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Abstract—Policy diversity, encompassing the variety of policies an agent can adopt, enhances reinforcement learning (RL) success by
fostering more robust, adaptable, and innovative problem-solving in the environment. The environment in which standard RL operates
is usually modeled with a Markov Decision Process (MDP) as the theoretical foundation. However, in many real-world scenarios, the
rewards depend on an agent’s history of states and actions leading to a non-MDP. Under the premise of policy diffusion initialization,
non-MDPs may have unstructured expanding solution space due to varying historical information and temporal dependencies. This
results in solutions having non-equivalent closed forms in non-MDPs. In this paper, deriving diverse solutions for non-MDPs requires
policies to break through the boundaries of the current solution space through gradual dispersion. The goal is to expand the solution
space, thereby obtaining more diverse policies. Specifically, we first model the sequences of states and actions by a transformer-based
method to learn policy embeddings for dispersion in the solution space, since the transformer has advantages in handling sequential data
and capturing long-range dependencies for non-MDP. Then, we stack the policy embeddings to construct a dispersion matrix as the
policy diversity measure to induce the policy dispersion in the solution space and obtain a set of diverse policies. Finally, we prove that if
the dispersion matrix is positive definite, the dispersed embeddings can effectively enlarge the disagreements across policies, yielding a
diverse expression for the original policy embedding distribution. Experimental results of both non-MDP and MDP environments show that
this dispersion scheme can obtain more expressive diverse policies via expanding the solution space, showing more robust performance
than the recent learning baselines.

Index Terms—Policy diversity, non-Markov Decision Process, reinforcement learning, solution space, policy dispersion.
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1 INTRODUCTION

EINFORCEMENT learning (RL) has achieved great suc- Space of MDP solutions Space of non-MDP solutions
Rcess in learning effective policies for a given task,

including board games [1f], [2], poker games [3], [4], video ;
games [5], [6], [7], [8], [9], autonomous control [10], [11], !
[12], [13], and robotic manipulation [14], [15], [16], [17]. [> ,"
Policy diversity significantly contributes to the success of \
reinforcement learning (RL) [18], [19], referring to the variety
or heterogeneity of policies that an agent or a set of agents
can adopt during the learning process. It also encompasses
the range of policies an agent can utilize within the same Space of known solutions 5 One of solutions
environment. This diversity leads to more robust and gen-
eralizable solutions, as exposure to various policies enables
an agent to adapt to different situations and environments,
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Fig. 1: Non-MDPs exhibit unstructured expanding solution
space. The left circle represents the space of the MDP
solutions, and the middle green area in the circle represents
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the Markov property leading to a non-Markov Decision
Process (non-MDP) [22], [23], [24]], [25], [26] where the reward
has a temporal nature [27], that the policy receives its rewards
for complex, temporally-extended behaviors sparsely. Under
the premise of policy diffusion initialization, non-MDPs
may have unstructured expanding solution space E| due to
varying historical information and temporal dependencies.
This results in solutions having non-equivalent closed forms
in non-MDPs.

Proposal/Motivation We thus seek to learn diverse
policies in non-Markov environments. Deriving diverse
solutions for non-MDPs requires policies to break through
the boundaries of the current solution space through gradual
dispersion. The goal is to expand the solution space, thereby
obtaining more diverse policies, as shown in Fig. |1} This
means that diverse policies should cover the solution space
as much as possible. To this end, an effective approach is
to learn representations of policies and ensure that these
representations sufficiently diffuse throughout the space,
thereby inducing diverse policies. Initially, the candidate
policies of the agents typically start from similar initial states,
with their embeddings clustered in a unified region of the
policy embedding space. As the diffusion process unfolds,
these embeddings are repeatedly reconstructed during policy
updates, forming distinct diffusion paths. Ultimately, by
maximizing the diffusion divergence of the dynamic policy
update trajectory, a diverse set of diffusion trajectories is
achieved, as illustrated in Fig.

Technical statement Motivate by the above dispersion
perspective, this paper proposes Discovering Diverse Policy
via Embedding Dispersion (D2PED) method, which can
efficiently learn high-quality policies with diverse behaviors
in non-Markov environments. Specifically, we design a
policy dispersion scheme to disperse policy embeddings
along different trajectories as the policy update progresses.
Then the policy embeddings are employed to construct a
dispersion matrix, which is used to measure the diversity
of the candidate policies and guides the update of the
policies. The key to learning effective policy embeddings
in non-Markov environments lies in capturing essential
historical information through the integration of past states
and actions. Modeling trajectories, sequences of states and
actions, is the most direct method to capture long-horizon
dependencies for histories, which has been studied in the
context of game theory [28], [29], [30] and non-Markov
tasks [31], [32]], [33]. In this context, we identify a strong
isomorphism with the approach used by the transformer [34]
to model trajectories and obtain policy embeddings. The
transformer’s self-attention mechanism is adept at captur-
ing long-range dependencies and can adaptively prioritize
historical information crucial for specific task demands. This
capability enables the transformer to dynamically adjust
its dependency on historical data according to varying
scenarios, providing substantial flexibility that is particularly
advantageous in non-Markov environments. Moreover, in
non-Markov environments, the agent receives its reward
sparsely for complex actions over a long period [27], which

1. Note that the solution space is an approximate concept of the policy
diversity exploration space, which inspires us to learn diverse policies
in non-Markovian environments.

@® Embeddings of policy one

@ Embeddings of policy two
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Fig. 2: Policy embeddings dispersion. There are three
dispersion trajectories over different policy embeddings,
where their initial positions are marked by a red circle.
In the dispersion process, the embeddings are repeatedly
constructed as the policy update progresses, forming three
different dispersion trajectories with direction guidelines.

is not conducive to training the transformer-based policy
representation model. We construct a sample categorical
distribution to sample higher cumulative reward trajectories
with a higher probability. We also give the theoretical
conditions such that the policy diversity will not reduce
their effectiveness.

Contributions Our major contributions are summarized
as follows:

e New Insight. Under the premise of policy diffu-
sion initialization, non-MDPs may have unstructured
expanding solution space due to varying historical
information and temporal dependencies. This results
in solutions having non-equivalent closed forms in
non-MDPs.

e New Scheme. Motivated by our new insight, we
design a policy dispersion mechanism to discover
diverse policies in non-Markov environments. We
incorporate the historical information into the policy
representations and use the representations to con-
struct a diversity measure. This diversity measure
guides the policies to disperse in different directions,
enabling the exploration of the unknown boundaries
of the expanded solution space in non-Markov en-
vironments so that diverse policies can cover the
solution space as much as possible.

e Effective Analysis. Our method proves that the disper-
sion matrix is positive definite (refer to Proposition[4.),
thereby ensuring the existence of diversity among the
policies. Furthermore, by maximizing the objective
function, we facilitate the achievement of a group of
diverse, approximate optimal solutions.

e Efficient Performance. With our effective module
design and theoretical analysis, our policy diversity
learning scheme can be combined with any off-policy
reinforcement learning algorithm, and the experimen-
tal results of both non-MDP and MDP environments
show that this dispersion scheme can obtain more
expressive diverse policies via expanding the solution
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space, showing more robust performance than the
recent learning baselines.

The rest of this paper is organized as follows. In Section
we introduce the related work. In Section B} we introduce
the preliminary knowledge about the non-Markov decision
process and policy diversity learning. The methodology
of policy dispersion is presented in Section {4, where
presents the policy representation module which is employed
to generate effective and diverse embeddings for different
policies, and describes the process of dispersing the
dynamically updating trajectories over embedding recon-
struction to learn diverse policies. In Section 5} we conduct
various experiments to demonstrate the effectiveness and
robustness of D2PRD. We conclude this paper in Section 6]

2 RELATED WORK

In this paper, we discuss the related work in three aspects:
from non-Markovian task scenarios to the specific tasks
where we learn diverse policies, and the crucial technical ap-
proach of learning policy representations for policy diversity.

Non-Markov Environment. In a standard Reinforcement
Learning (RL) problem setting of an MDP, rewards depend
only on the most recent state-action pair. In a non-Markov
reward decision process [35], rewards depend on the history
of state-action pairs. Building in temporal logics over finite
traces, [26] adopt linear dynamic logic on finite traces for
specifying non-Markov rewards and provide an automaton
construction algorithm for building a Markovian model. In
another paper [36], the authors are concerned with both
the specification and effective exploitation of non-Markov
rewards in the context of MDPs. They specify non-Markov
reward-worthy behavior in Linear time Temporal Logic (LTL).
Similarly, [37] use truncated LTL as a reward specification
language, and [38] use LTL¢ to specify desired complex
behavior. Because temporal formulas are evaluated over an
entire trace, it is difficult to guide the RL agent locally toward
desirable behaviors. Data-driven approaches to learning
non-MDP problems [39] often make use of domain-specific
propositions and temporal logic operators [40], [41], [42]. The
work [28] introduces the indispensable role of game theory
in understanding decision-making in scenarios involving
multiple entities, where decisions are dependent on historical
information. Another work [30] delves into the pivotal
role of information structures in Multi-Agent Learning
emphasizing the strategic decision-making processes among
agents within dynamic environments. The core focus is on
how agents adapt and make optimal decisions based on their
historical experiences which interactions with other agents.
A mainstream approach addresses the challenge of extending
multi-agent reinforcement learning to complex real-world
problems [29], which by the agents adjust their policies based
on historical action trajectories.

Learning diverse policies. Our method can be grouped
into this category. A series of existing Quality-Diversity
(QD) [18] related evolutionary algorithms have achieved
good performance in exploring diverse behaviors and diverse
policies [43]], [44], [45], [46l, [47], [48], [49]. The MAP-Elites
algorithms [50], [51] solve this problem by discretizing the
behavior description space into a grid of cells. Some theo-
retical conclusions are also developed to ensure that diverse

3

policies are not obtained by sacrificing their effectiveness. The
DvD [19] algorithm proves that under tabular MDP, multiple
distinct optimal solutions can be obtained by maximizing
the proposed loss function. The ridge rider algorithm [52]
proposes to use the eigenvectors of the Hessian matrix to
discover diverse local optima with theoretical guarantees.
[53]] theoretically shows that maximizing the diversity metric
based on the decision point process can guarantee to enlarge
the convex polytopes spanned by the policies of agents. The
work [54] proposes a method that generates a set of diverse
and well-performing policies by measuring the differences
between policies through a new metric and employing
constrained optimization techniques. Some Reinforcement
Learning (RL) based methods have been developed to ex-
plore diverse behaviors [54], [55], [56]. The GEP-PG algorithm
[57] uses Goal Exploration Processes [58] to generate diverse
policies and combines them with the Deep RL algorithm
DDPG [8], which performs well in continuous control tasks.
The RSPO [59] explores diverse policies by solving a filtering-
based objective, which restricts RL policies from converging
to a solution that differs from a set of local optimal policies.
P3S-TD3 [60] method periodically determines the best policy
among all learners and assigns the best policy parameters to
all learners so that the learner can search for a better policy
under the guidance of the best policy.

Policy representation learning. A generative method
is proposed in [61], which proposed an encoder-decoder
method for modeling the agent’s policy. The encoder learns
a point-based representation of different agent trajectories,
and the decoder learns to reconstruct the modeled agent’s
policy. Two meta-learning methods are proposed in [62], [63],
and they both regard the latent generative representation
of learning model parameters as the policy representation,
and the method in [63] shows more stable performance.
[64] proposed relational forward models to model agents
using graph neural networks. [65] uses a VAE for agent
modeling for fully-observable tasks. [66] proposed the Theory
of mind Network (TomNet), which learns embedding-based
representations of modeled agents for meta-learning.

3 PRELIMINARIES

In this section, we present the necessary background relevant
to the problem setting of this work.

Markov Decision Process (MDP) is a mathematical frame-
work to describe an environment in reinforcement learning.
An MDP is a tuple M = (S, A, P,R,~), where S and A
represent state space and action space, respectively. The state
transition dynamic function is given by P : S x A — S,
which is a mapping from the current state s € S to the next
state s’ € S. The reward function is givenby R: S x A — R,
mapping from state s € S and action a € A to reward r € R.
~ € [0,1) denotes the discount factor.

A policy m : S — A is a mapping from S to A.
A trajectory 7 € T is a sequence of state-action pairs,
7 = ((s0,a0), ..., (s7-1,a7r-1)). In deep RL, policy 7 is
typically a neural network, encoded by parameter vectors
6, and the goal is to optimize parameters § of 7 such
that an agent equipped with policy 7y in the environment
described by a fixed MDP maximizes R(7) = > /_, 7'~ 'r,
the expected cumulative reward of a trajectory 7 over an
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episode time-step horizon 1" (assumed to finite). The typical
objective function of policy g is as follows:

J(ﬂQ) =E;r [R(T)] 1

Non-Markov Decision Process [25], [35l, [40l, [67] extends
MDP and assumes transition and reward functions depend
on the history of state-action pairs. Formally, an non-MDP
is a tuple M = (S, A,tr, R",v), where S, A are as in an
MDP, tr : §* x A x § — II(S) is the transition function, i.e.,
tr((so,..-,Sk),a,s’) is the probability of reaching state s’
when executing action a given history sy, ..., 5. Here S* is
the set of finite, non-empty, state sequences. A non-Markov
Reward function is a mapping from the finite history of states
and actions to reward R, denoted as R : (S x A)* — R. In
the following, for the convenience of representation, we will
simplify my: into ;.

4 METHODOLOGY

In this paper, to derive diverse solutions in non-MDP
environments, the policies need to gradually diffuse and
break through the boundary of the existing solution space, we
model the policy update process as the policy embedding dis-
persion, deriving different paths to explore diverse policies.
Furthermore, we decompose the objective of policy update
into two parts: one part is the objective of policy optimization,
which updates the policy towards the direction of obtaining
the maximum expected cumulative reward, and the other
part is the objective of policy diversity, which updates the
policy towards the direction of diversity development. The
two objectives provide gradients in two different directions
for policy updates. The combination of the two gradients
enables the policy update to not only obtain the maximum
expected cumulative reward but also consider dispersing
in different directions than other policies. The objective of
the first part, policy optimization, can directly adopt the
optimization objective of standard reinforcement learning
algorithms. For the second part, we construct a policy
diversity objective suitable for non-Markov environments.

To guide the development of diverse policies, an effective
method is to learn the representations of the policies and
then promote dispersion in the representation space, thereby
encouraging policy diversity. In non-Markov environments,
the key to learning effective policy embeddings is capturing
the characteristics of non-MDP, namely, the embeddings
need to capture reward-relevant historical information, and
also consider the sparse supervision signals. We present a
transformer-based policy representation module, which is ca-
pable of learning effective policy embeddings in non-Markov
environments. Meanwhile, to avoid the lack of supervision
signal problem caused by non-Markov rewards, we design
a sample categorical distribution to sample trajectories for
training the policy representation model. Further, we propose
a policy dispersion scheme to disperse policy embeddings
along different trajectories as the policy update progresses
and use the embeddings to construct a dispersion matrix that
guides the learning of diverse policies.

Our proposed method, D2PED (Discovering Diverse
Policies via Embedding Dispersion), comprises two primary
submodules: the policy representation module and the policy
dispersion module. The schematic illustration of our method

4

is shown in Fig.[3] In our method, M parallel learners learn
M distinct policies and share a common replay buffer D. The
M learners execute parallelly in different copies of the same
environment and employ a common base algorithm which
can be any off-policy RL algorithm.

4.1 Non-MDP Policy Representation Module

The policy representation module (shown in Fig. [B[b)) is
employed to generate effective embeddings for different
policies. Specifically, for the m-th (m € {1,..., M}) policy
Tm, the representation module inputs a trajectory collected
by 7y, and outputs a policy embedding vy, for mp,.

4.1.1

Using trajectories to learn policy embeddings in non-Markov
environments is effective and suitable, as the state-action
pairs within the trajectories directly reflect the characteristics
of the policy [61]. We leverage the architecture of the
transformer [34], which is well-suited to model trajectories to
generate policy embeddings. The transformer’s self-attention
mechanism is particularly proficient at detecting and inter-
preting long-range dependencies within these sequences.
It effectively discerns the significance of various historical
points, allowing it to adaptively prioritize information that is
most relevant to the task at hand. This dynamic adjustment
capability is crucial, as it enables the transformer to modify
its focus on different segments of historical data based on
the current scenario and the demands of the environment.

Such flexibility is invaluable in non-Markov settings
where the relevance of historical information may shift
dramatically across different states and actions. By using
the transformer, we can ensure that our policy embeddings
are not only reflective of the deep temporal structure of
the environment’s dynamics but are also responsive to the
changing priorities and requirements of different tasks.

Specifically, we design the policy representation process
as a mapping function 7 — V — Y parameterized by
¢, which is the combination of Eq. (2) and Eq. (B), where
T = {Tim 1o} 7m:1 denotes the set of trajectories collected by
policies {m, }M_,, V = {v,,, }}_, is the policy embeddings,
and Y = {y,}}_, is the set of the policy indexes. The
mapping function inputs trajectories and outputs policy
embeddings which are the essential ingredients to learning
diverse policies. Then, the embeddings are classified into
policy indexes to train this module.

The transformer architecture can efficiently model se-
quential data. This model consists of stacked self-attention
layers with residual connections. Each self-attention layer
receives embeddings generated by tokens and outputs
embeddings that preserve the input dimensions. For i-
th T time-step horizon trajectory collected by policy 7,

(gl 1 T T t (gt ¢
Ti,m = (Si,m’ ai7m7 Hie] Si7m7 a’i,m)' we let wi,m - (Si,m7 ai,m)
for each time step t € {1, ..., T} as a token. Subsequently, we
regard (wfym)thl as a sequence, and input to the transformer
encoder (i.e., a Layernorm (LN), a multiheaded self-attention
(MSA) layer, and residual connections [68], [69]]), to obtain
the policy embedding;:

Generative Non-MDP Policy Representations

Vi,m = MSA(LN(Wf,m);r:l + EpOS) + (wt )tT:h

i,m

)

Authorized licensed use limited to: JILIN UNIVERSITY. Downloaded on September 19,2024 at 05:05:22 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2024.3455257

*—l

Buffer D

Policy embeddings
([ iea

JOURNAL OF ISTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5
Policy embeddings E |
M . . . . .
{ Um }oa=1 ! {Vm Jm=1 Jl | | Policy Diversity Objective
1 . A
' " Representation Loss  : _Policy indexes Function J (1t;,)
i Lo({§im b vm) e, |
! NM ! A
- e - <~ gm0 -- ~ : {fi,m}i=1vm=1 :
il v 1 N ’{ ] A
. . Classification Layer
: : : Diversity 3! i i y § i -
! Policy : : Matrix | -3, ' L Transformer }'g ! . tSP0|'C[))"D'V9rS|tyM
a O ! = —
I Representation 1 i 821 all eU(S) = Div({ vm }m=1)
1 1 1 i T2 S NS )
: Module \ i Policy g ! 5. : +
1 1 - - I [=4 |
| ' | | Diversity = ' S
s e Y
1\ /| . . "
' ! Dispersion Matrix
' ¥ | S 2 F({vm }me
i Sample trajectories by Policy indexes i ({7 Ym=1)
: categorical distribution Y={ym}¥_, ! ~ ~
: i
d i
1 1
1 1
1 1
1 1
" 1

[ batch of trajectories {rl-_m};v:'fm_ , fromD }

(@) Overview

(b) Policy Representation Module

(c) Policy Dispersion Module

Fig. 3: A schematic illustration of D2PED: (a) The overall structure of D2PED. D2PED comprises the policy representation
module and the policy dispersion module. M learners execute parallelly and store trajectories into a shared replay buffer D.
(b) The policy representation module samples a batch of trajectories from replay buffer D and then constructs a sample
distribution via Eq. to select high-quality trajectories for training the module. The transformer encoder inputs the
trajectories and outputs policy embeddings, then the embeddings are classified into policy indexes (classification labels) by
the classification layer. (c¢) The policy dispersion module utilizes the policy embeddings to construct a dispersion matrix.
The determinant of the diversity matrix is regarded as a policy diversity measure, which is further as a term of the policy

diversity objective J(m,) (Eq. (6)).

where v; ,,, € RE represents the i-th embedding for policy
mm and E,,, denotes the positional encoding. In our ap-
proach, T general represents the entire episode duration from
the starting point to the final step of the agent’s trajectory,
using this full trajectory to effectively capture hidden patterns
and temporal dependencies.

To train the transformer-based policy representation mod-
ule, we model the problem as a trajectory classification task.
First, we sample N trajectories for each of the M policies and
shuffle all the trajectories. Then, we regard the policy indexes
of trajectories Y = {y,, }}_, (the trajectories collected by
which policy) as class labels, and assign the class labels to
the policy embeddings. Specifically, v; ,, are processed with
a classification layer (CL), which is formulated by:

&,m = CL(U'L',m)7 3)

where &; ,, denotes a vector in which the j-th element
(j € {1,2,..., M}) represents the probability that the policy
embedding v; ., is assigned to the j-th policy. Finally, we
train the policy representation module by minimizing the
loss function:

11 N M
Ly = NM Z Z (ymT IOg(Eiv"”))’

i=1m=1

(4)

where y,,, is the policy index (classification label) of 7; ,,.
Trajectory sampling relies on the categorical distribution
introduced in Section

4.1.2 Sample Trajectories with Categorical Distribution

In non-Markov environments, rewards are usually sparse
since they often involve delayed gratification, where the
reward is only received after a series of correct actions
are performed over time. The environment complexity also
increases the difficulty for an agent to stumble upon the
correct series of actions that lead to a reward, thus making
the rewards sparse as they are less frequently encountered.

Non-Markov environments are characterized by depen-
dencies on past states and actions. By focusing on higher-
reward trajectories, the learned embeddings are more likely
to capture the essential dynamics and dependencies that
lead to successful outcomes. This focus ensures that the
embeddings reflect characteristics of decisions that are more
rewarded and embed the underlying policy features that
achieve these outcomes. In particular, different policies have
different decision preferences (certain actions in specific
situations). Without a reward signal, it is difficult to identify
the policy’s preferences. Trajectories with higher rewards are
more likely to reflect the policy’s preferences.

To train the policy representation module with sparse su-
pervision signals, we design a sample categorical distribution
by the cumulative rewards of the trajectories to select high-
quality (relatively high rewards) trajectories. Specifically, let
Ti,m be the i-th trajectory collected by policy 7, and 7; m,
denotes the accumulated reward of 7; ,,,. We regard r; ,,, as a
parameter and construct the sample categorical distribution,
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o=
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im ~ Cat

/3 o(rim) X, |

j=1

(o(rim)

where o is the sigmoid function, IV is the batch size that
sample trajectories from replay buffer D for policy m, and N
is equal for each policy. A hyperparameter ¢ is used to adjust
the “temperature” of the sampling distribution.

With the sample categorical distribution, trajectories with
higher cumulative rewards will be sampled to train the
model at a higher frequency, and M policies are sampled
multiple times using the distribution to obtain samples for
learning M policy embeddings. We regard the trajectory
indexes sampled by Eq. (5) as the classification labels, which
will be used to train the representation model by minimizing
the loss Eq. () in Section [#.1.1}

The policy representation module is utilized to obtain /N
policy embeddings for each of the M policies. Then the policy
embeddings are used to construct the diversity measure
of the policy set and guide the policy dispersion into the
boundary of the solution space.

4.2 Policy Dispersion Module

The candidate policies typically have consistent initializa-
tions, where their embeddings are concentrated in a uniform
region. Subsequently, the policies are continuously updated
during the optimization process, and the policy embeddings
are repeatedly constructed along with the policy updates. The
repeated construction process of policy embeddings for each
policy forms a reconstruction path of policy embeddings. To
obtain diverse policies, maximizing the disagreements in the
reconstruction paths of policy embeddings is effective, that
is, letting the reconstruction paths of policy embeddings for
different policies extend in different directions in the repre-
sentation space. This also means that policy embeddings are
as dispersed as possible in the representation space. In this
case, different policy representations on different dispersed
paths can provide diversity-oriented update directions for
policy updates. As shown in Fig.

To maximize the disagreements in the reconstruction
paths of policy embedding, we designed a policy dispersion
module as shown in Fig. 3{(c). The degree of dispersion of
policy embeddings in the space will directly reflect the diver-
sity of the policies. Further, the key is how to measure policy
diversity. For this, we use policy embeddings to construct
a dispersion matrix as a measure of policy diversity, guiding
the policies to update toward the direction of diversity.
Specifically, the dispersion matrix stacks the embeddings of the
candidate policies, modeling the process trajectory dispersion
with direction guidelines. Following the Determinantal Point
Processes (DPPs) [70], the determinant of the dispersion
matrix that proportionally draws the dimensional span
over the associated geometric region of the matrix, could
be specified as a quantification of the disagreement of
dispersion trajectories, that is, characterizing the diversity of
the candidate policies.

To construct the dispersion matrix, we randomly select an
embedding for each of the M policies from {vi_,m}gv:’ivfmzl,
constituting {v, }M_,. And stack the M selected embed-
dings as the dispersion matrix. Further, we propose the

6

following definitions to construct the dispersion matrix and
compute the policy diversity measure as follows:

Definition 4.1. (Dispersion Matrix) Consider M policies
{mm }M_., and their embeddings are denoted as {v,, }}_,, where
Um € RE. Let V 2 [vy, ..., vps], where [] is the operator that
stacks vectors into a Matrix. We define the Dispersion Matrix of
policies as S = F(V'), where F(-) is a function that transforms
the M x K matrix V toa K x K positive-definite matrix.

Definition 4.2. (Policy Diversity) We define the diversity of
policies as the determinant of their dispersion matrix, denoted as
Div({vi }M_,) = det(S).

The matrix V' constructed by Definition[4.1]is an M x K
matrix. Suppose the number of candidate policies M equals
the dimension K of the policy embeddings, i.e., M = K, the
determinant of the square matrix V' that represents the disper-
sion disagreement of dynamically updating trajectories over
embedding reconstruction, could be a feasible measurement
for the diversity of the M policies. However, for the scenarios
of M # K, the function F'(-) could be adopted to transform
the polyhedron spanned by M K-dimensional embeddings
to a parallelepiped spanned by a K-by-K positive-definite
matrix in another embedding space. Then the determinant
of the square matrix still could measure the diversity of the
M candidate policies.

Now consider the D2PED total objective function J(IT) of
the candidate policies II = (74, ..., 7, ), which seek to find a
set of policies with both high rewards and diverse behaviors.
The total objective function J(II) explicitly augments the RL
objective function with an additional policy diversity term
Div({vm }2_,), as follows:

J(II) = { Z {(1 = B)J(mm) + BDiV({Vm}gzl)} } (6)

m=1
where 8 € (0, 1) controls the trade-off between J(m,,) and
Div({ﬂ-m}I]\I/II:1)'

Applying our D2PED algorithm would lead to the
following proposition, which implies that after sufficient
policy dispersion, we will obtain a set of approximate optimal
diverse policies.

Proposition 4.1. Consider M policies for an environment charac-
terized by finite non-MDP. Suppose optimal policy m* achieves a
cumulative reward of R(w},) and approximate-optimal policy 7
achieves a cumulative reward of R(7) with R(7) + A < R(w},)
for some A > 0. Since S is positive definite, according to
Hadamard’s inequality [71]], the following bounds hold:

K
0 < Div({vim}m=y) = det(S) < [ [ si = A, @)
i=1

where s;; is the (i, 1)-th element of S , based on the objective Eq.[6]
the following formula holds:

M

> |1 = B)R(Fm) + BDV({Fu} o) ®)
M

<> (1-B)R(r},) — (1 —B)MA+BMA. (9
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then maximizing the objective in Eq. (6) can yield a set of diverse
approximate-optimal policies.

Remark 4.1. From Proposition[d.1|and Eq.[7} we conclude that
our method ensures the existence of diversity within the policies.

Remark 4.2. From Proposition and Eq. [8 we conclude
that by maximizing the objective function, we approximate the
maximization of the bound, enabling the attainment of a group of
diverse, approximate-optimal solutions.

The proof of Proposition [4.1]is in Appendix Accord-
ing to Eq. [7} the diversity term is greater than 0, which
provides a diversity gradient during the optimization of the
objective equation, it inevitably leads to the occurrence of
diversity, making it impossible to obtain a situation where
the entire set consists of optimal solutions. Therefore, this
upper bound is only a theoretical upper bound, and diversity
must exist. Maximizing the objective equation approximates
maximizing the bound, which can yield a set of diverse
approximate-optimal solutions.

Our objective is to find multiple solutions to the problem,
and the significance of this upper bound is to ensure the
existence of policies that are close to optimal. This upper
bound is relatively soft, providing a more precise constraint
compared to the more rigid upper bound expressed as
SM_ R(r%) + A. Therefore, approximating this upper
bound allows us to achieve approximate-optimal diverse
solutions. It’s important to note that as the M policies become
closer to the optimal solution, their diversity decreases.
Thus, our upper bound also effectively balances the trade-off
between achieving high-quality solutions and maintaining
diversity among the policies.

A method to construct a dispersion matrix. The theory
holds if the dispersion matrix is positive definite, and we
give a method to construct a positive definite dispersion
matrix. In general, we compute the covariance matrix of
the policy embeddings and then regard the determinant
of the covariance matrix as the diversity of policies in
Definition In statistical analysis, the determinant of
the covariance matrix is termed the generalized variance
[72], which is proportional to the sum of squares of the
volumes of all the different parallelotopes formed by the
policy embeddings using as principal edges [73], [74]. Note
that the volume of the enclosed geometric region of those
policy embeddings also can reflect the policy diversity,
where the detailed explanation is presented in Appendix
[A.2] Specifically, we construct the covariance matrix S of
(vm)M_,, where Um £ (vmi)K . The (i, k)-th element of
Sis s, = M T Zm 1 (Vmi — ;) (Ui — Vi), where M is the
number of policies, and v; = ﬁ Z]J\il Vjij.-

Since the generalized variance is by definition semi-
positive definite, ensuring that the determinant is greater
than or equal to zero, we use the Gershgorin Circle Theo-
rem [75] to fine-tune in extreme cases (when the generalized
variance is zero) to make its determinant greater than zero,
thus ensuring that the diversity matrix is positive definite.
Since the matrix is reconstructed with each update, a single
adjustment does not cause a lasting impact. Specifically, if
det(S) = 0, we replace S with S, where (i,7)-th element is
Sii = Sii + Zj# |si;|. Therefore, det(S) could be specified
as the quantification of the disagreement of dispersion

Algorithm 1 D2PED

Require: number of learners M, batch size N for each
policy, max iteration (), period to train policy representation
module U.

Initialize: M policies {v,,}}_,, parameters of policy
representation module: ¢, environments {Ei,---,E,},
local experience replay buffer {D;,--- , D,,}, shared replay
buffer D,.

1: while ¢ < @ do

2: form =1,2,---, M learners in parallel do
3 Reset the environment and get state s;.

4 for each running time step t do

5: Sample action af,, from policy 7, (al,|st,).
6: Apply the action af, to the env1ronment
7 Get next state st and the reward rt..

8

rt sty into the

Store the transition (s’ s S

local replay buffer D,,.

m? 77L’

9: if environment £, done then

10: Store trajectory 7, = {sl,,al,, 7% }I_, into the
shared replay buffer D;.

11: end if

12: end for

13: if ¢ mod U == 0 then

14: for each training step do

15: Randomly sample N trajectories for each of

the M policies from shared replay buffer Dj,
denoted as {77, }"M

i=1,m=1"

16: Construct sample c7ategorical distribution via
Eq. (B) to select training trajectories.

17: Compute the policy embeddings {vi ,n }'1" m=1
via Eq. (2).

18: Predict classification labels {gi,m}jv:’f’”mzl via
Eq. (@).

19: Compute Ly via Eq. ().

20: Update ¢ for policy representation module.

21: end for

22: end if

23: Randomly samples N trajectories for each of the M

policies and shuffles all the trajectories {T:ﬁ}ivz’{\f[mzl.

24: Compute policy embeddings {v,, }M_, via Eq. ( .

25: Stack policy embeddings {v,, }}/_, to construct a
matrix V.

26: Compute a Dispersion Matrix S = F'(V') based on
the Definition

27: Compute Policy Diversity Div({vm, }M_;)
based on the Definition

28: Compute J(II) and update candidate policies IT
with objective function: [}

29:  end for

30: end while

= det(S)

trajectories, that is, the diversity measure to the policies.

The D2PED algorithm is summarized in Alg.[1} D2PED
employs a dispersion matrix to measure the diversity of
the candidate policies and adds the determinant of the
dispersion matrix to the policy objective function. To improve
the efficiency of the algorithm, M learners (i.e., M diverse
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policies) execute parallelly in different copies of the same
environment and share a shared replay buffer.

5 EXPERIMENTS

In this section, we present and analyze our experimental
results. First, we provide an overview of the experimental
setup and the environments we used to evaluate our models
in Section 5| Then, in Sections [5.2] ~ we report results
in several different environments respectively. Finally, we
further provide an ablative analysis of the proposed method-
ology in Section We also summarize hyperparameters
used in experiments in Appendix

5.1 Experimental Setup

We conducted experiments in both non-MDP and MDP
environments to verify the expansion of the solution space
by non-MDP decision processes. We also performed experi-
ments in continuous and discrete action spaces in non-MDP
environments to validate the capability of D2PED to learn
diverse policies and the performance of the policies in both
action spaces. Additionally, we designed single modal and
multi modal experiments in MDP environments to verify
the performance of policies under MDPs and the ability to
learn diverse policies with D2PED. Finally, in the ablation
Study, we separately verified the contribution of the policy
representation module and the sensitivity of the policy
dispersion module to the number of policies.

Jemes

Fig. 4: The

)

oint-v1 environment.

5.1.1  Environments

Point. To explicitly examine whether our method can ef-
ficiently find high-quality policies with diverse behaviors
in the non-Markov environment, we create the Point-v1
environment with non-Markov rewards and multi-solution,
which is modified from the Point-v0 [19] and has continuous
state and action space. In the Point-v1 environment, an agent
and a target (i.e., green cuboid) are separated by three U-
shape walls (see: Fig.[#). When an episode starts, the target
randomly sends a signal to the agent, and the agent needs to
reach the goal within a specified number of time steps. When
the agent receives the signal and reaches the target, it will get
an event reward of 100. If there is no signal at the target, the
agent starts to move, or if the agent hits a wall while moving,
it will get an event reward of -100. In this case, the context
or sequence of events (whether the agent receives the signal
and what actions it takes after receiving the signal) leading to
the agent reaching the target can influence the reward, that

8

is, the past events can influence the current reward, making
the process history-dependent. The current episode ends
immediately if the agent hits the wall or reaches the target.
The agent only obtains a total reward at the end of each
episode. The total reward is the sum of the event reward and
the distance reward, which is the negative distance between
the agent and the target at the end of the episode.
FrozenLake. For discrete control tasks, we perform
experiments in the FrozenLake-v1 environments with non-
Markov rewards, which is a grid world game, some grids
are walkable, and some grids are holes that will make the
agent fall into the water (see: Fig.[5). At the beginning of an
episode, the agent will stand by in the upper left corner of
the map, with the target grid in the lower left corner. The
task randomly sends a start signal to the agent. If the agent
receives the signal and reaches the goal grid, a reward of 1
is obtained. If the agent starts moving without receiving the
signal, a reward of 0 is obtained. If the target is not reached
within a finite time step after receiving the signal or the
agent falls into the hole, the obtained reward is still 0. As the
size of grids and the density of holes increase, it becomes
increasingly difficult for agents to reach the target grid.

elele

NG

|.J*éfa
L8

Fig. 5: The Frozenlake 8 x 8 environment.

MuJoCo. To examine the effectiveness of D2PED ex-
panding the solution space, we conduct experiments in
various tasks, Hopper (Fig. Eka)), Halfcheetah (Fig. Ekb)), and
Humanoid (Fig. Ekc)), from the OpenAl Gym library [76]. In
each task, the agent takes as input a vector of physical states
and generates a vector of action values to manipulate the
robots in the environment. We also create two multi-modal
environments based on the HalfCheetah and Ant, where
we assign rewards for both Forward and Backward tasks to
examine our method’s effectiveness in finding high-quality
and diverse policies in Markov reward environments.

(b) Halfcheetah

(c) Humanoid

Fig. 6: The three standard MuJoCo environments.
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5.1.2 Baseline Methods

The baseline methods adopted for comparison are the same
within different environments. We select DvD [19]], QD-RL
[77], and P3S [60] as the baselines. For a fair comparison,
we combine our method and baselines with the same base
algorithm (i.e., DQN [78], PPO [12], TD3 [13]) and use the
same hyperparameters for each environment. The number
of candidate policies M of these algorithms is always set
to 5. We report the mean and standard deviations across
five identical seeds for all algorithms and all tasks. The
experiments are performed using the ray [79] library for
multi-process parallel computation.

To make policy optimization algorithms still work in
non-MDP environments, we incorporate Long Short-Term
Memory (LSTM) [80] networks into the PPO and DQN
architecture allowing the algorithm to maintain a form
of internal state that captures information from the past
environment states. This approach effectively transforms the
MDP environment into a non-MDP one from the algorithm’s
perspective, allowing it to make decisions that consider the
history of states and actions.

5.2 Evaluations in Non-MDP Environments

We evaluate D2PED in non-MDP environments with con-
tinuous and discrete action spaces, focusing on two aspects:
policy performance and the ability to learn diverse policies.

5.2.1 Continuous Control

Point-v1

100

D2PED-PPO

—— DvD-PPO
QD-PPO

—— P3SPPO

Reward

-100

T T T T 1
0 100 200 300 400 500

Iterations

Fig. 7: Performance of our algorithms and three baselines on
the Point-v1 environment. The solid line and shaded regions
represent the mean and standard deviation, respectively,
across ten seeds.

Performance. In the Point-v1 environment experiments,
we evaluate D2PED against several baselines, and all meth-
ods select PPO [12] as the policy optimization algorithm. As
shown in Fig. [/} our method (D2PED-PPO) demonstrates
superior performance in terms of reward over iterations
when compared to other baselines, including DvD-PPO,
QD-PPO, and P3S-PPO. Specifically, D2PED-PPO achieves
a higher reward earlier in the training process, indicating
more efficient exploration and exploitation of the environ-
ment. This advantage is maintained throughout the training,
with D2PED-PPO consistently outperforming other methods.
DvD-PPO achieves the second-best performance but is still
20% worse than our method. The results highlight the
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effectiveness of our dispersion mechanism in generating
diverse policies that enable better exploration and lead to
improved performance in non-MDP tasks. Furthermore,
the divergence in performance between our method and
the baselines becomes more pronounced as the number of
iterations increases, showcasing the long-term benefits of
policy diversity. The consistent superiority of D2PED-PPO
across various stages of training underscores the importance
of incorporating diverse policies to enhance adaptability and
robustness in complex environments.

Diverse policies. To intuitively measure the diversity of
different methods, Fig. [8 visualize the movement paths of
five candidate policies of each method which are learned
after 500 training iterations in the Point-v1 environment. Each
subplot, from (a) to (d), visualizes the distinct behavior of
different policy enhancement methods developed from our
proposed D2PED framework and other baseline approaches.

In subfigure (a), D2PED-PPO exhibits a diverse set of
trajectories with policies exploring various regions of the
solution space, indicating a wide coverage and inherent
robustness in the decision-making process. This aligns with
our hypothesis that policy diversity can greatly enhance the
ability of an agent to adapt to and solve complex tasks in
non-MDP environments. In subfigure (b), DvD-PPO shows
a focused exploration pattern, with policies converging
towards a common set of trajectories. While this might imply
efficient exploration in some contexts, it may also suggest a
potential for overfitting to specific paths and less adaptability
in changing environments.

In subfigure (c), we observe that only two policies can
bypass the wall from the gap between the middle wall and
the upper wall, and the others are stuck in front of the
walls. One of the policies hit the edge of the upper wall and
stumble to the target. QD-PPO policies generally maintain
proximity. Lastly, in subplot (d), the movement paths of P35-
PPO overlapped over a long period, and most policies got
stuck in front of the walls, which demonstrates that P3S-PPO
can not work well in the non-Markov environment.

Overall, the visualization in Fig. [§| supports our proposal
that the dispersion matrix promotes diversity without affect-
ing the performance of the policy. Our D2PED-PPO method
has demonstrated a notably more expressive set of diverse
policies, which are crucial for success in both non-MDP
discrete action space environments, leading to a more robust
and adaptable performance as compared to the baselines.

5.2.2 Discrete Control

Performance. For each policy of each method, we first train
4000 episodes, then Table [I| shows the average number of
times the five candidate policies for each method reach the
target. We conduct experiments across three versions of the
FrozenLake-v1 environment with grid sizes of 4 x 4, 5 x 5,
and 8 x 8. In these experiments, our method, D2PED, and
the baseline methods are all integrated with the DQN [78].
Our D2PED-DON algorithm demonstrates superior ef-
ficiency compared to P3S-DQN, DvD-DQN, and QD-DON
across all tested environments. Specifically, in the simplest
4 x 4 grid with 4 holes, D2PED-DQN reaches the goal more
times than other methods, highlighting its effectiveness in
navigating with limited challenges. As the environment’s
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Fig. 8: Movement paths of five candidate policies visualization of D2PED and baselines after 500 training iterations in the
Point-v1 environment. From (a) to (d), the lines of five different colors in each subfigure represent the movement paths of
five candidate policies. The orange point and the green square represent the start position and target position, respectively,
and the black polylines represent the walls separating the agent and the target.

TABLE 1: The average number of times each method reaches the target across 5 seeds in three versions of the FrozenLake-v1
environment. After 4000 training episodes for each seed, the average number of times the 5 candidate policies of each
method reach the target is computed. Then, the averages of these averages for each method across the 5 seeds are taken to

obtain the final average number of times each method reaches the target.

Environment D2PED-DQN P3S-DQN DvD-DQN QD-DQN
FrozenLake-v1 4 x 4 (4holes) 2175 2034 1874 1582
FrozenLake-v1 5 x 5 (10holes) 1895 1798 1603 1489
FrozenLake-v1 8 x 8 (28holes) 1040 770 689 634

complexity increases with a 5 x 5 grid and 10 holes, D2PED-
DOQON still maintains its advantage.

The most striking results are observed in the complex
8 x 8 grid with 28 holes, where D2PED-DQN outperforms its
baselines by a significant margin, reinforcing the proposed
theory’s premise that policy diversity leads to more robust
problem-solving strategies. This is evidenced by D2PED-
DQN’s ability to adapt to the highly stochastic nature of the
environment, which is closer to real-world scenarios where
rewards are influenced by an agent’s historical states and
actions—a key feature of non-MDPs.

These results underscore the benefits of policy diversity
in RL, as D2PED-DQN’s varied policy approach allows
it to diffuse effectively into the boundary of the solution
space, demonstrating enhanced adaptability and innova-
tion in problem-solving. The empirical data support the
hypothesis that expanding the solution space through policy
diversity is not only theoretically sound but also practically
advantageous, enabling RL algorithms to perform robustly
across a spectrum of environmental complexities.

Diverse policies. Fig. [9] provides a compelling visual
representation of the paths taken by five candidate policies
within the complex 8 x 8 grid of the FrozenLake-v1 envi-
ronment, replete with 28 hazardous holes. The visualization
encompasses our proposed D2PED-DQN method alongside
three baseline methods—DvD-DQN, QD-DQN, and P3S-
DQN—after undergoing 4000 training episodes. The distinct
paths traced by each policy signify their unique approach to
navigating from the start ('S’) to the goal ('G’), circumventing
the holes ("H’) scattered across the grid.

The D2PED-DQN demonstrates a preference for varied,
exploratory paths, indicating a higher level of policy diversity
and a more profound search within the solution space.
This diversity is consistent with our theoretical framework
that posits the benefits of diversifying solutions in non-

Markov environments, where the policy’s adaptability to
historical information and temporal dependencies is critical.
In comparison, the paths of the baselines, while effective in
reaching the goal, offer less variability, which may translate
to a narrower exploration of the available solution space.
Notably, the P35-DQN method shows a more direct approach
to the goal, aligning with its performance metrics in Table

These visual results affirm the theoretical implications
proposed in our paper, evidencing that the dispersion matrix
indeed broadens the policy disagreements, leading to a richer
policy embedding distribution. This enhances the agent’s
ability to develop robust and versatile strategies, thereby
improving its performance in non-MDP environments. The
adaptability of the policies to a challenging and hazard-filled
grid such as this one underscores the practical advantages
of employing diverse policy learning in complex decision-
making scenarios.

5.3 Evaluations in MDP Environments

The single modal evaluation verifies whether D2PED affects
performance, while the multi modal evaluation confirms
that D2PED can also learn diversity in MDP environments,
indicating that our approach expands the solution space. We
combine our method D2PED and baselines with TD3 [13].
Single modal. Fig. illustrates the performance of
different algorithms in the standard MuJoCo environ-
ments: Hopper-v3, Halfcheetah-v3, and Humanoid-v2. In
the Hopper-v3 environment, D2PED-TD3 shows a steep
initial learning curve, surpassing other algorithms early on
and maintaining a slight edge throughout the iterations.
DvD-TD3 and P3S-TD3 exhibit comparable performance,
with P35-TD3 showing slightly higher reward consistency
as evidenced by its narrower confidence interval. QD-TD3,
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Fig. 9: Movement paths of five candidate policies visualization of our proposed D2PED and baselines after 4000 training
episodes in the FrozenLake-v1 environment with a 8 x 8 grid and 28 holes. From (a) to (d), the lines of five different colors
in each subfigure represent the movement paths of five candidate policies. Each policy needs to navigate from the start ('S’)
to the goal ('G’), circumventing the holes ("H’) scattered across the grids.
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Fig. 10: Performance of our algorithms and baselines on the three standard MuJoCo environments. The solid line and shaded

regions represent the mean and standard deviation, respectively, over five seeds.

while starting lower, demonstrates a steady improvement,
suggesting effective learning over time.

The Halfcheetah-v3 environment reveals a more compet-
itive dynamic between algorithms, with D2PED-TD3 and
DvD-TD3 competing for the highest reward, but D2PED-TD3
consistently maintains the lead, indicating that D2PED-TD3
is a robust learning paradigm.

In the challenging Humanoid-v2 environment, all algo-
rithms struggle to a certain extent, as reflected by broader
confidence intervals, yet D2PED-TD3 stands out by eventu-
ally achieving the highest rewards. The increased complexity
of this environment showcases the advantage of exploration
provided by the policy diversity of D2PED-TD3.

These findings corroborate that policy diversity enhances
RL success. At the same time, the empirical evidence pro-
vided here also validates that the proposed method has
adaptive and robust performance in MDP environments,
indicating that our method has expanded the solution space.

Multi modal. To assess the efficacy of D2PED in learning
diverse and high-quality policies in MDP environments, we
modified the original single-mode environments of HalfChee-
tah and Ant to support dual-mode tasks by assigning
rewards for both Forward and Backward movements. We
trained all methods within these dual-mode environments
and conducted tests in single-mode settings to isolate perfor-

mance capabilities. To facilitate a clearer comparison between
different algorithms, we have systematically organized the
experimental results into Table [2}

For the HalfCheetah environment, the D2PED-TD3 al-
gorithm exhibits consistent performance, with a notable
increase in average reward when the mode shifts from
Forward to Backward, indicating its adaptability to multiple
modes. P3S-TD3 shows a drastic drop in performance in the
Backward mode, indicating a lack of robustness in policy
diversity when adapting to the reverse direction. Similarly,
DvD-TD3 performs poorly in the forward mode. QD-TD3
achieves moderate rewards in both modes.

In the Ant environment, all methods see a slight increase
or roughly maintain performance when switching modes,
with D2PED-TD3 showing a marginal improvement in the
Backward mode. This pattern may highlight the effective pol-
icy diversity within these methods, allowing them to adapt
to the mode change with minimal performance degradation.

Opverall, these results emphasize the significance of policy
diversity where it enhances RL success by enabling agents
to tackle a variety of challenges within an environment.
The data suggests that methods with a more diverse policy
set, such as D2PED-TD3, are better equipped to handle
directional changes within these MDP environments.
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TABLE 2: The average reward accrued by five candidate policies from each method on two multi-mode environments. First,
calculate the average reward of the 5 candidate policies for each method in a single seed experiment. Then, the averages of
these averages for each method across the 5 seeds are taken to obtain the final average reward of each method.

Envrionment Mode D2PED-TD3 P3S-TD3 DvD-TD3 QD-TD3
Forward 5325 5014 -3591 4897
HalfCheetah Backward 6716 4452 6380 6045
Ant Forward 4740 4454 4437 4033
Backward 4734 -3273 4090 4108

5.4 Ablation Studies

In this section, we conduct ablation studies to analyze the
relative contribution of our policy representation module
and the sensitivity of the number of candidate policies M.

The contribution of our policy representation mod-
ule. One of the crucial parts of this work is the policy
representation module. To demonstrate the importance of
our policy representation module, we replace it with two
policy embedding methods: auto-encoder and behavioral
embedding, respectively. The auto-encoder method takes
the trajectories generated by 7, as input and outputs the
embedding for m,,. The behavioral embedding method is an
action-based behavior characterization method. Following
the implementation in [19], we randomly select 20 states and
concatenate the actions of the selected states as the policy
embedding. The experimental results of 7 environments are
shown in Fig.[1T]and Table

Fig.[11|presents the performance of the D2PED algorithm
equipped with three different policy embedding techniques:
the Policy Representation Module, Auto-Encoder, and Be-
havioral Embedding. It is evident across the environments
of Point-v1, Hopper-v3, Halfcheetah-v3, and Humanoid-v2
that the Policy Representation Module yields a consistently
higher reward over iterations compared to the other methods,
suggesting a more effective policy learning process. The Auto-
Encoder shows competitive performance but does not reach
the efficiency of the Policy Representation Module.

Table 3| further corroborates these findings by indicating
the average number of attempts required to reach the target
in the three versions of FrozenLake-v1 environments with
varying complexity. Policy Representation Module signif-
icantly outperforms the other two embedding techniques,
achieving more times to reach the goal across all environ-
ments. This is particularly notable in the more complex 8 x 8
grid with 28 holes, where the number of times the Policy
Representation Module reaches the target is more than three
times that of the Behavioral Embedding.

The data collectively suggest that the Policy Representa-
tion Module enhances D2PED’s ability to navigate and learn
from the environment more effectively. By enabling diverse
policy expressions, the D2PED with Policy Representation
Module technique fosters robust performance and adaptabil-
ity in both MDP and non-MDP settings, affirming that a
diversified policy embedding can expand the solution space.

The sensitivity of the number of candidate policies.
The number M of candidate policies directly influences the
number of policy embeddings used to construct the diversity
matrix. If M is too small, there is a reduced likelihood of
identifying a comprehensive set of optimal policies with
diverse behaviors. Conversely, if M is too large, it may lead

to the selection and updating of some policies that exhibit
similar behaviors, which can undermine efficiency.

Fig.|12|and Table 4| present the outcomes of varying the
number of candidate policies for the D2PED algorithm across
Point-v1, different standard MuJoCo environments, and
versions of the FrozenLake-v1 environment. We report the
results under the same number of iterations. The experiment
results inform us about the influence of policy count on
learning performance and problem-solving efficiency.

The performance curves in Fig.[12|depict a general trend
where increasing or decreasing the number of candidate
policies M has a negligible impact on the performance of
the policy in the Point-v1, Hopper-v3, Halfcheetah-v3, and
Humanoid-v2 environments. A higher or lower number
of policies have some differences in the effectiveness of
exploring the solution space, but the degree of difference is
not significant, and it always produces better performance.
This indicates that D2PED is not sensitive to the choice of
policy number M.

Table 4| supplements this finding, showing that the
average number of reaching the target in the FrozenLake-v1
environment varies little with the increase of M. The table
suggests that the number of candidate policies has a minor
impact on the efficiency of solving the problem.

The results from Fig. [[2] and Table [ indicate that the
D2PED algorithm is not sensitive to the choice of M,
demonstrating its good adaptability and robustness.

5.5 Discussion

We further discuss our method from three perspectives:
its performance in non-stationary environments (Section

5.5.1), sample efficiency (Section[5.5.2), and time and space
complexity (Section 5.5.3).

5.5.1 Non-stationary environments

We design the following experiments to validate the perfor-
mance of our method in non-stationary environments.

We created a non-stationary version of the FrozenLake en-
vironment, as shown in Fig[3} and we added some slippery
blocks. When an agent steps on these blocks, it quickly slides
into the adjacent cells. The positions of the slippery blocks are
randomized in each episode. This randomization introduces
a dynamic element to the environment, as the agent must
adapt to different slippery locations that affect movement
patterns unpredictably in each episode. Similarly, the agents
can only start moving after receiving a start signal, meaning
the calculation of rewards is consistent with FrozenLake-v1.

Similarly, for the Point environment, we introduced non-
stationary by randomizing the positions and numbers of
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Fig. 11: Performance of D2PED equipped with different policy embedding algorithms. The solid line and shaded regions
represent the mean and standard deviation, respectively, over five seeds.

TABLE 3: The average number of times to reach the target of D2PED equipped with different policy embedding algorithms
across 5 seeds on the three versions of FrozenLake-v1 environments. After 4000 training episodes for each seed, the average
number of times the 5 candidate policies of each method reach the target is computed. Then, the averages of these averages
for each method across the 5 seeds are taken to obtain the final average number of times each method reaches the target.

Environment Policy Representation Module Auto-Encoder Behavior Embedding
FrozenLake-v1 4 x 4 (4holes) 2175 1257 848
FrozenLake-v1 5 x 5 (10holes) 1895 808 653
FrozenLake-v1 8 x 8 (28holes) 1040 688 301

TABLE 4: The average number of times to reach the target of D2PED with different number of candidate policies M across 5
seeds on three FrozenLake-v1 environments. After 4000 training episodes for each seed, the average number of times the M
candidate policies of each method reach the target is computed. Then, the averages of these averages for each method across
the 5 seeds are taken to obtain the final average number of times each method reaches the target.

Environment M=3 M=5 M=7 M=9
FrozenLake-v1 4 x 4 (4holes) 2243 2175 2120 2092
FrozenLake-v1 5 x 5 (10holes) 1812 1895 1862 1809
FrozenLake-v1 8 x 8 (28holes) 1021 1040 1012 995

walls, as well as the starting position of the agent, as shown other methods, highlighting its effectiveness in navigating
in Fig[T4} These variations ensure that each episode presents ~ with limited challenges. As the environment’s complexity
a unique set of challenges, requiring the agent to continually increases with a 5 x 5 grid and 10 holes, D2PED-DQN
adapt its policy to succeed. The agent can only start moving  still maintains its advantage. The most striking results are
after receiving a start signal, meaning the calculation of observed in the complex 8 x 8 grid with 28 holes, where
rewards is consistent with Point-v1. D2PED-DQON outperforms its baselines by a significant

The results, as detailed in Fig.[15 and Table[5| show that n}argir}, reinforcing the proposed theory’s premis.e that p.ol.icy
our method performs effectively in these non-stationary set- dlver51ty . leads to more .robust p roblem-solvmg p(?ha?s.
. . . . The ability of our algorithm to still reach or maintain
tings. In the Point (non-stationary) environment, our method . . o .
: . high performance under varying conditions within each
(D2PED-PPO) demonstrates superior performance in terms : R .
of reward over iterations when compared to other baselines, episode indicates robustness to environmental changes. The
including DvD-PPO, QD-PPO, and P3S-PPO. Specifically, experiments conducted provide empirical evidence that our
D2PED-PPO achieves a higher reward earlier in the training approz?chtl)s ?Otthngtetd to sta’?ct.or merely .non—Malj;koman
process, this advantage is maintained throughout the training. SCEnarios but extends to non-stationary €nvironments.
Furthermore, the divergence in performance between our The experimental vahdat.lon conflrms that our approz'ach
method and the baselines becomes more pronounced as the effectively handles hon-stationary environments, adaptmg
number of iterations increases, showcasing the long-term to changes in the environment’s dynamics from one episode

. . . . . to the next. This adaptability underscores the robustness and
benefits of policy diversity in non-stationary environments. A .
applicability of our method to a range of real-world scenarios

In the FrozenLake (non-stationary) environment, our where conditions can change unpredictably.
D2PED-DON algorithm demonstrates superior efficiency

compared to P35-DQN, DvD-DQN, and QD-DQN across all 5.5.2 Sample efficiency
tested environments. Specifically, in the simplest 4 x 4 grid In this section, we evaluate and assert the sample efficiency
with 4 holes, D2PED-DQN reaches the goal more times than  of our approach.Sample efficiency in our context refers to
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Fig. 12: Performance of D2PED with different number of candidate policies M .The solid line and shaded regions represent

the mean and standard deviation, respectively, over five seeds.

TABLE 5: The average number of times each method reaches the target across 5 seeds in three versions of the FrozenLake
(non-stationary) environment. After 4000 training episodes for each seed, the average number of times the 5 candidate
policies of each method reach the target is computed. Then, the averages of these averages for each method across the 5

seeds are taken to obtain the final average number of times each method reaches the target.

Environment D2PED-DQN P3S-DQN DvD-DOQN QD-DON
FrozenLake-v1 4 x 4 (2holes, 2slippery) 2175 2036 1482 1690
FrozenLake-v1 5 x 5 (5holes, 5slippery) 1895 1751 1371 1582

FrozenLake-v1 8 x 8 (16holes, 12slippery) 1040 1016 881 907
Point-vl
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Fig. 13: The Frozenlake (non-stationary) 8 x 8 environment
with 16 holes and 12 slippery.

Fig. 14: The Point (non-stationary) with randomizing the
positions and numbers of walls, as well as the starting
position of the agent.

the ability of our algorithm to achieve significant learning
or performance improvement from a limited number of
interactions (samples) with the environment. We conducted
experiments where our method was validated against the
naive algorithms. The learning curves, derived from these

(non-stationary)

004

Reward

D2PED-PPO)
(= DvD-PPO
- QD-PPO
—— P3S-PPO

-100 T T T T
100 200 300 400 500

Iterations

Fig. 15: Performance of our algorithms and three baselines on
the Point (non-stationary) environment. The solid line and
shaded regions represent the mean and standard deviation,
respectively, across ten seeds.

experiments, provide a visual and quantitative measure
of how quickly our algorithm reaches a certain level of
performance relative to the number of samples used.

In these experiments, we measure performance metrics
such as cumulative rewards and performance stability across
different runs with the same number of samples. These
metrics are compared to those of other established algorithms
to ascertain relative sample efficiency.

The results are shown in Fig[T6|and Table[f} From the ex-
perimental results, our method achieved similar performance
to the naive algorithm at the same number of iterations,
indicating that the sample utilization rate of our approach
is acceptable. Our method optimizes both learning policy
representations and the policies themselves using the same
batch of samples collected from the environment. This dual
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TABLE 6: The sampling efficiency of D2PED with a naive algorithm by measuring the number of times each reaches the
endpoint using the same number of iterations. This comparison is conducted across three versions of the FrozenLake-v1
environment, using 5 different seeds. After 4000 training episodes per seed, we compute the average number of times the 5
candidate policies of each method reach the target. Finally, we calculate the overall average for each method by averaging
these results across all 5 seeds, yielding the final average number of times each method successfully reaches the target.

Environment D2PED-DQN DQON
FrozenLake-v1 4 x 4 (4holes) 2175 2236
FrozenLake-v1 5 x 5 (10holes) 1895 1951
FrozenLake-v1 8 x 8 (28holes) 1040 1028
. Point-v1 M Hopper-v3 7 Halfcheetah-v3 Humanoid-v2
D2PED-PPO| 15000
[ PPO 6000
- © ° °
8 3 % 9000 ] )
Iterations Iterations terations = lterations

Fig. 16: The learning curves of our method and naive algorithms. The solid line and shaded regions represent the mean and

standard deviation, respectively, over five seeds.

use of the same data set ensures that every sample collected
is used to its fullest potential, enhancing our method’s
efficiency in sample utilization.

5.5.3 Time and space complexity

We evaluate the time and memory consumption of our
algorithm across various experimental environments. Our
experiments were conducted on a desktop with an 8 GB
VRAM 2070s graphics card and 32 GB of RAM.

We conducted experimental tests on 5 candidate policies.
During the experiments, the time and memory consump-
tion corresponding to the number of iterations for each
environment are shown in Table|7| D2PED utilizes parallel
processing of multiple policy optimization and the policy
representation module training. This parallelism inherently
improves time efficiency, particularly when compared to
unified policy solutions that may process sequentially. Our
approach involves computing each policy on the GPU,
utilizing some VRAM. The transformer architecture, which
requires significant memory, is loaded into the system
memory. This setup ensures that while policy optimization
is ongoing, the transformer architecture can also be trained
simultaneously. From the experimental results, the time and
space complexity of our algorithm is found to be acceptable.

TABLE 7: Time consumption and memory consumption of D2PED
under 5 candidate policies in 5 environments.

Env ‘ Time ‘ Memory
Point-v1 (500 iterations) 3072s 25.43G
FrozenLake-v1 8 x 8 (500 iterations) 3163s 26.41G
Hopper-v3 (600 iterations) 3646s 26.83G
Halfcheetah-v3 (600 iterations) 3458s 26.97G
Humanoid-v2 (600 iterations) 3792s 27.04G

6 CONCLUSION

In this paper, we overcome the limitations of MDPs and
venture into a more expansive solution space, and also
show that agents can develop more robust, adaptable,
and innovative problem-solving capabilities, particularly
in non-Markov Decision Process (non-MDP) environments.
To that end, we introduced D2PED, a method for learning
effective diverse policies for control tasks in non-Markov
environments by incorporating temporal dependencies and
historical information into the learning process. D2PED
designs a policy dispersion scheme that repeatedly constructs
policy embeddings as the policy update progresses, forming
different dispersion trajectories and maximizing the disper-
sion disagreements of dynamically updating trajectories. We
also analyze the relationship between diversity and policy
performance. The experimental results underscore the effec-
tiveness of our approach, demonstrating the capacity of our
dispersion scheme to generate more expressive and diverse
policy embeddings. Thus, our study not only reinforces the
theoretical importance of policy diversity in reinforcement
learning but also sets a new benchmark for future research in
this field, particularly in complex real-world scenarios where
adaptability and robustness are paramount.
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