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Enhancing Locally Adaptive Smoothing of Graph
Neural Networks Via Laplacian Node Disagreement
Yu Wang , Liang Hu , Xiaofeng Cao , Yi Chang , Senior Member, IEEE, and Ivor W. Tsang , Fellow, IEEE

Abstract—Graph neural networks (GNNs) are designed to per-
form inference on data described by graph-structured node fea-
tures and topology information. From the perspective of graph
signal denoising, the typical message passing schemes of GNNs
act as a globally uniform smoothing that minimizes disagreements
between embeddings of connected nodes. However, the level of
smoothing over different regions of the graph should be different,
especially for those inter-class regions. This deviation limits the
expressiveness of GNNs, and then renders them fragile to over-
smoothing, long-range dependencies, and non-homophily settings.
In this paper, we find that the node disagreements of initial graph
features can present more trustworthy constraints on node em-
beddings, thereby enhancing the locally adaptive smoothing of
GNNs. To spread the inherent disagreements of nodes, we propose
the Laplacian node disagreement to jointly measure the initial
features and output embeddings. With such a measurement, we
then present a new graph signal denoising objective deriving a more
effective message passing scheme and further incorporate it into
the GNN architecture, named Laplacian node disagreement-based
GNN (LND-GNN). Learning from its output node representations,
we integrate an auxiliary disagreement constraint into the overall
classification loss. Experiments demonstrate the expressive ability
of LND-GNN in the downstream semi-supervised node classifica-
tion task.

Index Terms—Graph neural networks, locally adaptive
smoothing, message passing scheme, node disagreement.
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Fig. 1. Illustrations of globally uniform and locally adaptive smoothing, where
the color indicates the label class, and the solid and dashed lines indicate intra-
class and inter-class relationships, respectively. Globally uniform smoothing
requires that node embeddings are smoothed with the consistent level shared
across the whole graph, yielding the mixed label in inter-class nodes marked
with mixed colors. Locally adaptive smoothing requires that node embeddings
are smoothed with various levels spread across the subgraphs.

I. INTRODUCTION

N ETWORKS are ubiquitous in the real world, such as social
networks, biological networks, citation networks, etc [1],

[2], [3]. Recently, the attempts utilizing deep neural networks
to handle graph analysis, have attracted considerable attention
in both academia and industry. Among those attempts, graph
neural networks (GNNs), which learn the node representations
by encoding node features and graph topology simultaneously,
have achieved promising performance in various graph-related
tasks, including node classification [4], [5], link prediction [6],
[7], and graph classification [2], [8].

Most GNNs adopt a message passing scheme [9] to learn
the representation for each node by iteratively aggregating the
representations of all its neighbors. Essentially, the message
passing of GNNs can be generalized as a low-pass filter that glob-
ally smoothes node features over the graph topology [10], [11],
where globally uniform smoothing [12] denotes that the level
of smoothing is shared across the whole graph. For instance,
GCN [4] enforces globally uniform smoothing by aggregating
feature information from all neighbors equally. Although com-
mon approaches with globally uniform smoothing have achieved
satisfactory performance in semi-supervised node classification
on homophily graphs, they often exhibit significant limitations,
such as the over-smoothing problem [13], long-range dependen-
cies [14], [15], and their sensitivity to edge perturbations on het-
erophily graphs [16], [17], [18] and adversarial attacks [19], [20].

Problem. To relieve these problems, locally adaptive smooth-
ing [12], [21] across classes shows expressive ability, in which
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Fig. 2. Distributions of intra-class node disagreement and inter-class node disagreement in initial node features.

the motivation is that node features and labels can vary
significantly across classes while being smooth within classes
(Fig. 1). For instance, GAT [5] adopts adaptive weights for
different neighboring nodes; DAGNN [22] and GPR-GNN [18]
adaptively control the contributions of various receptive fields;
ElasticGNN [21] facilitates locally adaptive smoothing by ex-
ploiting the sparsity tendency of �1-based graph smoothing.
However, existing locally adaptive smoothing methods itera-
tively invoke the smoothed node embeddings of the former
layer, inevitably degrading the constraint on node disagreement
as the number of propagation layers increases, thus failing
to completely solve the problems posed by globally uniform
smoothing.

Motivation. In scenarios where globally uniform smoothing
fails, disagreements of node embeddings across classes can
derive locally adaptive smoothing. Generally, those connected
nodes across different classes usually reveal more significant
disagreement levels than nodes within the same class. Especially,
this property is more trustworthy in its initial stage before being
smoothed. For example, Fig. 2 shows several graphs with various
distributions of node disagreement in the initial features (as
measured by the metric proposed in Section IV-A, namely dis-
agreement ratio r). We thus notice that the initial node features
can impose more trustworthy constraints on node disagreement
to enhance the locally adaptive smoothing of GNNs.

Our Solution. In this paper, we investigate Laplacian node
disagreement that jointly measures the node disagreement from
the perspectives of initial features and output embeddings, rather
than only in terms of output embeddings, as in the popular
local adaptive smoothing methods. Technically, we present a
new graph signal denoising constrained by Laplacian node dis-
agreement and derive a novel message passing scheme. Then, we
incorporate it into a GNN architecture termed Laplacian node
disagreement-based graph neural network (LND-GNN). After
feeding the node embeddings generated by the LND-GNN into
the downstream semi-supervised node classification, we further
integrate an auxiliary disagreement constraint into the overall
loss function to enhance the model training. Our contributions
are summarized as follows:
� We present a novel concept of Laplacian node disagree-

ment (LND) to measure node disagreement from the per-
spectives of initial node features and output embeddings.

� With this concept, we propose a novel GNN model, called
LND-GNN, which enhances locally adaptive smoothing
with a message passing scheme derived from graph signal
denoising implemented via LND.

� Extensive experiments evaluate that LND-GNN can
achieve state-of-the-art performance in varying scenarios,
including homophily graphs, heterophily graphs, adversar-
ial attacks, and long-range dependencies.

Organizations. The rest of this paper is organized as follows.
Section II surveys the related work. Section III presents notations
and necessary background. In Section IV, we introduce the
proposed model in detail. The experimental results are reported
in Section V. Finally, Section VI summarizes this paper.

II. RELATED WORK

GNNs generalize convolutional neural networks (CNNs) to
graph-structured data, among which the most representative is
the message passing GNNs that propagate feature information
over the graph topology via neighborhood aggregation [4], [9].
The aggregation operation can be replaced by various forms
of attention mechanisms that learn the similarity between con-
nected nodes [5], [23]. We next review the work of GNNs along
two lines of designing message passing schemes, e.g., globally
uniform smoothing and locally adaptive smoothing.

Globally Uniform Smoothing. Recent works have shown
that the message passing GNNs can be regarded as low-pass
graph signal filters, which derive globally uniform smoothing
over the graph topology [10], [11]. Generally, globally uniform
smoothing denotes that the intensity of smoothing is shared
across the whole graph [12]. When feature information is ag-
gregated from large receptive fields, globally uniform smoothing
will lead to indistinguishable node embeddings from different
classes, namely the over-smoothing problem [13], [24], [25].
To alleviate this problem, some researchers propose attaching
residual connections to the propagation layer [26], [27], [28].
For example, APPNP [27] designs an improved message passing
scheme based on personalized PageRank to construct a new
GNN model; GCNII [28] proposes an extension of vanilla GCN
with initial residual and identity mapping. In addition, globally
uniform smoothing also limits the inference capability of GNNs
on heterophily graphs, where connected nodes tend to belong
to different classes. A typical solution is to jointly aggregate
information from higher-order neighborhoods and immediate
neighborhoods [16], [17].

Locally Adaptive Smoothing. Recently, some studies show
that locally adaptive smoothing is beneficial for the inference of
node embeddings due to the varying levels of smoothness across
subgraphs [12], [21]. For instance, GAT [5] implicitly specifies
different weights to different neighbor nodes, which facilitates
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locally adaptive smoothing. DAGNN [22] adaptively balances
the information from local and global neighborhoods for each
node. GPR-GNN [18] adaptively exploits node features and
graph topology, aggregating the node information from the struc-
tural neighborhood built by the continuous space underlying
graphs. ElasticGNN [21] further enhances the locally adaptive
smoothing of GNNs via �1-based graph smoothing. Moreover,
UGNN [12] proposes a general framework that unifies several
representative GNN models as natural instances of graph signal
denoising problems. It also instantiates the framework with
the attention mechanism as a new GNN model, ADA-UGNN,
addressing adaptive local smoothness across nodes. However,
these methods iteratively invoke the node embeddings smoothed
in the former iteration, losing sensitivity to the disagreement in
node features as the number of iterations increases, and thus may
yield a sub-optimal conclusion.

III. PRELIMINARIES

In this section, we introduce some necessary notations and
backgrounds. Section III-A first presents notations of the graph.
Section III-B then presents a brief background of the message
passing scheme of GNNs, and Section III-C presents GNNs from
the perspective of graph signal denoising.

A. Graph

Given a graphG = {V, E}with the node setV and the edge set
E . Suppose that each node is associated with a df -dimensional
feature vector, and the initial node feature matrix is denoted
as Xin ∈ Rn×df , where n is the number of nodes. Let A ∈
Rn×n denote the adjacency matrix and D the diagonal degree
matrix. Consequently, the adjacency matrix and the diagonal
degree matrix with self-loop are defined as Â = A+ I and D̂ =
D+ I, respectively. The normalized graph Laplacian matrix is
defined asL = I− Ã = I− D̂−1/2ÂD̂−1/2. Generally, we use
bold upper-case letters to denote matrices, such as the initial
feature matrixXin and the node embedding matrix in the hidden
layer H ∈ Rn×d, where d denotes the dimension of the node
embedding, and bold lower-case letters to denote vectors, such
as node v’s feature vector xv and the embedding of node v in
the hidden layer hv . For clarity, Table I summarizes the main
notations used in this paper.

B. Message Passing Scheme of GNNs

Message passing scheme [4], [9] is the key building block
of GNNs to jointly encode node features and graph topology,
and it learns a node embedding by iteratively propagating the
information of its neighbors.

Following the message passing scheme of GNNs presented
in [9], during the k-th layer propagation phase, the node embed-
dings H(k) ∈ Rn×d are updated according to

H(k) = Propagation(W(k),H(k−1), Ã)

= σ
(
W(k) · Aggregation(H(k−1), Ã)

)
, (1)

where W(k) ∈ Rd×d denotes a trainable transformation ma-
trix of the k-th layer, Aggregation(·) denotes a neighborhood

TABLE I
SUMMARY OF THE MAIN NOTATIONS

aggregation function, and σ denotes a non-linear activation
function, e.g., a ReLU. Specifically,H(0) is initialized asH(0) =
XinWe, where We ∈ Rdf×d is the transformation matrix for
initial features. Most of the existing GNNs models adopt (1) to
aggregate and transform node features, e.g., GCN [4], GAT [5],
and GraphSAGE [29].

C. Graph Signal Denoising: A New Perspective

Generally, the aggregation operations of GNNs models share
a common goal that guarantees the feature smoothness of con-
nected nodes [10]. With this purpose, recent work [12] has
established a connection between many popular GNNs and
graph signal denoising with Laplacian smoothing regularization,
deriving a new perspective of GNNs. Specifically, the graph
signal denoising can be formulated as

argmin
H
LH = ‖H−X‖2F + α · tr[H�LH], (2)

where ‖ · ‖F denotes the Frobenius norm, H ∈ Rn×d denotes
the output node embedding matrix, X = XinWe ∈ Rn×d de-
notes the transformed node feature matrix, and α denotes a
trade-off parameter. Moreover, ‖H−X‖2F denotes the fitting
constraint, which guides the output embeddings H close to the
transformed features X, and tr[H�LH] denotes the globally
uniform smoothing constraint, which guides the smoothing of
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output embeddings H over graph G. Next, we briefly present
two representative examples.

Example 1: (GCN) For Graph Convolutional Network
(GCN) [4], the aggregation operation of the message passing
scheme is defined as

H(k+1) = ÃH(k), (3)

where H(0) = X. From the perspective of graph signal denois-
ing, it is can be considered as the iterative solution to minimize
tr[H�LH] [12]. Note that this case only considers the globally
uniform smoothing and ignores the node feature information.

Example 2 (GCNII & APPNP): GCNII [28] and Ap-
proximated Personalized Propagation of Neural Predictions
(APPNP) [27] both introduce an aggregation operation based
on Personalized PageRank [30], which can be approximately
written as

H(k+1) = (1− c) · ÃH(k) + c ·X. (4)

where H(0) = X. The aggregation operation can be considered
as approximately solving the graph signal denoising of (2) with
the trade-off parameter α = ( 1c − 1) as

argmin
H
LH = ‖H−X‖2F + (

1

c
− 1) · tr[H�LH]. (5)

Both the globally uniform smoothing and node feature fitting
are considered in the graph signal denoising of (5), while locally
adaptive smoothing is still ignored.

IV. LAPLACIAN NODE DISAGREEMENT-BASED GRAPH

NEURAL NETWORK

In this section, we develop a concrete model called LND-
GNN, which implements locally adaptive smoothing via Lapla-
cian node disagreement. Specifically, Section IV-A presents the
Laplacian node disagreement, Section IV-B integrates it into the
typical graph signal denoising, Section IV-C derives a new mes-
sage passing scheme deployed in GNNs from the optimization
iterations of the enhanced graph signal denoising, Section IV-D
integrates an auxiliary disagreement constraint into the overall
loss of semi-supervised node classification, and Section IV-E
presents the training process and the time complexity analysis.

A. Laplacian Node Disagreement

Smoothness is a metric that reflects the disagreement of
node features [22], [31] or labels [16], [17], [31] in the graph.
Compared with previous metrics on single property in the graph,
a metric that jointly considers node features and labels may
provide a better expression for the graph. Therefore, we further
propose two smoothness metrics in terms of node disagreement:

Definition 1 (Intra-class Node Disagreement): Consider fea-
tures X and labels Y, we define the intra-class node disagree-
ment as

λintra =
‖∑(vi,vj)∈E∧yi=yj

(xi − xj)
2‖1

|{(vi, vj) : (vi, vj) ∈ E ∧ yi = yj}| · d , (6)

where ‖ · ‖1 denotes the Manhattan norm, xi and yi denote the
feature and the label of node vi, and d denotes the dimension of
node features.

Definition 2 (Inter-class Node Disagreement): Consider fea-
tures X and labels Y, we define the inter-class node disagree-
ment as

λinter =
‖∑(vi,vj)∈E∧yi �=yj

(xi − xj)
2‖1

|{(vi, vj) : (vi, vj) ∈ E ∧ yi �= yj}| · d . (7)

According to Definitions 1 and 2, λintra and λinter denote the
disagreement between connected nodes with the same label and
distinct labels, respectively, where smaller node disagreement
indicates higher smoothness between connected nodes. Gener-
ally, inter-class node pairs reveal more significant disagreement
levels than intra-class node pairs. To more explicitly express the
disagreement level of the whole graph, based on the two node
disagreement metrics in (6) and (7), we further define a metric
r named disagreement ratio.

Definition 3 (Disagreement Ratio): To measure the disagree-
ment level between intra-class node pairs and inter-class node
pairs in the graph, we define the disagreement ratio r as

r =
λinter − λintra

λintra
. (8)

According to Definition 3, a larger r indicates that connected
nodes across different classes in the graph have a more sig-
nificant disagreement level than connected nodes within the
same class. Here, node disagreement is negatively related to
the smoothness of the graph. From the perspective of locally
adaptive smoothing, a larger r means that the inter-class edges
should be assigned a lower level of smoothing. Conversely, a
smaller r means that the inter-class node pairs have fewer dis-
agreements and should be assigned a larger level of smoothing.
Node disagreements in the initial features are more trustworthy,
thus we conjecture that locally adaptive smoothing works better
on graphs with large r in terms of initial features. A statistical
presentation of the disagreement ratios on different graphs is
shown in Fig. 2, and a detailed experimental analysis is provided
in Section V-H.

In this work, we aim to exploit node disagreement in the initial
node features to provide more trustworthy constraints on the
node disagreement in the output node embeddings, enhancing
the locally adaptive smoothing of GNNs. To jointly measure
node disagreement from the perspectives of initial features and
output embeddings, we formally define the Laplacian node
disagreement as

Definition 4 (Laplacian Node Disagreement): For each pair
of connected nodes, the Laplacian node disagreement denotes
the disagreement between the node disagreement in the output
embeddings and that in the initial features.

Remark 1: As an example, for a pair of connected nodes
(vi, vj) ∈ E , xi and xj denote the node features, hi and hj

denote the output node embeddings, the Laplacian node dis-
agreement can be expressed as ‖(hi − hj)− (xi − xj)‖22. In
a graph with a large disagreement ratio r, if xi and xj have
a relatively significant disagreement, the edge (vi, vj) is more
likely to be an inter-class edge. Accordingly, tightening the
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Laplacian node disagreement allows the output embeddings hi

and hj to retain node disagreement as much as possible, that is,
a lower level of graph smoothing will be adopted adaptively.

Overall, by tightening the Laplacian node disagreement, the
more trustworthy disagreement in the initial features can be
spread to the output node embeddings to enhance locally adap-
tive smoothing.

B. Graph Signal Denoising Via Laplacian Node Disagreement

In this section, we integrate the Laplacian node disagreement
into the graph signal denoising of (2) to enhance the locally
adaptive smoothing. Specifically, the joint constraint of Lapla-
cian node disagreement on the transformed features X ∈ Rn×d

and output embeddings H ∈ Rn×d in the graph G = {V, E} is
defined as

∑
(vi,vj)∈E

‖(hi − hj)− (xi − xj)‖22, (9)

then to be consistent with the globally uniform smoothing con-
straint in (2), it can be written as

∑
(vi,vj)∈E

‖(hi − xi)− (hj − xj)‖22. (10)

Assuming that we adopt the unnormalized graph Laplacian
matrixL = D−A, the Laplacian node disagreement constraint
can be defined as

∑
(vi,vj)∈E

‖(hi − xi)− (hj − xj)‖22 = tr[(H−X)�L(H−X)].

(11)
Then, to enhance the locally adaptive smoothing via Laplacian

node disagreement constraint, we propose the improved graph
signal denoising as

argmin
H
LH = ‖H−X‖2F + α · tr[H�LH]

+ β · tr[(H−X)�L(H−X)], (12)

where ‖H−X‖2F denotes the fitting constraint, which guides
the output embeddings H close to the transformed features
X, tr[H�LH] denotes the globally uniform smoothing con-
straint, which guides the output embeddings H similar between
connected nodes over G, and tr[(H−X)�L(H−X)] denotes
the locally adaptive smoothing constraint, which enhances the
locally adaptive smoothing by tightening Laplacian node dis-
agreement.

Normalization. Commonly, to alleviate the problems of nu-
merical instability and exploding/vanishing gradients caused by
the repeated application of aggregation operations in GNNs,
a renormalization trick [4] is applied to Laplacian matrix.
Following the renormalization trick in GCN [4]: L = I−
D̂−1/2ÂD̂−1/2 = I− Ã, where Â and D̂ are the matrices with
self-loop, we update the unnormalized Laplacian matrix L of
(12) to the normalized version.

C. A New Message Passing Scheme

The message passing scheme can be derived from the gradient
descent iterations of the graph signal denoising [12].

Theorem 1: When we adopt the normalized Laplacian matrix
L = I− Ã, the aggregation operation of the message pass-
ing scheme approximately solves the graph signal denoising
problem (12) by iterative gradient descent with stepsize b =

1
2(1+α+β) . Thus, the message passing scheme could be derived
as

H(k+1) =
α+ β

1 + α+ β
· ÃH(k) +

1

1 + α+ β
·X

+
β

1 + α+ β
· LX. (13)

Proof: To solve the minimization problem of (12) iteratively,
we take the iterative gradient method with stepsize b. Specifi-
cally, the k-th step is as follows:

H(k+1) = H(k) − b · ∂LH

∂H

∣∣∣∣
H=H(k)

= (1− 2b− 2bα− 2bβ) ·H(k)

+ 2b ·X+ 2bβ · LX
+ (2bα+ 2bβ) · ÃH(k)

where H(0) = X. When we set the stepsize b as 1
2+2α+2β , we

have the following iterative steps:

H(k+1) =
α+ β

1 + α+ β
· ÃH(k) +

1

1 + α+ β
·X

+
β

1 + α+ β
· LX.

Incorporating the message passing scheme of (13) derived
from the graph signal denoising of (12) into the graph neu-
ral network, we propose Laplacian node disagreement-based
GNN (LND-GNN). Specifically, following [11], [22], [27], we
decouple the embedding transformation from the aggregation
operation so that a deeper model can be built without negatively
affecting performance. Formally, the mathematical expression
of LND-GNN is defined as

X = σ(XinWe) ∈ Rn×d,
H(K) = PropagationK(X, Ã) ∈ Rn×d,
H∗ = H(K)Wo ∈ Rn×l,
Ŷ = Softmax(H∗) ∈ Rn×l,

(14)

where We, Wo are the transformation matrices, σ(·) is the
nonlinear activation function and Propagation(·) denotes the
propagation function formulated by (13) with initial H(0) = X.
Besides, Ŷ denotes the label predictions, where l denotes the
dimension of label vector.

D. Semi-Supervised Node Classification

With the label predictions Ŷ of (14), we can straightly com-
pute the task loss of the semi-supervised node classification task
in an end-to-end manner. To further enhance the model training,
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an auxiliary constraint is integrated into the overall loss of node
classification.

Task Loss. For the semi-supervised node classification task,
given a graph G = {V, E} and a set of ground-truth labels Y =
{y1,y2, . . . ,ym} for node subset Vtr = {v1, v2, . . . , vm}, the
task loss can be formulated by cross-entropy as:

Lt =
1

m

m∑
i=1

Cross Entropy (ŷi,yi) , (15)

where ŷi denotes the predicted label of node vi yielded by LND-
GNN, yi denotes the ground-truth label of node vi and is an
one-hot vector that the k-th element is 1 if the node i belongs to
class k.

Loss for Laplacian Node Disagreement Constraint. To make
the node representations more powerful, we further apply the
Laplacian node disagreement on the predicted labels. We con-
siderH∗ ∈ Rn×c of (14) as the predicted labels, where each row
denotes the predicted probability distribution for each node’s
class. Then, we transform the node features X into node repre-
sentations with the same dimensions as the predicted labels, de-
noted as Y′, by multiplying the trainable transformation weight
matrix Wo, which is formally expressed as follows:

Y′ = XWo. (16)

With the transformed initial features and predicted labels, we
formulate the following loss to constrain the node disagreement:

Ld =
1

|E|
∑

(vi,vj)∈E

(
(h∗i − h∗j)− (y′i − y′j)

)2
, (17)

where h∗i ,h
∗
j denote the predicted labels of node vi, vj , respec-

tively, and y′i,y
′
j denote the node representations of node vi, vj ,

respectively.
Overall Loss. Finally, we integrate the task loss and the

auxiliary disagreement constraint to form the overall loss as
follows:

L = Lt + γ · Ld, (18)

where γ is a hyperparameter to control the importance of the
disagreement constraint in the loss function.

Connection to Label Propagation. Recently, there has been
some work on unifying message passing schemes in GNNs and
label propagation [32]. The idea is that both GNNs methods
and Label Propagation Algorithm (LPA) are message passing
algorithm on graphs, thus they may be unified for the semi-
supervised node classification. As we will show next, the overall
loss constrained by Laplacian node disagreement in (18) is also
motivated from this.

Given a graph G = {V, E} and a set of ground-truth labels
Y = {y1,y2, . . . ,ym} for node subsetVtr = {v1, v2, . . . , vm},
the well-known LPA [33] learns a mapping functionu : V → Lc

to predict the labels of all nodes in the graph. Motivated by the
intuition that nearby nodes in the graph may have similar labels,
LPA presents that all nodes iteratively propagate labels to their

neighbors to minimize the energy function

min
u

E[u] =
1

|E|
∑

(vi,vj)∈E
(u(vi)− u(vj))

2 ,

s.t. u(vi) = yi|1≤i≤m . (19)

Recent work [34] further proposes to modify the LPA by
introducing constraints in the form of a guidance field [35]. Let
a vector field v defined over G be a guidance field to modify the
problem of (19) as

min
u

E[u] =
1

|E|
∑

(vi,vj)∈E
(u(vi)− u(vj)− vij)

2 ,

s.t. u(vi) = yi|1≤i≤m . (20)

Now, if we choose the discrete gradient field on the node
representations Y′ over graph G as the guidance field v, that is

for each (vi, vj) ∈ E ,vij = y′i − y′j , (21)

the problem of (20) becomes quite similar to our overall loss of
(18). Specifically, the energy function corresponds to the node
disagreement lossLd, and the task lossLt serves as the boundary
condition. In summary, our proposed overall loss function for
semi-supervised node classification constrained by Laplacian
node disagreement can be regarded as motivated by the LPA
constrained by the guidance field defined by node disagreement
in the initial features.

An illustration of our proposed LND-GNN for the semi-
supervised node classification task is provided in Fig. 3. We
first utilize a learnable matrix We for feature transformation,
and apply the message passing scheme defined in (13) to the
transformed features for information propagation. Then, the
transformed feature X and the aggregated feature H(K) are
transformed to the label space as Y′ and H∗, respectively,
utilizing a shared learnable matrix Wo. Finally, the overall loss
for the semi-supervised node classification task is calculated to
train the LND-GNN model.

E. Model Learning Process

Our proposed LND-GNN model is trained with (18) as the loss
function and optimized by the back-propagation algorithm. The
pseudo-code for the training process of LND-GNN is given in
Algorithm 1. Specifically, Lines 5-9 aim at transforming the node
features and propagating the features over graph topology with
the message passing scheme in (13), yielding label predictions;
Line 10 computes the overall loss (18) of semi-supervised node
classification and updates the model parameters, namely the
transformation matricesWe and Wo.

Then, we perform the time complexity analysis on the pro-
posed LND-GNN. First, the time complexity of the feature
transformation X with dimension d for all n nodes can be
calculated as O(n · df · d), where df is the dimension of the
initial features. Second, for K propagation layers, we compute
the feature aggregation ÃH with matrix multiplication. Since
the normalized adjacency matrix Ã is stored as a sparse matrix
with s non-zero entities, an efficient implementation of feature
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Fig. 3. Illustration of the proposed Laplacian Node Disagreement-based Graph Neural Network (LND-GNN).

Algorithm 1: Training Process of LND-GNN.

Input: Graph G = {V, E} with adjacency matrix A, node
feature matrix Xin, node label matrix Y, set of labeled
nodes Vtr, number of propagation K, hyperparameters α,
β, and γ, maximal training epochs MaxEpochs.

Output: Model parameters: Θ = {We,Wo}.
1: Randomly initialize model parameters Θ.
2: Compute the normalized adjacency matrix with

self-loop Ã.
3: epochs← 1
4: while not converge and epochs ≤MaxEpochs do
5: X← σ(XinWe)
6: H(K) ← PropagationK(X, Ã) via (13)
7: H∗ ← H(K)Wo

8: Ŷ ← Softmax(H∗)
9: Y′ ← XWo

10: Optimize model parameters Θ by back propagation
via (18) with H∗, Y′, Ŷ, Y, and hyperparameters as
inputs.

11: end while

aggregation takes O(s · d). Third, the embedding matrix of
the hidden layer is transformed into the label matrix with the
time complexity of O(n · d · l), where l is the number of node
labels. Therefore, the overall time complexity of LND-GNN is
O(n · df · d+K · s · d+ n · d · l).

V. EXPERIMENTS

In this section, we conduct extensive experiments on semi-
supervised node classification to evaluate the performance of
the proposed LND-GNN model. Specifically, we try to answer
the following questions:

1) How does the proposed LND-GNN perform on graphs
with homophily? Can it alleviate the over-smoothing prob-
lem? (Section V-C)

TABLE II
STATISTICS OF THE REAL-WORLD DATASETS

2) Beyond homophily in GNNs, how does the proposed
LND-GNN perform in scenarios where current GNNs are
limited, including heterophily graphs, adversarial attacks,
and long-range dependencies? (Section V-D, E, and F)

3) Following the performance evaluation in various scenar-
ios, more specifically, how does the proposed Laplacian
node disagreement enhance the locally adaptive smooth-
ing to improve the expressiveness of GNNs? (Section V-G
and H)

A. Datasets

We validate the performance of our proposed model
on real-world datasets with the homophily ratio H =
|{(vi,vj):(vi,vj)∈E∧yi=yj}|

|E| [16] ranging from strong homophily
(H ≈ 1) to strong heterophily (H ≈ 0). The summary of the
datasets is given in Table II. Note that the disagreement ratio (r)
and homophily ratio (H) have some correspondence since both
consider the label types of the connected nodes, but the disagree-
ment ratio additionally considers the feature disagreement.

Homophily Datasets: For homophily datasets, We consider
three widely adopted citation networks, namely Cora, Citeseer,
and Pubmed [3], plus ogbn-arXiv [36], a relatively large dataset.
For the citation networks, nodes represent documents, and edges
denote the citation relationship between two documents. The
node features are the bag-of-words vectors of the corresponding
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documents, and the labels are the research fields of the docu-
ments. For these datasets, we use the semi-supervised setting as
provided in [4], [37]. And for ogbn-arXiv, we use the standard
split setting from the Open Graph Benchmark (OGB) leader-
board [36].

Heterophily Datasets. We consider three sub-datasets of
WebKB for heterophily datasets, namely Texas, Wisconsin, and
Cornell [17], and an Actor co-occurrence network [38]. For the
WebKB datasets, nodes represent web pages, and edges are hy-
perlinks between them. The node features are the bag-of-words
vectors of web pages, and the labels indicate the five categories
of web pages. For the Actor co-occurrence network, nodes are
corresponding to actors, and edges represent the co-occurrence
on the same Wikipedia page. The node features represent some
keywords in the Wikipedia pages, and the labels correspond to
words on the actor’s Wikipedia pages. For these heterophily
datasets, we adopt the processed node features, labels, and 10
random splits provided by [17].

B. Comparison Models

We compare the proposed LND-GNN with the following
state-of-the-art models in the experiments:

GCN [4]: The aggregation operation of GCN is implemented
by the product of a normalized adjacency matrix with a self-
loop and a feature matrix, which can be considered fundamental
global smoothing.

GAT [5]: GAT specifies different importance to different
neighbors via the similarity between node embeddings, which
can be considered as a fundamental locally adaptive smoothing.

SGC [11]: SGC eliminates the nonlinear transformations
between hidden layers in GCN without sacrificing performance
in downstream tasks.

GraphSAGE [29]: GraphSAGE generalizes the aggregation
operation beyond averaging and aggregates only the feature
information from the sub-sampled neighborhoods.

APPNP [27]: APPNP decouples aggregation and transforma-
tion by first transforming the node features into predictions, and
then aggregating the predictions.

DAGNN [22]: DAGNN also decouples aggregation and trans-
formation, and adaptively aggregates information from local and
global neighborhoods.

GCNII [28]: GCNII extends the vanilla GCN with the initial
residual and identity mapping to alleviate the over-smoothing
problem.

Geom-GCN [17]: The aggregation operation in Geom-GCN
is designed on the continuous space underlying the graph and
aggregates information from structural neighborhoods.

GPR-GNN [18]: GPR-GNN performs feature aggregation for
multiple steps and then adaptively learns the importance weights
for each step.

H2GCN [16]: H2GCN accommodates both heterophily and
homophily by effectively synthesizing ego- and neighbor-
embedding separation, higher-order neighborhoods, and the
combination of intermediate representations.

ADA-UGNN [12]: ADA-UGNN introduces a general regular-
ization term with the attention mechanism into the graph signal

TABLE III
PERFORMANCE OF NODE CLASSIFICATION ON HOMOPHILY DATASETS, (−)
INDICATES OUT-OF-MEMORY ERROR, 95% CI DENOTES THE NUMBER OF

IMPROVEMENTS THAT SATISFY THE SIGNIFICANCE TEST (P-VALUE < 0.05)

denoising framework, and develops a resulting GNN model to
enforce adaptive local smoothness.

ElasticGNN [21]: ElasticGNN proposes �1 and �2-based
graph smoothing to enhance the smoothness adaptivity of GNNs.

It is worth noting that SGC, APPNP, DAGNN, and GCNII are
proposed to alleviate the over-smoothing problem and obtain
deeper neural networks, so they are usually inept at dealing
with heterophily graphs. While Geom-GCN, GPR-GNN, and
H2GCN are specifically proposed to improve the handling of
heterophily.

For experimental models, the hyperparameters are tuned from
the following search space: learning rate in {0.1, 0.05}, weight
decay in {1e− 3, 5e− 4, 1e− 4, 5e− 5}, number of layers in
{2, 4, 8, 16, 32, 64}, hidden unit in {32, 64, 128, 256}, dropout
in {0.2, 0.5, 0.7}. For ElasticGNN, parameters λ1 and λ2 are
tuned in {0, 3, 6, 9} as suggested by [21]. For three trade-off
hyperparameters in the proposed LND-GNN model, α and β
are tuned in {0.05, 0.1, 0.15, 0.2} on homophily datasets and
{0.3, 0.4, 0.5, 0.6, 0.7} on heterophily datasets, γ is tuned in
{0.005, 0.01, 0.05, 0.25, 0.5}. All experiments are implemented
in Pytorch with Adam optimizer [39]. For each experiment, we
run 1000 epochs and apply early stopping with the patience of
100 epochs to train models. Besides, we repeat the experiment
ten times and report the average performance and the standard
variance.

C. Performance on Homophily Datasets

We first compare the performance of our models to baselines
on four commonly used homophily datasets. The performance
of node classification is presented in Table III.

Locally adaptive smoothing can preserve the disagreements
of node embeddings across classes to improve the performance
of node classification on homophily graphs. Thus, as shown in
Table III, our models achieve state-of-the-art performance on
three of four datasets, and nearly so on the fourth. In partic-
ular, the improvement over ElasticGNN also demonstrates the
effectiveness of Laplacian node disagreement on locally adap-
tive smoothing. In addition, GCNII and DAGNN both achieve
favorable results compared to other baselines, which verifies the
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TABLE IV
PERFORMANCE OF NODE CLASSIFICATION WITH DIFFERENT NUMBER

OF LAYERS

superiority of learning node representations from large receptive
fields.

As aforementioned, in the vanilla GCN and its variants, a
relatively large number of layers may cause the over-smoothing
issue. In this part, we further conduct experiments on three cita-
tion network datasets with homophily to test the performance of
our LND-GNN model with the different number of propagation
layers. The vanilla GCN and GCNII, an extension for relieving
the over-smoothing problem, are used as baselines. As shown
in Table IV, the performance of the proposed LND-GNN model
consistently improves and outperforms GCNII on both Citeseer
and Pubmed as the number of layers increases. On Cora, our
model peaks at 16 layers and then maintains a stable performance
as the number of layers increases. Overall, the results show that
with the proposed message passing scheme based on Laplacian
node disagreement, we can relieve the over-smoothing problem
in GNNs.

D. Performance on Heterophily Datasets

We also consider heterophily graphs further to evaluate the
effectiveness of the proposed LND-GNN model. Compared
to homophily graphs, heterophily graphs contain more label-
inconsistent edges, which raises more significant challenges for
the capabilities of the message passing scheme. Except for the
eight baselines, we also include a competitive baseline under het-
erophily, namely Multi-layer Perceptron (MLP). MLP merely
considers node feature information while ignoring the graph
topology. Therefore it can be a threshold to measure whether the
model has appropriately utilized the topological information to
gain for the category inference. The performance on heterophily
datasets is reported in Table V.

A myriad of label inconsistent edges dramatically limit the
capabilities of globally uniform smoothing, thus we can observe
that our LND-GNN model achieves significant advantages over
the baselines. Locally adaptive smoothing based on the Lapla-
cian node disagreement can constrain the disagreements in node
embeddings while performing the smoothing operations to mit-
igate the misleading effect of label inconsistent edges. Specif-
ically, H2GCN and our LND-GNN model are the only models
that outperform MLP on all datasets, which only considers the
node features while ignoring graph topology. Compared to H
2GCN, which is tailored for heterophily graphs, our LND-GNN

TABLE V
PERFORMANCE OF NODE CLASSIFICATION ON HETEROPHILY DATASETS,

95% CI DENOTES THE NUMBER OF IMPROVEMENTS THAT SATISFY

THE SIGNIFICANCE TEST (P-VALUE < 0.05)

model achieves superior performance on three of four datasets,
and nearly so on the fourth.

In addition, GraphSAGE achieves better performance than
GCN and GAT, which is attributed to neighborhood sampling
and the extension of averaging aggregation. Two deeper models,
namely GPR-GNN and GCNII, outperform the above shallow
models in most settings, which confirms the superiority of aggre-
gating information from higher-order neighborhoods. Our pro-
posed LND-GNN inherits the advantages of the above two types
of models while adaptively maintaining the disagreement with
label-inconsistent neighbors, resulting in better performance of
node classification.

E. Robustness to Adversarial Attacks

To evaluate the robustness of the proposed LND-GNN model
against adversarial attacks on graph topology, we further test
the performance on three citation graphs attacked by MetaAt-
tack [20]. Technically, MetaAttack perturbs the discrete graph
structure by connecting nodes with different labels. Practically,
we adopt the MetaAttack implemented in DeepRobust [40], a
PyTorch library for adversarial attacks, and set the perturbation
rate in {5%, 10%, 20%}. In addition, we choose GCN as the
surrogate model, as well as GCN-Jaccard [41], GCN-SVD [42],
and ElasticGNN [21] as the baselines. The results are shown in
Table VI.

Locally adaptive smoothing based on the Laplacian node
disagreement makes our model more robust to adversarial per-
turbations on the graph topology. Specifically, initial features
impose more trustworthy constraints on the node disagreement
in the node embeddings, which enables our LND-GNN model
to perform more tolerance to smoothing operations on perturbed
edges. As shown in Table VI, our LND-GNN model achieves
state-of-the-art defensive performance in the nine results. Fur-
thermore, we observe that ElasticGNN and our model out-
perform models tailored for adversarial attacks, namely GCN-
Jaccard and GCN-SVD, which demonstrates the ability of lo-
cally adaptive smoothing for defending against disturbances.
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TABLE VI
PERFORMANCE OF NODE CLASSIFICATION UNDER ADVERSARIAL ATTACKS

Fig. 4. Performance of the multi-label node classification on long-range
dependency dataset, Amazon Co-Purchase network.

F. Performance on Long-Range Dependency Dataset

In addition, We evaluate the capability of capturing the
underlying long-range dependency in graphs without the risk
of the over-smoothing issue. We conduct a multi-class node
classification experiment on the Amazon Co-Purchase network
dataset, a benchmark commonly used for testing long-range
dependencies [14], [15], [43]. In this network, nodes denote
products and edges denote co-purchases, but no node features
are provided. In order to obtain a fair comparison, we use the
dataset processed by [15]. As for splitting, 10% of the total nodes
are chosen as the test set, while the training set is varied from
5% to 9% to be consistent with [14], [15]. Additionally, there
are no node features, thus we learn a 128-dim feature vector
for each node at training. We compare our proposed LND-GNN
with a set of baselines, including SGC [11], GCN [4], SSE [14],
and IGNN [15]. In particular, SSE and IGNN are models de-
liberately designed to capture long-range dependencies. The
Micro/Macro-F1 performance is shown in Fig. 4, and we can
observe that LND-GNN outperforms all baselines by a signifi-
cant margin. This phenomenon is attributed to the capability of
our proposed LND-GNN to capture the underlying long-range
dependency and facilitate the performance of multi-label node
classification.

G. Ablation Study

To evaluate the effectiveness of considering Laplacian node
disagreement, we compare LND-GNN with the following three
variants: BaseGNN (without considering Laplacian node dis-
agreement in message passing scheme and loss constraint),
LNDGNN-WN (without considering Laplacian node disagree-
ment in message passing scheme), and LNDGNN-WL (without
considering loss constraint). As shown in Fig. 5, we can ob-
serve that the methods with Laplacian node disagreement, i.e.,

Fig. 5. Ablation study: The classification accuracy (%) results of LND-GNN
and its variants.

LNDGNN and LNDGNN-WL have achieved significantly bet-
ter results than those methods without Laplacian node disagree-
ment, i.e., LNDGNN-WN and BaseGNN, which demonstrates
the effectiveness of Laplacian node disagreement. Specifically,
on three heterophily graphs, namely Texas, Wisconsin, and
Cornell, whose disagreement ratios r are 0.81, 0.29, and 0.11,
these methods with Laplacian node disagreement show more
dramatic performance improvements. It confirms our previous
inference that locally adaptive smoothing performs better on
graphs with a high disagreement ratio r. Besides, we can observe
that LNDGNN outperforms LNDGNN-WL on all datasets,
which validates that our proposed loss constraint in LNDGNN
can effectively enhance the embedding learning process.

H. Node Disagreement Study

Measuring the node disagreement of output node embeddings
facilitates a more comprehensive assessment of the model’s
capability in locally adaptive smoothing. With the metrics pro-
posed in Section IV-A, we evaluate the node disagreement in the
node embeddings generated by our proposed LND-GNN model
and vanilla GCN. As shown in Fig. 6, we plot the distributions
of intra-class and inter-class node disagreement in node embed-
dings. We can observe that LND-GNN learns a more significant
level of inter-class node disagreement than GCN, especially in
graphs with heterophily, as shown in Fig. 6(d), (e), and (f). This
phenomenon is attributed to the capability that our proposed lo-
cally adaptive smoothing can smooth intra-class node pairs while
preserving the disagreement of inter-class node pairs. Locally
adaptive smoothing based on the Laplacian node disagreement
can spread the more trustworthy node disagreement in the initial
features to the embeddings, thus leading to more significant
node disagreement in the embeddings on the inter-class node
pairs. Moreover, the numerical values of the node disagreement
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Fig. 6. Node disagreement study: Distributions of intra-class and inter-class node disagreement in node embeddings of GCN and LND-GNN.

TABLE VII
RESULTS OF NODE DISAGREEMENT RATIOS

ratios are shown in Table VII. We can observe that GCN, which
employs globally uniform smoothing, generates embeddings
with smaller disagreement ratios than initial features on 5 of
6 graphs. This phenomenon is consistent with the theoreti-
cal trend that over-smoothing makes nodes indistinguishable.
However, the node embeddings generated by our LND-GNN
maintain relatively significant inter-class node disagreements,
obtaining larger node disagreement ratios under the trend that
node disagreement decreases due to the smoothing operation.
This phenomenon is attributed to the enhanced locally adaptive
smoothing in that the smoothing intensity of inter-class nodes
is suppressed as much as possible to obtain more significant
inter-class node disagreements and larger node disagreement
ratios.

I. Sensitivity Analysis of Hyperparameters

In this section, we study the effect on the classification ac-
curacy of three hyperparameters of our proposed LND-GNN,

namely the trade-off parameters α for global constraint, β for
local constraint, and γ for disagreement constraint.

First, we study the effect of hyperparameters α for global
constraint and β for local constraint, and take the values of α
and β both in range [0, 0.05, 0.1, 0.15, 0.2] for three homophily
datasets and [0.3,0.4,0.5,0.6,0.7] for three heterophily datasets.
The classification accuracy results are plotted in Fig. 7. Specif-
ically, if we set α and β as 0, the global constraint and local
constraint will not be considered in the proposed LND-GNN
model. According to the results in Fig. 7, we can observe a
significant divergence in the effect of trade-off parameters on
homophily and heterophily graphs. For three homophily graphs,
namely Cora, Citeseer, and Pubmed, setting the trade-off param-
eter α for global constraint as 0 is not enough while setting it
as 0.2 is overflowing, and the best results are all obtained when
setting α = 0.05 on three datasets. The trade-off parameter β
also exhibits a similar effect and the best results are obtained
when setting β = 0.1 on three homophily datasets. However,
for heterophily datasets, namely Texas, Wisconsin, and Cornell,
setting α and β as a lower value of 0.3 is not enough and larger
values ofα and β are helpful. The best results are obtained when
setting α = 0.4 on Wisconsin and α = 0.6 on the other two
datasets, and setting β = 0.6 on all three datasets. Overall, the
optimal values of α and β are around 0.05 to 0.1 for homophily
datasets and 0.4 to 0.6 for heterophily datasets respectively. For
heterophily graphs, where neighbors tend to be from different
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Fig. 7. Parameter analysis: The classification accuracy (%) results of LND-GNN with varying trade-off parameters α and β used to tune the importance of the
global and local constraint.

Fig. 8. Parameter analysis: The classification accuracy (%) results of LND-GNN with varying trade-off parameters γ used to tune the importance of the label
disagreement constraint.

classes, tighter constraints on global and local smoothing may
enhance the performance of the proposed LND-GNN model.

Second, we study the effect of the trade-off parameter γ for
the disagreement constraint and take the value in the range
[0, 0.005, 0.01, 0.05, 0.25, 0.5, 0.75]. The classification accu-
racy results are presented in Fig. 8. Specifically, if we set the
value as 0, the disagreement constraint will not be considered in
the proposed LND-GNN model. We can observe that although

LND-GNN achieves the best results when taking various γ on
various datasets, they all have an improvement over the results
if setting γ = 0. It demonstrates that the proposed disagreement
constraint can improve the performance of the proposed LND-
GNN model. If setting γ > 0.25 on homophily and γ > 0.05
on heterophily, performance declines consistently, which shows
that the unsupervised disagreement constraint is only auxiliary
loss and should not be set too large weights to limit the role
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TABLE VIII
PROPAGATION RULES OF VANILLA AND LND-BASED SCHEMES, S DENOTES THE ATTENTIVE MATRIX AND 
 DENOTES HADAMARD PRODUCT

TABLE IX
PERFORMANCE OF NODE CLASSIFICATION ON THREE GENERALIZED ARCHITECTURES

of the supervised cross-entropy loss. Overall, the disagreement
constraint benefits the performance of the node classification
within an effective interval. However, outside of this regular
interval, the joint performance significantly decreases.

J. Generalization of Architectural Configuration

Our proposed LND-GNN adopts an architecture that decou-
ples the transformation operation from the aggregation opera-
tion, allowing for a deeper model to be built without negatively
affecting performance. To further characterize the message pass-
ing scheme based on the Laplacian node disagreement, we gen-
eralize it to three classical GNN architectures: GCN, GAT, and
GraphSAGE. Technically, these three architectures represent the
classical spectral graph convolution, the attention mechanism,
and ego- and neighbor-embedding separation, respectively. The
propagation rules of Vanilla and LND-based schemes are sum-
marized in Table VIII. We then verify the performance of node
classification based on three generalized architectures. The re-
sults are shown in Table IX. We can observe that the LND-based
schemes achieve improvements over the vanilla architectures
on all graphs, especially on heterophily graphs, which proves
the validity of the Laplace node disagreement. Additionally, the
iterative transformations limit the depth of the model, so the
improvements of LND-based schemes on homophily graphs are
relatively limited, and the performances of the three architec-
tures are slightly poorer than those of LND-GNN.

VI. CONCLUSION

This article aims to enhance the locally adaptive smoothing
of GNNs via the initial features. Our motivation is that those
features can present more trustworthy constraints to node dis-
agreement in locally adaptive smoothing, which is formulated
as Laplacian node disagreement. Based on the proposed graph
signal denoising, a new message passing scheme is derived
and implemented with GNNs in the end-to-end semi-supervised
node classification task, where Laplacian node disagreement
is applied to the overall loss of the task as an auxiliary con-
straint. Extensive experiments on graphs with homophily and
heterophily, adversarially attacked graphs, and a long-range

dependency dataset, show that the proposed model can achieve
superior performance against a comprehensive suite of base-
lines.

REFERENCES

[1] M. E. Newman, “Finding and evaluating community structurein networks,”
Phys. Rev. E, vol. 69, no. 26113, pp. 1–16, 2004.

[2] F. Errica, M. Podda, D. Bacciu, and A. Micheli, “A fair comparison of
graph neural networks for graph classification,” in Proc. Int. Conf. Learn.
Representations, 2020.

[3] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-
Rad, “Collective classification in network data,” AI Mag., vol. 29, no. 3,
pp. 93–93, 2008.

[4] M. Welling and T. N. Kipf, “Semi-supervised classification with graph
convolutional networks,” in Proc. Int. Conf. Learn. Representations, 2017.

[5] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio,
“Graph attention networks,” in Proc. Int. Conf. Learn. Representations,
2018.

[6] M. Zhang and Y. Chen, “Link prediction based on graph neural networks,”
in Proc. Adv. Neural Inf. Process. Syst., 2018, pp. 5171–5181.

[7] L. Cai, J. Li, J. Wang, and S. Ji, “Line graph neural networks for link
prediction,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 9,
pp. 5103–5113, Sep. 2022.

[8] W. Ye, O. Askarisichani, A. T. Jones, and A. K. Singh, “Learning deep
graph representations via convolutional neural networks,” IEEE Trans.
Knowl. Data Eng., vol. 34, no. 5, pp. 2268–2279, May 2022.

[9] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neural
message passing for quantum chemistry,” in Proc. Int. Conf. Mach. Learn.,
PMLR, 2017, pp. 1263–1272.

[10] H. Nt and T. Maehara, “Revisiting graph neural networks: All we have is
low-pass filters,” 2019, arXiv: 1905.09550.

[11] F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and K. Weinberger, “Simplifying
graph convolutional networks,” in Proc. Int. Conf. Mach. Learn., PMLR,
2019, pp. 6861–6871.

[12] Y. Ma, X. Liu, T. Zhao, Y. Liu, J. Tang, and N. Shah, “A unified view on
graph neural networks as graph signal denoising,” in Proc. 30th ACM Int.
Conf. Inf. Knowl. Manage., 2021, pp. 1202–1211.

[13] Q. Li, Z. Han, and X.-M. Wu, “Deeper insights into graph convolutional
networks for semi-supervised learning,” in Proc. 32nd AAAI Conf. Artif.
Intell., 2018, pp. 3538–3545.

[14] H. Dai, Z. Kozareva, B. Dai, A. Smola, and L. Song, “Learning steady-
states of iterative algorithms over graphs,” in Proc. Int. Conf. Mach. Learn.,
PMLR, 2018, pp. 1106–1114.

[15] F. Gu, H. Chang, W. Zhu, S. Sojoudi, and L. El Ghaoui, “Implicit graph
neural networks,” in Proc. Adv. Neural Inf. Process. Syst., 2020, pp. 11
984–11 995.

[16] J. Zhu, Y. Yan, L. Zhao, M. Heimann, L. Akoglu, and D. Koutra, “Beyond
homophily in graph neural networks: Current limitations and effective
designs,” in Proc. Adv. Neural Inf. Process. Syst., 2020, pp. 7793–7804.

Authorized licensed use limited to: JILIN UNIVERSITY. Downloaded on January 24,2025 at 08:10:36 UTC from IEEE Xplore.  Restrictions apply. 



1112 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 3, MARCH 2024

[17] H. Pei, B. Wei, K. C.-C. Chang, Y. Lei, and B. Yang, “Geom-GCN:
Geometric graph convolutional networks,” in Proc. Int. Conf. Learn.
Representations, 2020.

[18] E. Chien, J. Peng, P. Li, and O. Milenkovic, “Adaptive universal general-
ized pagerank graph neural network,” in Proc. Int. Conf. Learn. Represen-
tations, 2021.

[19] D. Zügner, A. Akbarnejad, and S. Günnemann, “Adversarial attacks on
neural networks for graph data,” in Proc. 24th ACM SIGKDD Int. Conf.
Knowl. Discov. Data Mining, 2018, pp. 2847–2856.

[20] D. Zügner and S. Günnemann, “Adversarial attacks on graph neural
networks via meta learning,” in Proc. Int. Conf. Learn. Representations,
2019.

[21] X. Liu et al., “Elastic graph neural networks,” in Proc. Int. Conf. Mach.
Learn., PMLR, 2021, pp. 6837–6849.

[22] M. Liu, H. Gao, and S. Ji, “Towards deeper graph neural networks,” in
Proc. 26th ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2020,
pp. 338–348.

[23] D. Bo, X. Wang, C. Shi, and H. Shen, “Beyond low-frequency information
in graph convolutional networks,” in Proc. AAAI Conf. Artif. Intell., 2021,
pp. 3950–3957.

[24] C. Cai and Y. Wang, “A note on over-smoothing for graph neural net-
works,” 2020, arXiv: 2006.13318.

[25] K. Oono and T. Suzuki, “Graph neural networks exponentially lose ex-
pressive power for node classification,” in Proc. Int. Conf. Learn. Repre-
sentations, 2020.

[26] K. Xu, C. Li, Y. Tian, T. Sonobe, K.-I. Kawarabayashi, and S. Jegelka,
“Representation learning on graphs with jumping knowledge networks,”
in Proc. Int. Conf. Mach. Learn., PMLR, 2018, pp. 5453–5462.

[27] J. Gasteiger, A. Bojchevski, and S. Günnemann, “Predict then propagate:
Graph neural networks meet personalized pagerank,” in Proc. Int. Conf.
Learn. Representations, 2019.

[28] M. Chen, Z. Wei, Z. Huang, B. Ding, and Y. Li, “Simple and deep graph
convolutional networks,” in Proc. Int. Conf. Mach. Learn., PMLR, 2020,
pp. 1725–1735.

[29] W. L. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Proc. Adv. Neural Inf. Process. Syst., 2017,
pp. 1024–1034.

[30] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web,” Stanford InfoLab, Stanford, CA, USA,
Tech. Rep. 422, 1999.

[31] Y. Hou et al., “Measuring and improving the use of graph information
in graph neural networks,” in Proc. Int. Conf. Learn. Representations,
2020.

[32] H. Wang and J. Leskovec, “Unifying graph convolutional neural networks
and label propagation,” 2020, arXiv: 2002.06755.

[33] X. Zhu, Z. Ghahramani, and J. D. Lafferty, “Semi-supervised learning
using gaussian fields and harmonic functions,” in Proc. 20th Int. Conf.
Mach. Learn., 2003, pp. 912–919.

[34] J. Calder, B. Cook, M. Thorpe, and D. Slepcev, “Poisson learning: Graph
based semi-supervised learning at very low label rates,” in Proc. Int. Conf.
Mach. Learn., PMLR, 2020, pp. 1306–1316.

[35] P. Pérez, M. Gangnet, and A. Blake, “Poisson image editing,” in Proc.
ACM SIGGRAPH Papers, 2003, pp. 313–318.

[36] W. Hu et al., “Open graph benchmark: Datasets for machine learning on
graphs,” in Proc. Adv. Neural Inf. Process. Syst., 2020, pp. 22 118–22 133.

[37] Z. Yang, W. Cohen, and R. Salakhudinov, “Revisiting semi-supervised
learning with graph embeddings,” in Proc. Int. Conf. Mach. Learn., PMLR,
2016, pp. 40–48.

[38] J. Tang, J. Sun, C. Wang, and Z. Yang, “Social influence analysis in large-
scale networks,” in Proc. 15th ACM SIGKDD Int. Conf. Knowl. Discov.
Data Mining, 2009, pp. 807–816.

[39] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. Int. Conf. Learn. Representations, 2015.

[40] Y. Li, W. Jin, H. Xu, and J. Tang, “DeepRobust: A PyTorch library for
adversarial attacks and defenses,” 2020, arXiv: 2005.06149.

[41] H. Wu, C. Wang, Y. Tyshetskiy, A. Docherty, K. Lu, and L. Zhu, “Adver-
sarial examples for graph data: Deep insights into attack and defense,” in
Proc. 28th Int. Joint Conf. Artif. Intell., 2019, pp. 4816–4823.

[42] N. Entezari, S. A. Al-Sayouri, A. Darvishzadeh, and E. E. Papalex-
akis, “All you need is low (rank) defending against adversarial attacks
on graphs,” in Proc. 13th Int. Conf. Web Search Data Mining, 2020,
pp. 169–177.

[43] J. Yang and J. Leskovec, “Defining and evaluating network communities
based on ground-truth,” Knowl. Inf. Syst., vol. 42, no. 1, pp. 181–213,
2015.

Yu Wang received the BS degree in network security
and the MS and PhD degrees in computer science and
technology from Jilin University, Changchun, China,
in 2015, 2018, and 2023, respectively. His research
interests include graph representation learning and
hyperbolic geometry.

Liang Hu received the MS and PhD degrees in
computer science from Jilin University, Changchun,
China, in 1993 and 1999, respectively. He is currently
a professor and a doctoral supervisor with the College
of Computer Science and Technology, Jilin Univer-
sity. He is supported by the Hundred-Thousand-Ten
Thousand Project of China. His research interests
include feature selection, multilabel learning, and
information theory. He is a member of the China
Computer Federation.

Xiaofeng Cao received the PhD degree from Aus-
tralian Artificial Intelligence Institute, University of
Technology Sydney, Australia. He is currently an
associate professor with the School of Artificial Intel-
ligence, Jilin University, China and leading a Machine
Perceptron Research Group with more than 15 PhD
and master’s students. He has published more than 10
technical papers in top tier journals and conferences,
such as IEEE Transactions on Pattern Analysis and
Machine Intelligence, IEEE Transactions on Neural
Networks and Learning Systems, IEEE Transactions

on Cybernetics, CVPR, IJCAI. His research interests include PAC learning
theory, agnostic learning algorithm, generalization analysis, and hyperbolic
geometry.

Yi Chang (Senior Member, IEEE) is the dean of
the School of Artificial Intelligence, Jilin University,
Changchun, China. He was elected as a Chinese
National Distinguished professor, in 2017 and an
ACM distinguished scientist, in 2018. Before joining
academia, he was the technical vice president with
Huawei Research America, and the research director
with Yahoo Labs. He is the author of two books and
more than 100 papers in top conferences or journals.
His research interests include information retrieval,
data mining, machine learning, natural language pro-

cessing, and artificial intelligence. He won the Best Paper Award on KDD’2016
and WSDM’2016. He has served as a Conference general chair for WSDM’2018
and SIGIR’2020.

Ivor W. Tsang (Fellow, IEEE) is professor of Ar-
tificial Intelligence, with University of Technology
Sydney. He is also the research director of the Aus-
tralian Artificial Intelligence Institute. In 2019, his
paper titled “Towards ultrahigh dimensional feature
selection for Big Data” received the International
Consortium of Chinese Mathematicians Best Paper
Award. In 2020, he was recognized as the AI 2000
AAAI/IJCAI Most Influential Scholar in Australia for
his outstanding contributions to the field of Artificial
Intelligence between 2009 and 2019. His works on

transfer learning granted him the Best Student Paper Award at International Con-
ference on Computer Vision and Pattern Recognition 2010 and the 2014 IEEE
Transactions on Multimedia Prize Paper Award. In addition, he had received
the prestigious IEEE Transactions on Neural Networks Outstanding 2004 Paper
Award in 2007. He serves as a senior area chair for Neural Information Processing
Systems and area chair for International Conference on Machine Learning, and
the editorial board for Journal Machine Learning Research, Machine Learning,
Journal of Artificial Intelligence Research, and IEEE Transactions on Pattern
Analysis and Machine Intelligence.

Authorized licensed use limited to: JILIN UNIVERSITY. Downloaded on January 24,2025 at 08:10:36 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


