can
still observe the tendency very clearly. The CTRs for the products
in without-similar-item contexts are consistently higher than those
products in with-similar-item contexts. It illustrates that context
bias does exist in e-commerce recommendation. Moreover, the rank
of a product has a strong effect on customers’ behaviors in relation
to products in the top positions. When customers continuously
viewing products into deep positions in feeds recommendation,
context bias remains obvious while position bias becomes weaker.

6.2.3 Independence of Context Bias and Position Bias. To verify our
assumption in Section 3.2, we test the independence of position bias
and context bias by Chi-square test. Table 1 is a contingency table
generated from the training set, showing the frequency of products
in different contexts and positions. The p-value of Chi-square test
is less than 0.01, which indicates that the position bias and context
bias are independent from each other.

6.3 Overall Performance (RQ2)
In this section, we compare the proposed 𝑈𝐿𝑇𝑅 −𝐶𝑃 with several
state-of-the-art baseline models to answer RQ2.

Since the performance of an unbiased LTR approach is affected
by the weight of 𝑀𝑅𝑅, we adopt 𝑀𝑅𝑅 with different weights to
evaluate the effectiveness of the models from various perspectives,
including𝐶𝑃−𝑏𝑎𝑠𝑒𝑑 𝑀𝑅𝑅, 𝑝𝑜𝑠−𝑏𝑎𝑠𝑒𝑑 𝑀𝑅𝑅, and𝐶𝑇𝑅−𝑏𝑎𝑠𝑒𝑑 𝑀𝑅𝑅.
The CTR is obtained from random sampling statistics of 16-day
data, which can be treated as the ground truth. Our testing period
consists of 9 consecutive days, and we record the results averaged
on each of the given day to show the stability of the models.

As shown in Table 2, for different 𝑀𝑅𝑅, 𝑈𝐿𝑇𝑅 − 𝐶𝑃 achieves
the best performance over all the baselines, including the state-of-
the-art 𝑈𝐿𝑇𝑅 − 𝑝𝑜𝑠 model. 𝑈𝐿𝑇𝑅 − 𝑐𝑥𝑡 is worse than 𝑈𝐿𝑇𝑅 − 𝑝𝑜𝑠

and𝑈𝐿𝑇𝑅 −𝐶𝑃 , which indicates using context bias alone cannot
improve ranking method effectively. The results under𝐶𝑇𝑅−𝑏𝑎𝑠𝑒𝑑
𝑀𝑅𝑅 are more convincing, because the value of CTR is obtained
through real data statistics, which is more objective. Overall, we
can conclude that the proposed context bias estimation approach is

able to capture this new type of bias in the real-world e-commerce
recommendation application.

Figure 3: CTRs for products in two different contexts (aver-
aged over every 10 positions, e.g., [1,10],[11, 20],...), the val-
ues of CTRs are hidden for privacy.

6.4 Effectiveness over Different Positions (RQ3)
We investigate the effects of context bias over different positions to
answer RQ3.

Most of the previous LTR models focus on the top-ranked po-
sitions, whereas we aim to improve the customer experience in
relation to feeds recommendation even when customers browse a
large number of products. Figure 4 shows the re-ranked results for
the clicked products averaged over every 10 positions on the entire
testing data set, where the x-axis represents the original positions
of the clicked products and the y-axis denotes the positions after
being re-ranked by the ULTR methods. A lower value indicates a
better performance, and percentages on bars represent improve-
ments of𝑈𝐿𝑇𝑅−𝐶𝑃 re-ranked positions over𝑈𝐿𝑇𝑅−𝑝𝑜𝑠 re-ranked
positions. From Figure 4, we can observe that𝑈𝐿𝑇𝑅−𝑝𝑜𝑠 performs
better than𝑈𝐿𝑇𝑅 −𝐶𝑃 for products in the top 20 positions, while
𝑈𝐿𝑇𝑅 −𝐶𝑃 consistently outperforms 𝑈𝐿𝑇𝑅 − 𝑝𝑜𝑠 for deeper po-
sitions. It is also consistent with the findings in Figure 1, which
shows that the top 20 positions are more affected by position bias,
whereas position bias does not have much influence on products in
the deeper positions. Therefore, considering both context bias and
position bias results in a better ranking performance, especially for
products in deep positions in feeds recommendation.

6.5 Propensity Checking (RQ4)
We check the balancing property of estimated propensity scores
under𝑈𝐿𝑇𝑅 −𝐶𝑃 and𝑈𝐿𝑇𝑅 − 𝑝𝑜𝑠 , respectively, to answer RQ4.



Table 2: Comparison of different weights based 𝑀𝑅𝑅 between 𝑈𝐿𝑇𝑅 − 𝐶𝑃 and baseline models. The best number per row is
bolded and * means statistically significance compared with SVM-rank based on t-test (p-values < 0.05).

Date 09-17 09-18 09-19 09-20 09-21 09-22 09-23 09-24 09-25

𝐶𝑃 − 𝑏𝑎𝑠𝑒𝑑 𝑀𝑅𝑅

𝑆𝑉𝑀 − 𝑟𝑎𝑛𝑘 0.3689 0.3694 0.3647 0.3597 0.3628 0.3532 0.3523 0.3583 0.3607
𝑈𝐿𝑇𝑅 − 𝑐𝑥𝑡 0.3693 0.3696 0.3650 0.3599 0.3636 0.3542 0.3533 0.3565 0.3614
𝑈𝐿𝑇𝑅 − 𝑝𝑜𝑠 0.3784* 0.3782* 0.3737* 0.3695* 0.3725* 0.3623* 0.3627* 0.3653* 0.3702*
𝑈𝐿𝑇𝑅 −𝐶𝑃 0.3790* 0.3786* 0.3747* 0.3708* 0.3733* 0.3634* 0.3642* 0.3663* 0.3713*

𝑃𝑜𝑠 − 𝑏𝑎𝑠𝑒𝑑 𝑀𝑅𝑅

𝑆𝑉𝑀 − 𝑟𝑎𝑛𝑘 0.3647 0.3657 0.3608 0.3554 0.3588 0.3594 0.3484 0.3514 0.3561
𝑈𝐿𝑇𝑅 − 𝑐𝑥𝑡 0.3645 0.3653 0.3606 0.3550 0.3590 0.3498 0.3489 0.3517 0.3581
𝑈𝐿𝑇𝑅 − 𝑝𝑜𝑠 0.3748* 0.3747* 0.3704* 0.3653* 0.3687* 0.3587* 0.3590* 0.3612* 0.3660*
𝑈𝐿𝑇𝑅 −𝐶𝑃 0.3748* 0.3748* 0.3709* 0.3661* 0.3691* 0.3593* 0.3600* 0.3617* 0.3666*

𝐶𝑇𝑅 − 𝑏𝑎𝑠𝑒𝑑 𝑀𝑅𝑅

𝑆𝑉𝑀 − 𝑟𝑎𝑛𝑘 0.3437 0.3449 0.3399 0.3347 0.3378 0.3285 0.3280 0.3308 0.3349
𝑈𝐿𝑇𝑅 − 𝑐𝑥𝑡 0.3436 0.3444 0.3395 0.3342 0.3380 0.3289 0.3285 0.3310 0.3351
𝑈𝐿𝑇𝑅 − 𝑝𝑜𝑠 0.3581* 0.3577* 0.3538* 0.3487* 0.3518* 0.3418* 0.3426* 0.3447* 0.3490*
𝑈𝐿𝑇𝑅 −𝐶𝑃 0.3582* 0.3579* 0.3538* 0.3494* 0.3520* 0.3423* 0.3434* 0.3451* 0.3496*

Figure 4: Re-ranked positions for𝑈𝐿𝑇𝑅 − 𝑝𝑜𝑠 v.s.𝑈𝐿𝑇𝑅 −𝐶𝑃

(averaged over every 10 positions, e.g., [1, 10],[11, 20],...).

Given a propensity estimation model, we first divide the propen-
sity scores into𝑚 blocks according to the range of their values. The
propensity scores are ordered and then be divided evenly into𝑚
intervals, so that the propensity scores within each block are similar
to each other. The larger the value of𝑚, the closer the propensity
score values in the same block. First, the products in the data set are
divided into the same number of blocks according to their propen-
sity scores. Second, within each block, we separate the products
as treatment (clicked) and control groups (non-clicked). We then
calculate the relative difference between the average ranks in these
two groups. From Table 3, we observe that the relative differences
in average rank under 𝑈𝐿𝑇𝑅 −𝐶𝑃 are always smaller than that of
𝑈𝐿𝑇𝑅 − 𝑝𝑜𝑠 , which indicates the estimated propensity score under
𝑈𝐿𝑇𝑅 − 𝐶𝑃 achieves more balance. Moreover, with an increase
of 𝑚, the relative differences in average rank under 𝑈𝐿𝑇𝑅 − 𝐶𝑃

and 𝑈𝐿𝑇𝑅 − 𝑝𝑜𝑠 both decrease correspondingly. Since there are
fewer products in one block for smaller granularity, the difference
becomes smaller. The value of𝑚 does not affect the relative com-
parisons between these two propensity estimation approaches. In
summary, the estimated propensity score under𝑈𝐿𝑇𝑅−𝐶𝑃 is more
appropriate since the rank covariate achieves more balance than
that of𝑈𝐿𝑇𝑅 − 𝑝𝑜𝑠 .

Table 3: The relative differences of averaged rank values for
𝑈𝐿𝑇𝑅 −𝐶𝑃 and𝑈𝐿𝑇𝑅 − 𝑝𝑜𝑠 under different granularity.

𝑚 5 10 15 20 25

𝑈𝐿𝑇𝑅 −𝐶𝑃 0.73% 0.32% 0.53% 0.45% 0.36%
𝑈𝐿𝑇𝑅 − 𝑝𝑜𝑠 1.66% 1.05% 0.70% 0.65% 0.46%

6.6 Model Robustness Analysis (RQ5)
In this section, we aim to investigate the robustness of the proposed
𝑈𝐿𝑇𝑅 −𝐶𝑃 model concerning the penalty factor 𝐶 in SVM-Rank,
so as to answer RQ5.

Specifically, we change the value of factor 𝐶 , which has the
greatest impact on performance, and then calculate the CTR-based
𝑀𝑅𝑅 of the 𝑈𝐿𝑇𝑅 − 𝐶𝑃 model and the 𝑈𝐿𝑇𝑅 − 𝑝𝑜𝑠 model. As
shown in Figure 5, the 𝑈𝐿𝑇𝑅 − 𝐶𝑃 outperforms the 𝑈𝐿𝑇𝑅 − 𝑝𝑜𝑠

in all settings when the value of parameter 𝐶 changes from 1 to
100 under different granularity. Since SVM-rank has the worst
performance which is far from the above two methods, so we did
not show it in the figure. The experimental results demonstrate that
the proposed𝑈𝐿𝑇𝑅−𝐶𝑃 model, considering both position bias and
context bias, is stable and robust to outperform𝑈𝐿𝑇𝑅 − 𝑝𝑜𝑠 .

Figure 5: Performance of𝑈𝐿𝑇𝑅 −𝐶𝑃 and𝑈𝐿𝑇𝑅 − 𝑝𝑜𝑠 models
with different values of the penalty factor in SVM-Rank.



7 CONCLUSIONS
In this paper, through a preliminary analysis, we identify that mul-
tiple types of biases exist in the scenario of e-commerce feeds
recommendation. To eliminate multiple biases simultaneously, the
𝑈𝐿𝑇𝑅−𝐶𝑃 framework is proposed, where combinational propensity
weight is estimated for the unified bias. Specifically, we instantiate
the 𝑈𝐿𝑇𝑅 −𝐶𝑃 framework in a context-aware position bias model.
In this model, we assume that in addition to position and relevance,
the user clicks are also determined by its surrounding context.
Extensive experiments on a real e-commerce dataset verify the ex-
istence of context bias and show that𝑈𝐿𝑇𝑅 −𝐶𝑃 outperforms the
state-of-the-arts noticeably. The balancing checking results also di-
rectly confirm the advantage of introducing context bias. Moreover,
the context bias concept and the proposed𝑈𝐿𝑇𝑅 −𝐶𝑃 framework
have a potential inspiration for other applications as well, e.g., web
search ranking, whole page optimization, etc.
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