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Estimating individual treatment effect (ITE) from observational data has attracted great interest in recent
years, which plays a crucial role in decision-making across many high-impact domains such as economics,
medicine, and e-commerce. Most existing studies of ITE estimation assume that different units at play are
independent and do not influence each other. However, many social science experiments have shown that
there often exist different levels of interactions between units in observational data, especially in a networked
environment. As a result, the treatment assignment of one unit can affect the outcome of other units con-
nected to it in the network, which is referred to as the interference or spillover effect. In this article, we study
an important problem of ITE estimation from networked observational data by modeling the interference
between different units and provide a principled framework to support such study. Methodologically, we pro-
pose a novel framework, SPNet, that first captures the influence of hidden confounders with the aid of graph
convolutional network and then models the interference by introducing an environment summary variable
and developing a masked attention mechanism. Experimental evaluations on several semi-synthetic datasets
based on real-world networks corroborate the superiority of our proposed framework over state-of-the-art
individual treatment effect estimation methods.
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1 INTRODUCTION

Many scientific problems aim to investigate the causal effects between different variables at play.
For example, scientists try to assess to what extent smoking can causally affect human health con-
ditions. The ideal way to study the causal effect would be to conduct a randomized controlled
trials [5, 14, 55], in which units (experimental subjects) are randomly divided into two groups, the
treatment group and control group, and then the causal effect can be estimated by comparing the
difference between the potential outcomes in these two groups. However, such randomized con-
trolled trials are often unethical, time-consuming, and expensive to conduct [16, 53]. Fortunately,
with the rocketing growth of big data in many high-impact domains (e.g., economics, health care,
and social media), it is often effortless to collect a large amount of observational data, which pro-
vides great opportunities for causal inference research [16, 52, 53]. A natural question here is as
follows: How can the outcome be precisely inferred if the unit has taken another treatment? Such
a problem is well known as the counterfactual outcome prediction problem. After the counterfac-
tual outcomes are predicted, we can easily estimate the treatment effect for each individual, i.e.,
individual treatment effect (ITE) [11, 40, 42].

A vast majority of existing works on ITE estimation assumes that units of observational data
are independent of each other [2, 20, 26, 32, 50]. Nevertheless, units (or instances) of observational
data in many settings are inherently connected (e.g., social network among users in social media
and contact network among individuals during pandemic), and such data are often referred to as
networked observational data [19, 41]. Over the past few years, many ITE estimation frameworks
have been proposed for networked observational data [9, 17, 19]. Despite their empirical success
in ITE estimation, these works mainly focus on utilizing network structure information to control
for confounders (i.e., factors that influence both treatment assignment and outcome and thus of-
ten bring confounding bias to ITE estimation), while ignoring the interference of instances in a
network [35, 38]. Here interference (a.k.a spillover effect) refers to a situation where experimental
units usually interact with each other, and as a result, one unit’s outcome is not only affected by
its own features (covariates) and treatment but also influenced by the treatment assignments of
other units that are connected to it. For example, a person who receives the COVID-19 vaccine will
lower the infection risk of those people who do not get the vaccine in his or her social circle (e.g.,
families, friends, colleagues, etc.). Here receiving a vaccine can be viewed as a treatment, and the
risk of COVID-19 infection can be viewed as an outcome. In fact, the significance of considering
such interference has been demonstrated in many causal inference literature [1, 4, 12, 13, 21, 31].
Ignoring network interference can lead to biased or incorrect causal effect estimates and policy
recommendations. For instance, if a treatment has positive effects on treated units but negative
effects on their neighbors, then the causal effect of the treatment on the whole population may be
small or negative, which would not be apparent if network interference is not taken into account.

In this work, we study an important problem of modeling the interference (i.e., spillover effect)
for learning ITE from networked observational data. However, it remains a daunting task mainly
because of the following challenges. First, as mentioned previously, a unit’s outcome is not only
affected by its features (i.e., covariates) and treatment; it is also influenced by the treatments of its
neighbors. Hence, how to model these joint effects in a principled framework to characterize the
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outcome of each unit is challenging. Second, networked data are often characterized by complex,
high-dimensional covariates, and the interaction behavior of nodes is often non-linear. Therefore,
how to effectively model network interference in networked data with complex interactions is very
critical to estimate precise causal effects. Third, the magnitude of spillover effects between different
pairs of neighboring units is naturally different (e.g., a vaccinated person will have a stronger effect
in lowering the infection risk of her immediate family than a random acquaintance). Thus, how
to measure the varied magnitude of spillover effects between neighboring units is an important
problem. Fourth, the existence of hidden confounders (i.e., unobserved confounders) may yield a
biased ITE estimation [39]. Although recent studies [17, 19] have shown that the auxiliary network
information of observational data can be leveraged to control the influence of hidden confounders,
how to better infer the hidden confounders from the networked observational data in the presence
of interference remains an open problem.

To address the aforementioned challenges, we propose a novel individual treatment effect esti-
mation framework for networked observational data under interference, named SPNet, which can
capture the hidden confounders and modeling the varied magnitude of spillover effects by build-
ing a two-channel graph convolutional network and a masked-attention mechanism. The main
contributions of this work are summarized as follows:

• We study an important research problem of modeling interference for learning individual
treatment effect from networked observational data.
• We propose a novel individual treatment effect estimation framework, SPNet, which models

interference between units in the network and controls the confounding bias by utilizing
network information.
• We provide and prove a formal theorem about the identifiability of individual treatment

effect under network interference.
• We conduct extensive experiments to show that the proposed framework SPNet is superior

to existing state-of-the-art methods for estimating individual treatment effects on networked
observational data.

2 PRELIMINARIES

In this section, we begin with notations used in this article and then formally define the problem
of modeling interference for learning individual treatment effects from networked observational data

by introducing the technical preliminaries.
Notations. In this work, we use unbold capital letters to denote random variables (e.g., YTi=1

i )
and use unbold lowercase letters (e.g., yti

i ), bold lowercase letters (e.g., x i ), and bold capital letters
(e.g., A) to denote specific values of scalars, vectors, and matrices, respectively. We use Ai j to
represent the (i, j)-th entry of matrix A.

Networked observational data. We use x i , ti , and yi to denote the covariates (i.e., features),
the assigned treatment, and the observed outcome of the ith instance, respectively. Without loss
of generality, we use ti = 1 (ti = 0) to denote that the ith instance is in the treatment (control)
group. The potential outcome yti

i of the treatment assignment is defined as the value that the
outcome would have taken if the treatment of unit i had been set to ti . Additionally, the network
structure among n instances is encoded in an adjacency matrix A ∈ {0, 1}n×n such that Ai j = 1
(Ai j = 0) denotes that there exits an (no) edge between instance i and j. As a summary, we refer
{{x i , ti ,yi }ni=1,A} as the networked observational data, where x i ∈ Rm and m is the dimension of
the observed instance features.

Definition 1 (Network Interference). Interference (i.e., spillover effect), exists when different units
are related with each other (e.g., social network among users), such that one unit’s outcome
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is causally affected by the treatment assignments of other units that are connected to it in the
network.

It should be noted that many existing causal inference studies [9, 17, 19] on networked environ-
ment fail to consider the existence of spillover effects among different units. In this work, we study
this important research problem of modeling interference for ITE estimation from networked ob-
servational data.

Traditional ITE without network interference aims to measure the difference between potential
outcomes under treatment and control, i.e., τi = E[YTi=1

i |x i ] − E[YTi=0
i |x i ]. However, such estima-

tion is not applicable when interference (spillover effect) exists among different units. To account
for the influence of neighboring units, in this work, we introduce an environment summary ei for
each unit i , which can summarize (e.g., mean) over the treatment assignment information of the
unit i’s neighbors. With this, the individual treatment effect of unit i under network interference
is defined as τi = E[YTi=1

i |x i ,ei ] − E[YTi=0
i |x i ,ei ]. One of the most important tasks in this work

is to model the interference over the current environment. It should be noted that we assume the
interference from neighboring units for each unit i remains unchanged when we intervene its
treatment assignment Ti . Using the above, we provide a formal definition of the studied problem
as follows:

Definition 2 (Modeling Interference for Learning Individual Treatment Effect from Networked Ob-

servational Data). Given the networked observational data {{x i , ti ,yi }ni=1,A}, our goal is to learn
the ITE τi (i = 1, 2, · · ·,n) for each unit i while accounting for the interference among different
units in τi = E[YTi=1

i |x i ,ei ] − E[YTi=0
i |x i ,ei ].

It is noteworthy that many existing works [25, 40, 53] on individual treatment effect estimation
are developed based upon the following two fundamental assumptions: The Stable Unit Treat-

ment Value Assumption (SUTVA) and the Strong Ignorability [19, 24]. SUTVA assumption
emphasizes the independence of each unit, such that the treatment of one unit does not affect
the potential outcomes of other units. Most of the early works on causal inference relied on this
SUTVA assumption. However, there are many scenarios whereby the interference between units
matters [23, 44, 48]. In this work, we aim to model the spillover effect and control the confounding
bias for more accurate individual treatment effects, which does not rely on the SUTVA assumption.
In other words, we assume different units interact with each other. Strong Ignorability assumes
that there are no hidden confounders and all the confounding variables can be measured by the
observed features. However, the assumption is often untenable in many real-world scenarios, espe-
cially when the observed feature space is very limited. In this work, we consider a more practical
scenario where the hidden confounders exist, and we will exploit the network structure among
instances to better control these hidden confounders toward unbiased ITE estimation.

3 THE PROPOSED FRAMEWORK: SPNET

An overview of the proposed framework, SPNet, which models the interference for learning indi-
vidual treatment effect from networked observational data, is shown in Figure 1. The proposed
framework has the following key components: (1) Learning Partial Representations, (2) Modeling

Interference, and (3) Predicting Potential Outcome and Treatment Assignment. We will describe the
three key components in detail in the following sections.

3.1 Learning Partial Representations

The first component of the proposed framework SPNet is to learn two partial representations
of hidden confounders for each unit by utilizing both instance features and network structure
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Fig. 1. The overview of the proposed SPNet, which models interference, taking neighboring pair (x i ,x j ) as

an example.

information. Among them, one partial representation is mainly for the potential outcome predic-
tion and the other one is for the treatment assignment prediction. There are two main reasons
for learning these two partial representations. First, learning two partial representations to cap-
ture hidden confounders can help control the influence of confounding bias for ITE estimation
and treatment assignment prediction. Second, learning two partial representations can help to
model the interference between different connected units. For these two partial representations,
SPNet aims to learn two partial representation learning functions дo and дt : X ×A→ Rd , which
map the observed features along with the network structure information to a d-dimensional latent
space with the supervision of factual outcomes and observed treatment assignments, respectively.
Specifically, we parameterize these two partial representation learning functions by a twin-channel
graph convolutional network (GCN) [10, 30], which has shown to be effective in handling non-
Euclidean data (e.g., networked structure data) in diverse settings.

To be more specific, we propose stacking multiple GCN layers to develop a twin-channel net-
work model to obtain these two partial representations of hidden confounders. For the simplicity
of notation, we represent the partial representation learning functionsдo andдt with a single GCN
layer. Each partial representation learning function can be formulated as follows:

ro
i = д

o (x i ,A) = σ (( ˆAX )iW
o )

r t
i = д

t (x i ,A) = σ (( ˆAX )iW
t ),

(1)

where σ is the ReLU activation function for each GCN layer. ro
i ∈ Rd and r t

i ∈ Rd are the partial
representations of hidden confounders of unit i with respect to the potential outcome and treat-
ment, respectively. d is the embedding size. ˆA ∈ Rn×n is the normalized adjacency matrix with
self-loop such that

ˆA = ˜D
− 1

2
˜A ˜D
− 1

2 , ˜A = A + In , (2)

where In ∈ Rn×n is an identity matrix and ˜Dii =
∑n

j=1
˜Ai j is the degree matrix of ˜A. X ∈ Rn×m

is the observed feature matrix of the units, ( ˆAX )i denotes the ith row of the product of matrix
multiplication ˆAX , and W o and W t ∈ Rm×d stand for the parameter matrix to be learned. Then
these two partial representations of unit i will be later used for modeling the interference.
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3.2 Modeling Interference

Regarding the networked observational data, the outcome of a unit can be affected by the treat-
ments of its neighboring units, which is referred as interference. In this work we introduce an
interference representation hi to model such effect. Previously, many methods [34] directly aggre-
gate the treatment assignments of a unit’s neighbors into a one-dimensional variable (e.g., with
mean pooling) and model the interference based on it. However, such solution is prone to failure
when the observational data are high dimensional. To tackle this issue, a more principled way
is desired to model the interference. Meanwhile, as mentioned previously, the magnitude of the
spillover effects between neighboring units should differ. Such difference should also be reflected
in the interference representation. As a summary, by reason of the foregoing, two questions need
to be answered for modeling such spillover effect: How do we model the interference that captures

the influence of one unit’s neighboring units on its own outcome? and How do we quantify the varied

magnitude of the spillover effects between different neighboring units?

To answer the first research question, we propose to model the interference representationhi for
each unit i by aggregating the treatment-partial representations of its neighbors. The main reason
is that these treatment-partial representations embed units’ information that is used for the treat-
ment assignment prediction. And it is worth noting that we use the interference representation
hi as the proxy of the environment summary ei . In this way, the spillover effect over a unit that
is resulted by the neighbors’ treatment assignments can be well captured. Meanwhile, to answer
the second research question of quantifying the varied magnitude of spillover effects between dif-
ferent neighboring units, we propose a masked-attention mechanism by leveraging the learned
outcome-partial and treatment-partial representations ro

i , r t
i . More specifically, we aim to learn an

attention function a(., .) that can assign different weights to different neighboring units during the
information aggregation process of the spillover effect modeling. With the above considerations,
we formulate the interference representation hi ∈ Rd for each unit i as follows:

hi =
∑

j ∈N (i )

αi j · r t
j , (3)

where N (i ) denotes the set of neighbors of unit i in the network A, r t
j is the treatment-partial

representation of the jth unit. αi j is the attention weight that represents the magnitude of the
spillover effect of the jth unit on the ith unit. The coefficient is computed by the attention function
a(., .) : R2d × R2d → R. The computation of the attention weight αi j by the attention function
a(., .) is formulated as follows:

r i = concat
(
ro

i ,r
t
i

)
, r j = concat

(
ro

j ,r
t
j

)
,

αi j = a(r i ,r j ) =
exp(ReLU(aT [r i | |r j ]))∑

k ∈Ni
exp(ReLU(aT [r i | |rk ]))

,
(4)

where concat(., .) and | | both stand for the vector concatenation operation. a ∈ R4d is the weight
vector to be learned, and the term ReLU(aT [r i | |r j ]) can be interpreted as the unnormalized at-
tention weight of the edge between the units i and j. More specifically, by concatenating the two
partial confounder representations of each instance when learning the attention weights, we can
gain a more comprehensive understanding of how the treatment of each unit affects the outcome
of other neighboring units. Noting that we consider a more realistic situation to model the inter-
ference, where the attention weights are not symmetric. This means that the magnitude of the
interference of the unit i on unit j does not necessarily equal to that of the unit j on unit i , i.e.,
α ji � αi j .
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3.3 Predicting Potential Outcome and Treatment Assignment

Until now, we have obtained the outcome-partial representation ro
i by Equation (1) and the in-

terference representation hi by Equation (3) for each unit i , where ro
i encodes the information

of confounders for inferring unit i’s potential outcomes while hi encodes the spillover effects
resulted from treatment assignments of unit i’s neighbors. We first combine (e.g., sum up) the
outcome-partial representation ro

i and the interference representation hi together and obtain a fi-
nal representation zi through a multilayer perceptron (MLP), then we develop an output layer
to infer the potential outcomes for each unit i by using the obtained final representation zi .

Specifically, we develop a mapping function fz : Rd × Rd → Rd to map the outcome-partial
representation ro

i of hidden confounders, the interference representation hi , into the final repre-
sentation zi for unit i . The formulation of function fz is as follows:

zi = fz
(
ro

i ,hi
)
. (5)

Then, with the final representation zi ∈ Rd and the corresponding treatment assignment ti ∈
{0, 1}, the potential outcome of unit i w.r.t. the treatment assignment ti can be computed by the
following function f :

f (zi , ti ) =
⎧⎪⎨
⎪
⎩

ŷi
ti=0 = f0 (zi ) if ti = 0

ŷi
ti=1 = f1 (zi ) if ti = 1

, (6)

where the functions f0 and f1 are both parameterized by L fully connected layers followed by an
output layer for ti = 0 and ti = 1, respectively.

Meanwhile, we also develop a treatment prediction function f t : Rd → (0, 1), which maps the
treatment-partial representation r t

i into the estimated probability P (ti = 1|r t
i ), i.e., the probability

that the unit i receives treatment ti = 1. The treatment prediction function f t is parameterized by
K fully connected layers with a sigmoid activation function.

3.4 Loss Function of SPNet

Now, we design a loss term to combine all the essential components for ITE estimation, such that
the learned partial representations that capture the hidden confounding bias and spillover effect
can be well trained in an end-to-end manner.

Loss for Potential Outcome Prediction. First, we use Mean Square Error (MSE) loss function
to minimize the error between the inferred factual outcome ŷti

i by Equation (6) and observed factual
outcome yi for each unit and denote the factual outcome loss as Ly ,

Ly =
1

n

n∑
i=1

(
ŷti

i − yi

)2
. (7)

Loss for Treatment Assignment Prediction. Second, we design another loss term to minimize
the difference of the predicted treatment assignment by f t and the true treatment assignment ti .
We view it as a classification problem using cross-entropy loss function and denote it as Lt ,

Lt = −
1

n

n∑
i=1

ti log
(
P
(
ti = 1|r t

i

))
+(1 − ti )log

(
1 − P

(
ti = 1|r t

i

))
.

(8)

Loss for Representation Balancing. Since the distribution of the factual outcome and the coun-
terfactual outcome could be rather different, we follow References [19, 43] to measure the differ-
ence between the representation distributions of hidden confounders for the treatment group and
the control group. Here, we denote the representation balancing loss as Lb .
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The Overall Loss Function. The final loss function for SPNet is formulated as follows:

L = Ly + αLt + βLb + γ ‖Θ‖22 , (9)

where α and β are two non-negative hyperparameters to control the tradeoff between the corre-
sponding term and other terms. The last term γ ‖Θ‖22 is imposed on all the model parameters Θ to
prevent overfitting.

4 ITE IDENTIFIABILITY UNDER INTERFERENCE

In this section, we provide and prove a formal theorem about the identifiability of individual treat-
ment effect under network interference from networked observational data:

Theorem 1. (Identifiability of ITE under interference) If we can recover p (Zi |Ei ,Xi ) and

p (Yi |Zi ,Ti ) from the networked observational data, then we can recover the ITE under network

interference.

Here Xi ,Zi ,Ei ,Ti denote the random variables for the covariates, the confounders, the environ-
ment summary, and the treatment assignment of unit i , respectively. In our framework,p (Zi |Ei ,Xi )
is modeled with the partial representation learning and interference modeling components. Ei is
the environment summary variable, we assume a summary function [34] that can output the value
of Ei to describe the treatment assignments and covariates of other units (e.g., neighbors of unit i)
that influence unit i given the network structure A. And p (Yi |Zi ,Ti ) is modeled by the potential
outcome prediction component. The proof of the theorem generally follows similar assumptions as
the previous work [34, 36], but it is worth noting that we allow hidden confounders to exist in our
setting, whereas the two literature mentioned above assume no existence of hidden confounders.

4.1 Preconditions

Before proving Theorem 1, we introduce a conjecture for modeling the interference in networked
environment:

Conjecture 1. There exists an environment summary variable Ei = Fi (T Ni
,XNi

) for any unit i ,
which represents the aggregation of its neighbors’ covariates and treatment assignments.

In this conjecture, Fi : {0, 1} |Ni | ×X×|Ni | → Ei represents the aggregation function for unit i ,Ni

denotes the set of unit i’s neighbors, and T Ni
,XNi

denote the treatment assignments and covari-
ates of unit i’s neighbors, respectively. By the way, we infer the environment summary variable
Ei by using GCN model and attention mechanism built in the proposed model SPNet based on the
covariates and treatment assignments of unit i’s neighbors determined by the network structureA.

Based on the above definitions of environment summary variable and the corresponding aggre-
gation function, we introduce another three necessary assumptions for the identifiability of ITE
under network interference:

Assumption 1. If the responses of the aggregation function Fi with respect to two different value

assignments of (T Ni
,XNi

) are identical for unit i , then the value of the potential outcome of unit i
under these two value assignments is the same.

Assumption 2. Assuming that complete confounders (containing all observed and hidden con-

founders) can be captured from latent space of observational data. Then we refer the variable of rep-

resentation of the complete confounders as Zi for unit i .

Assumption 3. Given the variable of the representation of complete confounders Zi , the treatment

assignment Ti and environment summary variable Ei are independent to the potential outcome

for unit i , i.e., YTi=1
i ,YTi=0

i ⊥ Ti ,Ei |Zi . This assumption is a relaxed version of the widely used
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unconfoundedness assumption in causal inference. Notice that it is relaxed to allow the existence of

hidden confounders.

4.2 Derivation of Proof

Finally, we formally present detailed derivation of the proof of Theorem 1 for the identifiability of
individual treatment effect under network interference.

Proof. Given the above assumptions and observational data, we have the distribution of the po-
tential outcome of any unit i under network interference as follows (we useTi = 1 as an example):

p (YTi=1
i |Ei ,Xi )

(i )
=

∫
Zi

p (YTi=1
i |Ei ,Xi ,Zi )p (Zi |Ei ,Xi )dZi

(ii )
=

∫
Zi

p (YTi=1
i |Ei ,Zi )p (Zi |Ei ,Xi )dZi

(iii )
=

∫
Zi

p (YTi=1
i |Ei ,Zi ,Ti = 1)p (Zi |Ei ,Xi )dZi

(iv )
=

∫
Zi

p (Yi |Zi ,Ti = 1)p (Zi |Ei ,Xi )dZi ,

(10)

where equation (i) is the straightforward expectation overp (Zi |Ei ,Xi ), equation (ii) can be inferred
from Assumption 2, and equation (iii) is derived by Assumption 3 based on the conditional indepen-
dence rule YTi=1

i ,YTi=0
i ⊥ Ti ,Ei |Zi . On the one hand, a unit’s observed outcome needs to account

for the whole network; on the other hand, we assume that aggregating a unit’s neighbouring infor-
mation can summarize the influence of the whole network on its potential outcome in Assumption
1, thus equation (iv) can be derived based on the Assumption 1 and the widely used consistency
assumption [24]. Thus, if our framework SPNet can correctly model p (Zi |Ei ,Xi ) and p (Yi |Zi ,Ti ),
then the distributionp (YTi

i |Ei ,Xi ) can be recovered, and thus the individual treatment effect can be
identified under network interference. Noting that our framework SPNet approximates the aggre-
gation function Fi using the GCN model and masked-attention mechanism based on the treatment
assignments and covariates of unit i’s neighbors according to the network structureA and then in-
fers the representation of complete confounderZi by GCN as well as MLP, and finally the potential
outcome is modeled by stacking multiple MLP layers based on the learned representation of com-
plete confounder. The framework transforms the two probability distribution estimation into the
parameter learning problem of neural network. One can see that modeling process of the proposed
framework SPNet coincides with the above proof for ITE identifiability under interference. �

5 EXPERIMENTAL EVALUATIONS

In this section, we perform empirical experimental evaluations on multiple semi-synthetic datasets
to assess the performance of our proposed framework SPNet. Before presenting the detailed exper-
imental results, we first introduce the used datasets, evaluation metrics, and experimental settings.
Then we report the experimental results of ITE estimation performance, robustness of SPNet, ab-
lation study, and hyperparameter study.

5.1 Dataset Description

BlogCatalog (BC). BlogCatalog [47] is a social blog directory website, which contains a
friendship network between bloggers. In this dataset, each unit is a blogger, and each edge
denotes the friendship between two bloggers. The features are the bag-of-words representation of
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the keywords of the blogs posted by bloggers. We follow the assumptions of References [19, 49]
to synthesize treatment assignment and potential outcome: (a) treatment (blogger’s blogs are
viewed more on mobile devices or desktops) and (b) outcome (the opinion of readers about the
bloggers). Additionally, we follow Reference [19] by assuming a blogger and her/his neighbors’
topics can causally affect her treatment assignment and outcome. More specifically, we train the
topic distribution r (x i ) for each blogger using the LDA topic model [6]. Then we randomly select
a blogger’s topic distribution as the centroid of the treatment group and control group, which are
denoted as r c

1 and r c
0, respectively. We then model the readers’ browsing device preferences (i.e.,

propensity score) on the ith blogger’s contents as follows:

P (ti = 1|x i ,A) =
exp(pi

1)

exp(pi
1) + exp(pi

0)

pi
1 = k1r (x i )Tr c

1 + k2

∑
j ∈N (i )

r (x j )r
c
1

pi
0 = k1r (x i )Tr c

0 + k2

∑
j ∈N (i )

r (x j )r
c
0,

(11)

where k1 and k2 control the magnitude of the confounding bias, which are determined by a
blogger’s topic and her neighbors’ topics. Then the factual outcome and counterfactual outcome
of the ith unit with spillover effect considered are simulated as

yF
i = C (pi

0 + tip
i
1) +

∑
j ∈N (i )

S i jP (tj = 1|x j ,A) + ϵ

yCF
i = C (pi

0 + (1 − ti )pi
1) +

∑
j ∈N (i )

S i jP (tj = 1|x j ,A) + ϵ,
(12)

where C is the scaling weight and S i j is the magnitude of spillover effect of the treatment of the
j-unit on the outcome of the ith unit, which are sampled from a uniform distribution: S i j ∼ U (0, s ).
Here, we adjust the value of s to control the magnitude of spillover effect in the network; the
larger the value of s , the stronger the interference in the network. ϵ is the noise term sampled as
ϵ ∼ N (0, 1).

Flickr. Flickr [47] is an online community where users can share images and videos and follow
each other. In this dataset, each unit is a user and each edge represents the friendship between
two users. The features of a unit is the set of its interest tags. We also study the causal effect of
viewing images and videos on mobile devices or desktops (treatment) on readers’ opinions of the
user (outcome). Here, we follow the same setting and assumptions of BlogCatalog to synthesize
the treatments and outcomes for Flickr.

PeerRead. PeerRead [27] is a dataset of computer scientific peer reviews for papers. Each unit
in the dataset denotes an author, the edges stand for the co-author relationships between authors.
The features of each unit are the bag-of-word representations extracted from their paper title and
abstract. The treatment of a unit in the dataset is whether the unit’s (author’s) papers contain
some keywords, and the outcome denotes the citation number of their papers. We follow the same
setting as BlogCatalog and Flickr to synthesize the treatments and outcomes for each unit.

The detailed statistics of these three semi-synthetic datasets are shown in Table 1. We conduct
the procedure of the data simulation over 10 runs for each parameter setting. In addition to some
conventional statistical information, we also report the average number of treated units in each
setting for each dataset and the network density for each dataset by η = 2 |E |

|V |( |V |−1) , where |V | is
the number of vertexes and |E | is the number of edges in the graph.
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Table 1. Detailed Statistics of the Used Three Semi-synthetic Datasets BlogCatalog (BC),

Flickr, and PeerRead

Datasets # Instances # Edges # Features η s # Treated ATE Mean STD
0.2 2379.2 17.768 3.587

BC 5,196 173,468 8,189 1.2 × 10−2 0.5 2633.8 24.250 3.989
0.8 2122.4 28.434 6.294
0.2 3839.8 9.135 1.962

Flickr 7,575 239,738 12,047 8.3 × 10−3 0.5 3611.7 7.988 1.791
0.8 3683.8 8.387 1.960
0.2 3663.1 2.558 0.622

PeerRead 7,601 13,691 1,080 4.7 × 10−4 0.5 3626.5 2.080 0.714
0.8 3717.4 2.463 0.882

The column s denotes the magnitude of spillover effect of the network. η denotes the network density. ATE Mean
stands for the mean of average treatment effect, and STD stands for the standard deviation of ATE over 10 different
simulation runs.

5.2 Evaluation Metrics

We adopt two widely used metrics in causal inference to evaluate the effectiveness of our pro-
posed framework, SPNet, for learning individual treatment effect: (1) For measuring the accuracy
of the unit-level treatment effect, we report Rooted Precision in Estimation of Heterogeneous Ef-
fect (

√
ϵP EH E ), and (2) for the population-level treatment effect we report Mean Absolute Error on

average treatment effect (ATE) (ϵAT E ) [20, 32]. The definition of the two metrics is as follows:

√
ϵP EH E =

√
1

n

∑
i=1

(τi − τ̂i )2

ϵAT E =

������

1

n

∑
i=1

τ̂i −
1

n

∑
i=1

τi

������
,

(13)

where τi = yti=1
i − yti=0

i and τ̂i = ŷti=1
i − ŷti=0

i are the ground truth ITE and the inferred ITE,
respectively. Lower values of them denote better estimation performance.

5.3 Experimental Settings

We compare our proposed framework, SPNet, with the following state-of-the-art models for ITE
estimation.

Counterfactual Regression (CFR). CFR [42] is a representation learning–based method to map
the original features to latent space to capture hidden confounders by minimizing the error of
inferred factual outcomes and the imbalance between latent representations of treatment group
and control group. Here we consider two types of balancing penalties: Wasserstein-1 distance
(CFR-Wass) and the maximum mean discrepancy (CFR-MMD).

Treatment-agnostic Representation Networks (TARNet). TARNet [42] is a variant of the CFR
framework, which does not have a built-in representation balancing component.

Causal Effect Variational Autoencoder (CEVAE). CEVAE [32] is based on the Variational Au-
toencoders [29]. It follows the causal structure of inference with proxies and builds deep latent
variable model to estimate the unknown latent space summarizing the confounders and the causal
effect.
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Causal Forest. Causal Forest [50] is a nonparametric causal inference method that extends the
Breiman’s random forest algorithm [7] for estimating heterogeneous treatment effects in sub-
groups with the strong ignorability assumption.

Bayesian Additive Regression Trees (BART). BART [20] is a widely used Bayesian nonpara-
metric modeling procedure for causal inference, which is also based on the strong ignorability
assumption.

Network Deconfounder (NetDeconf). NetDeconf [19] is a framework that aims to exploit
the network information to control the confounding bias to learn ITEs from networked obser-
vational data. Specifically, it relaxes the strong Ignorability assumption and captures the hidden
confounders using graph convolutional network in latent space. NetDeconf is different from the
above methods as it leverages network structure to infer the confounders.

Linked Causal Variational Autoencoder (LCVA). LCVA [38] is a generative model using vari-
ational autoencoder architecture. It incorporates an encoder neural network to learn the latent
attributes and a decoder network to reconstruct the inputs and then capture the spillover effect
between units for ITE estimation.

Heterogeneous Partial Interference (HGPI). HGPI [37] partition the units into a large num-
ber of disjoint clusters based on observables and develop an augmented inverse propensity

weighted (AIPW) estimator for estimating heterogeneous treatment and spillover effects under
conditional exchangeability.

Flame-Network. Flame-Network [3] is a causal estimator based on a matching method and esti-
mates the average treatment effect using the FLAME [51] algorithm. The method matches units
almost exactly on counts of the subgraphs for each unit’s neighborhood graph and captures the
network interference by utilizing the subgraph information.

For each dataset, we run the experiments 10 times and the average performance is reported.
For each run, we split the dataset into training set (60%), validation set (20%), and test set (20%).
Regarding the hyperparameters of the proposed framework, we utilize the grid search strategy to
find the optimal hyperparameters combination based on the results on the validation set. More
specifically, we set the learning rate as 0.01 and the dimension of the representation space d as 400.
We also vary the number of GCN layers and hidden layers of fully connected neural networks in
{1,2,3}; α , β , γ range in {10−1, 10−2, 10−3, 10−4}. For the simulation procedure, we setC = 5, k1 = 10,
and k2 = 1, s varies from {0.2, 0.5, 0.8} to control the magnitude of network interference. The
optimizer Adam [28] is adopted to train the model.

5.4 Performance of ITE Estimation

In this subsection, we compare the proposed framework SPNet against the aforementioned baseline
methods on the task of ITE estimation. The experimental results on ITE estimation task are shown
in Table 2. Noting that the causal estimand of interest for HGPI and Flame-networks is the average
treatment effect over population, thus the results in terms of

√
ϵP EH E for these two models are not

available. By analyzing the experimental results, we have the following observations:

• The proposed ITE estimation framework SPNet clearly outperforms traditional baseline
methods, including CFR, CEVAE, Causal Forest, and BART, which ignore the network in-
formation for learning ITEs.
• SPNet and NetDeconf have better performance than the other baseline methods for

estimating ITEs. The main reason is that SPNet and NetDeconf consider the auxiliary
network information to capture the influence of hidden confounders toward unbiased ITE
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Table 2. ITE Estimation Performance Comparison for Different Methods on BlogCatalog, Flickr, and

PeerRead (Mean ±Std)

BlogCatalog
s 0.2 0.5 0.8√

ϵP EH E ϵAT E
√
ϵP EH E ϵAT E

√
ϵP EH E ϵAT E

CFR-Wass 24.047 ± 4.648 17.502 ± 3.353 29.983 ± 5.347 20.245 ± 3.889 31.109 ± 7.991 22.098 ± 5.980
CFR-MMD 22.534 ± 4.327 15.838 ± 3.114 30.276 ± 5.298 20.303 ± 3.762 31.313 ± 7.618 21.734 ± 5.784

TARNet 23.033 ± 4.639 16.818 ± 3.423 30.456 ± 5.176 21.305 ± 3.659 32.347 ± 7.818 22.547 ± 5.982
CEVAE 18.743 ± 3.812 8.559 ± 2.978 24.942 ± 4.379 11.726 ± 3.121 29.812 ± 6.348 17.196 ± 4.215

Causal Forest 15.943 ± 2.675 3.277 ± 1.817 21.267 ± 2.913 5.568 ± 1.681 26.175 ± 4.587 12.916 ± 2.786
BART 12.150 ± 1.934 7.480 ± 2.432 14.457 ± 1.896 8.452 ± 2.312 18.131 ± 1.771 12.725 ± 2.578
LCVA 22.307 ± 5.731 6.212 ± 2.128 23.086 ± 6.107 7.435 ± 2.764 27.314 ± 5.875 10.315 ± 2.302
HGPI – 3.740 ± 2.627 – 6.413 ± 3.637 – 14.639 ± 8.521

Flame-Network – 4.141 ± 3.197 – 6.192 ± 4.096 – 9.631 ± 5.901
NetDeconf 6.927 ± 0.927 2.551 ± 0.325 9.094 ± 0.892 4.140 ± 0.501 9.534 ± 1.031 4.204 ± 0.674

SPNet (ours) 3.491 ± 0.351 1.122 ± 0.256 6.122 ± 0.377 1.677 ± 0.243 6.958 ± 0.504 2.448 ± 0.247

Flickr
s 0.2 0.5 0.8√

ϵP EH E ϵAT E
√
ϵP EH E ϵAT E

√
ϵP EH E ϵAT E

CFR-Wass 16.743 ± 3.996 3.612 ± 1.329 15.512 ± 3.510 4.121 ± 0.994 17.390 ± 3.806 6.347 ± 1.125
CFR-MMD 17.438 ± 4.127 3.594 ± 1.237 15.341 ± 3.469 4.329 ± 1.118 17.654 ± 3.764 6.502 ± 1.092

TARNet 17.414 ± 4.358 3.682 ± 1.223 15.647 ± 3.585 5.788 ± 1.201 16.737 ± 3.978 6.172 ± 0.972
CEVAE 16.638 ± 4.215 5.919 ± 1.078 14.277 ± 3.419 4.396 ± 0.978 17.276 ± 3.917 8.551 ± 1.341

Causal Forest 18.791 ± 3.975 7.508 ± 0.918 16.304 ± 3.364 6.025 ± 1.024 19.620 ± 3.875 10.927 ± 1.242
BART 10.324 ± 2.186 5.748 ± 0.863 9.601 ± 1.974 4.840 ± 0.737 14.285 ± 2.216 8.343 ± 1.257
LCVA 21.023 ± 4.903 6.950 ± 1.521 18.919 ± 3.765 6.576 ± 1.319 22.165 ± 4.844 8.907 ± 1.428
HGPI – 7.076 ± 2.630 – 4.952 ± 2.429 – 10.316 ± 3.013

Flame-Network – 5.351 ± 2.850 – 3.328 ± 1.917 – 8.636 ± 4.222
NetDeconf 6.971 ± 0.833 0.930 ± 0.385 7.051 ± 0.869 0.910 ± 0.418 11.461 ± 1.223 1.791 ± 0.503

SPNet (ours) 5.250 ± 0.511 0.717 ± 0.103 5.562 ± 0.537 0.860 ± 0.127 7.562 ± 0.487 1.237 ± 0.187

PeerRead
s 0.2 0.5 0.8√

ϵP EH E ϵAT E
√
ϵP EH E ϵAT E

√
ϵP EH E ϵAT E

CFR-Wass 4.399 ± 1.560 2.064 ± 0.717 2.862 ± 1.317 1.270 ± 0.697 3.619 ± 1.406 1.636 ± 0.708
CFR-MMD 4.402 ± 1.459 2.065 ± 0.873 2.683 ± 1.262 1.152 ± 0.671 3.406 ± 1.396 1.524 ± 0.712

TARNet 4.401 ± 1.332 2.063 ± 0.799 2.707 ± 1.307 1.252 ± 0.665 3.601 ± 1.519 1.576 ± 0.698
CEVAE 4.339 ± 1.178 1.864 ± 0.745 2.831 ± 1.203 1.397 ± 0.697 3.430 ± 1.318 1.530 ± 0.710

Causal Forest 3.578 ± 0.448 0.660 ± 0.353 2.255 ± 0.371 0.462 ± 0.289 2.935 ± 0.496 0.567 ± 0.332
BART 5.169 ± 0.892 1.972 ± 0.531 2.736 ± 0.671 1.202 ± 0.473 3.539 ± 0.745 1.448 ± 0.519
LCVA 3.417 ± 0.818 1.025 ± 0.675 2.948 ± 0.935 0.805 ± 0.593 3.124 ± 0.741 0.953 ± 0.507
HGPI – 1.017 ± 0.217 – 0.898 ± 0.180 – 1.039 ± 0.208

Flame-Network – 1.791 ± 0.664 – 1.347 ± 0.901 – 1.533 ± 1.179
NetDeconf 3.900 ± 0.271 1.084 ± 0.209 2.355 ± 0.236 0.511 ± 0.157 3.045 ± 0.197 0.788 ± 0.128

SPNet (ours) 3.355 ± 0.213 0.626 ± 0.118 2.090 ± 0.168 0.225 ± 0.091 2.698 ± 0.121 0.314 ± 0.102

Bold indicates the best performance, “–” means not available result.

estimation. This observation demonstrates that the auxiliary network information is helpful
for controlling the confounding bias in causal inference.
• SPNet is also superior to NetDeconf in terms of ITE estimation, because it also models

the inherent interference between different units while NetDeconf only leverages network
information for confounder representation learning.
• Although LCVA accounts for the interference when estimating ITE, it does not render satis-

factory performance, especially on BlogCatalog and Flickr due to the following reasons: First,
LCVA assumes that the spillover effect between different neighboring units are the same,
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which is untenable in reality. Second, LCVA is effective only when the dimension of covari-
ates and edge density of network are low (e.g., PeerRead) due to its weak anti-noise ability.
• HGPI and Flame-Network does not perform well on the task of estimating treatment effect

although they take into account interference, here are the reasons: First, the basic estimators
of these two methods (i.e., IPW, Matching-based estimator) cannot capture the complex
interactions between units in the networked environment. Second, HGPI assumes that
interference is restricted to be only among units within the same cluster, that ignores the
interference between different clusters; Flame-Network rely on the counts of the subgraph
to capture the interference and cannot capture the different magnitude of spillover effects
between different node pairs. Third, HGPI and Flame-Network are not able to handle the
confounding bias resulting from hidden confounders in observational data.
• The proposed framework SPNet suffers the least in terms of

√
ϵP EH E and ϵAT E when the

interference of network grows with the increase of the value of s , because SPNet can model
and quantify the magnitude of the interference and infer ITEs more precisely.

Additional discussions. As we can see in Table 2, the performance improvement of the pro-
posed method SPNet on the PeerRead dataset is not as significant as the improvement on the other
two datasets, BlogCatalog and Flickr in general. We analyze that this is caused by the property of
the PeerRead dataset with the following aspects: First, we can see that in Table 1 the dimension of
covariates in PeerRead is much lower than that in BlogCatalog and Flickr, which means the map-
ping relationship between inputs (covariates) and outputs (potential outcomes) is easier to capture
when estimating causal effect even if the estimator is simple. Second, the ATE in PeerRead is much
lower than that in BlogCatalog and Flickr, which means that for the difference between the true
causal effect and the causal effect estimated by the estimator, it is easier to present a smaller differ-
ence on PeerRead, compared to the other two datasets. Last but most importantly, we can see that
the network density of PeerRead is significantly lower than that of BlogCatalog and Flickr (by one
or two orders of magnitude), which means that the influence of network structural information on
the causal estimands of interest as well as the network interference on PeerRead is much smaller
than that on the other two datasets. Anyway, our proposed model can still be superior over the
baseline methods even on PeerRead dataset.

5.5 Robustness of SPNet

Individual treatment effect estimation is frequently used in decision-making across a wide range
of high-impact domains, including health care, economics, and so on. As a result, using a robust
estimator against noise is critical; otherwise, incorrect decisions will be made as a result of an
imprecise ITE estimator caused by noise, leading to serious consequences.

The most common way to introduce noise into the networked data to change the prediction
of a model is to disrupt the network structure, i.e., the adjacent matrix. Here we investigate the
robustness of the SPNet model by perturbing the adjacency matrix of the networked observational
data. To be specific, we poison the network structure through the following two modes: (1) Add
(randomly adding edges into the clean graph) and (2) Flip (randomly flipping the edges in the clean
graph; flipping means to add an edge between two nodes that are not originally connected or to
remove an edge between two nodes that are originally connected).

We present the results of SPNet and NetDeconf on BlogCatalog (s = 0.2) under different per-
turbation mode and rate in terms of

√
ϵP EH E and ϵAT E , we omit LCVA, which also takes graph

structure into account due to its poor performance. And we have similar results on other datasets.
We set the perturbation rate as {10%, 20%,30%}, and the experimental results are shown in Table 3.
One can see that the performance of the proposed model SPNet is stable, and it does not suffer
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Table 3. The Results (Mean ± Std) of SPNet and NetDeconf on BlogCatalog (s = 0.2) under

Different Perturbation Modes and Rates (%)

SPNet (Ours)

Rate (%)
Mode Add Flip√

ϵP EH E ϵAT E
√
ϵP EH E ϵAT E

10 3.631 ± 0.402 1.102 ± 0.283 3.724 ± 0.397 1.220 ± 0.375
20 3.945 ± 0.521 1.375 ± 0.328 3.968 ± 0.445 1.201 ± 0.381
30 4.308 ± 0.693 1.718 ± 0.491 4.231 ± 0.724 1.616 ± 0.478

NetDeconf

Rate (%)
Mode Add Flip√

ϵP EH E ϵAT E
√
ϵP EH E ϵAT E

10 7.707 ± 1.011 2.871 ± 0.436 7.848 ± 0.901 2.927 ± 0.518
20 7.981 ± 1.094 3.171 ± 0.522 7.880 ± 0.923 3.212 ± 0.578
30 8.757 ± 1.309 4.152 ± 0.698 8.592 ± 1.287 5.050 ± 0.724

much from the graph noise, and we have the following observations: (1) When the perturbation
rate is small (e.g., 10%), the performance of SPNet is close to that under clean graph; (2) the pro-
posed model SPNet suffers least from the graph noise with the increasing of perturbation rate; and
(3) even the perturbation rate is relatively high (e.g., 30%), the performance of SPNet is competitive
and still better than other state-of-the-art models for ITE estimation (see Table 2). The above ob-
servations fully demonstrate the robustness of the proposed model against noise, which is crucial
in practical applications.

5.6 Ablation Study

We further analyze the impact of different components in the proposed framework SPNet for learn-
ing ITE from networked observational data. Specifically, we conduct ablation study by deriving
the following three variants of SPNet and compare their performance with the original SPNet:

(i) SPNet w/o Interference Modeling: This variant does not model the spillover effect between
different units, which means that it only uses the combination of two partial representations
to infer potential outcome without utilizing network information to model interference be-
tween neighboring units. Here, we use SPNet w/o IM to denote this variant.

(ii) SPNet w/o Masked Attention: This variant omits the masked-attention mechanism, which
means that the different magnitude of spillover effect between different neighboring units
cannot be quantified. It assumes that the magnitude of interference is the same everywhere
in the network. Here, we use SPNet w/o MA to denote this variant.

(iii) SPNet w/o Treatment Prediction: This variant does not add the observed treatment loss
Lt to train the representations. Here, we use SPNet w/o TP to denote this variant.

The comparison results of the three variants and the original SPNet are shown in Figure 2. By
analysing the results, we can have the following observations:

• SPNet w/o IM does not achieve the desired performance and generally performs the worst,
as it ignores the interference between neighboring units, which demonstrates that modeling
interference is crucial for ITE estimation from networked observational data.
• SPNet w/o MA also does not render satisfactory performance, as it cannot model the different

magnitude of spillover effects between different neighboring units. This implies that mod-
eling interference is beneficial for ITE estimation, but treating the magnitude of spillover
effects between different pairs of units as identical is erroneous.
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Fig. 2. Ablation study of SPNet. ((a)–(c)) For BlogCatalog, ((d)–(f)) for Flickr, and ((g)–(i)) for PeerRead.

• SPNet w/o TP also performs worse than the original model SPNet, which demonstrates the
necessity of treatment prediction for learning better representations of hidden confounders
for ITE estimation.

5.7 Hyperparameter Study

We further investigate the impact of the two critical hyperparameters α and β , which control
the contribution of treatment prediction and representation balancing for ITE estimation on the
networked observational data. We report the parameter analysis result on BlogCatalog in terms of√
ϵP EH E and ϵAT E . We vary these two hyperparameters in the range of {0.001,0.01, 0.1, 1, 10}, and

the hyperparameter study results are shown in Figure 3. Generally speaking, SPNet is not sensitive
to these two parameters, as its performance is stable when the two hyperparameters vary in a wide
range. When α and β range in {0.001, 0.01, 0.1}, the performance is relatively better. And we have
similar experimental results and observations on other datasets.

6 RELATED WORK

In this section, we review related works from two aspects: (1) causal inference for i.i.d. observa-
tional data and (2) causal inference for network environment.

Causal inference for i.i.d. observational data. Due to the expensive costs and potential eth-
ical issues of randomized experiments, causal inference from observational data has attracted a
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Fig. 3. Hyperparameter analysis on BlogCatalog.

surge of interests in recent years, and most of existing studies focus on i.i.d. data. BART [20]
applies Bayesian nonparametric additive regression trees to infer the potential outcomes for esti-
mating ITEs from observational data. CFR [42] casts counterfactual inference as a type of domain
adaptation problem and learns the ITE using neural network to learn balanced representations
by minimizing the distribution difference of control group and treated gruop. Causal Forest [50]
utilizes random forest to estimate heterogeneous treatment effects in subgroups. The methods
mentioned above rely on the strong ignorability assumption that essentially ignores the influence
of hidden confounders. By relaxing the strong ignorability assumption, CEVAE [32] proposes to
map the original observed features to latent space to capture the hidden confounders based on
variational autoencoder [29]. Atan et al. [2] propose Deep-Treat to reduce the bias by learning
representations and constructing effective treatment policies using deep neural networks on the
transformed data for causal effects estimation. Yao et al. [54] propose a local similarity preserved
individual treatment effect estimation method based on deep representation learning, which can
capture the hidden confounders and preserve local similarity of data. Kallus et. al [26] develop a
functional interval estimator that predicts bounds on the ITEs by taking the form of a weighted
kernel estimator whose weights vary adversarially.

Causal inference for network environment. With the prevalence of networked observational
data in many real-world scenarios, leveraging network information among different units to pro-
vide better causal effects estimation has emerged as an important subarea in causal inference. For
example, NetDeconf [19] leverages GCNs to map the features of units and their network structure
into an embedding space to better control the influence of hidden confounders for ITE estimation.
CONE [18] further utilizes graph attention network for counterfactual evaluation of treatment
assignment functions in networked observational data. IGNITE [17] infers ITE from networked
observational data by balancing distributions of confounder representations and predicting
treatment assignment based on a minimax strategy. Ma et al. [33] propose a DNDC framework
to estimate the ITE in a dynamic environment by utilizing the network information as well as
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the temporal dependencies. However, these methods do not account for network interference.
LCVA [38] adopts variational auto-encoder to model the interference for ITE estimation from
networked observational data. However, it does not identify the different magnitudes of spillover
effects between different neighboring units and could be ineffective when applied to large-scale
networks. In addition, CauseIS [13] and CMatch [12] are proposed to design network experiments
to minimize interference and infer unbiased causal effect, while these works are mainly for
the analysis of experimental design. In Reference [37], the authors proposed to create disjoint
clusters for the units, which are based on the observables of units, where an AIPW estimator is
proposed to estimate treatment and spillover effects under conditional exchangeability for the
heterogeneous groups. Flame-Network [3] is a matching-based causal estimator that calculates the
average treatment effect. It achieves precise matching of units based on the subgraph counts of
each unit’s neighborhood graph and leverages this subgraph information to account for network
interference. However, the above two methods ignore the different magnitudes of interference
between different node pairs and the confounding bias. The model proposed in Reference [15]
is a propensity score-based causal effect estimation method, in which the method aggregates
the intervention assignment of neighbors through a function and forms a joint treatment with
each unit’s own intervention, such that the method is prone to fail when the covariate dimension
is high, because it is only a one-dimensional scalar variable that determines the interference,
and the method also fails to address the confounding bias caused by hidden confounders. In
this work, the model SPNet we proposed assumes first-order full interference (i.e., spillover
effects may exist between any neighboring nodes) and quantifies the magnitude of interference
between different node pairs, which is more realistic. And we adopt graph neural network model,
effectively leveraging the node covariates and auxiliary graph structure information to capture
hidden confounders and provide more unbiased, accurate causal effect estimates.

7 CONCLUSION AND FUTURE WORK

This article aims to learn individual treatment effect from networked observational data via mod-
eling network interference. The proposed model, SPNet, utilizes observed features and auxiliary
network information to control confounding bias and develops a twin-channel graph convolu-
tional network to map original features into partial representations for modelling the interference
along with a masked attention mechanism. Empirically, extensive experiments on multiple semi-
synthetic datasets demonstrate the superiority of SPNet over the existing state-of-the-art methods
in learning ITEs on networked observational data.

For future work, we can focus on two interesting aspects. First, most of the existing work for
learning individual treatment effect is for homogeneous network, and thus we would like to in-
vestigate how to model the interference for ITE estimation from heterogeneous network [8, 45],
which contains multiple types of nodes and edges. Second, another noteworthy research direction
is to model interference for learning ITE from signed networks [22, 46], which contain positive
and negative edges between nodes, the modeling form would be different due to the existence of
negative links comparing with the unsigned networks.
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