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ABSTRACT
Post-click conversion, as a strong signal indicating the user pref-

erence, is salutary for building recommender systems. However,

accurately estimating the post-click conversion rate (CVR) is chal-

lenging due to the selection bias, i.e., the observed clicked events

usually happen on users’ preferred items. Currently, most existing

methods utilize counterfactual learning to debias recommender sys-

tems. Among them, the doubly robust (DR) estimator has achieved

competitive performance by combining the error imputation based

(EIB) estimator and the inverse propensity score (IPS) estimator in

a doubly robust way. However, inaccurate error imputation may

result in its higher variance than the IPS estimator. Worse still,

existing methods typically use simple model-agnostic methods to

estimate the imputation error, which are not sufficient to approxi-

mate the dynamically changing model-correlated target (i.e., the

gradient direction of the prediction model). To solve these problems,

we first derive the bias and variance of the DR estimator. Based on it,

a more robust doubly robust (MRDR) estimator has been proposed

to further reduce its variance while retaining its double robustness.

Moreover, we propose a novel double learning approach for the

MRDR estimator, which can convert the error imputation into the

general CVR estimation. Besides, we empirically verify that the

proposed learning scheme can further eliminate the high variance

problem of the imputation learning. To evaluate its effectiveness,

extensive experiments are conducted on a semi-synthetic dataset

and two real-world datasets. The results demonstrate the superi-

ority of the proposed approach over the state-of-the-art methods.

The code is available at https://github.com/guosyjlu/MRDR-DL.

CCS CONCEPTS
• Information systems→ Recommender systems.
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1 INTRODUCTION
E-commerce recommender systems aim at not only helping users

explore the items of their interests, but also increasing revenues

for the platform. Therefore, estimating the post-click conversion

rate (CVR), i.e., the probability of an item being purchased after it is

clicked, is a crucial task for building such systems in practice. More-

over, post-click conversion feedbacks have been widely recognized

as strong signals for the learning of the recommender systems, as

they explicitly express the user preference and directly contribute

to the gross merchandise volume (GMV) of the platform [23, 33].

However, it is very challenging to model such signals, which are

extremely sparse in real-world applications. In particular, the post-

click conversion feedbacks can only be observed in clicked events,

which make up a tiny fraction of all possible user behaviors, while

the other conversion feedbacks for unclicked events are missing.

As such, a fundamental problem of CVR estimation is to study the

missing mechanism in the post-click conversion feedbacks.

For simplification, conventional CVRmodels usually assume that

the missing conversion feedbacks are missing-at-random (MAR).

Such assumption can barely hold under the selection bias and re-

cent studies [24, 25, 37] have shown that a recommendation model

with MAR assumption often leads to sub-optimal results. On real-

world e-commerce platforms, as users are free to click the items

that they are likely to want to purchase (i.e., user self-selection),

the observed clicked events are not representative samples of all

the events, which makes the missing conversions missing-not-at-
random (MNAR). In other words, the fundamental reason behind

the selection bias is that the users’ propensities vary from item to

item. Here, the propensity is defined as the probability of an item

being clicked by a user, i.e., the click-through rate (CTR). Hence, in

this paper, we adopt the MNAR assumption when estimating the
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post-click conversion rate, and focus on addressing the selection

bias problem.

In recent years, three unbiased estimators in counterfactual learn-

ing have been applied to debiasing the CVR estimation. (1) The
error imputation based (EIB) estimator [10, 26] computes an

imputed error, i.e., the estimated value of the prediction error, for

each unclicked event, and then uses it to estimate the true predic-

tion error of all the events. However, this estimator often has a

large bias due to the inaccurate error imputation, which will easily

mislead the CVR estimation. (2) The inverse propensity score
(IPS) estimator [1, 18, 25] inversely weights the prediction error of
each clicked event with its estimated CTR to correct the mismatch

between the distributions of the clicked events and unclicked events.

Although this estimator is unbiased given the ground-truth CTRs,

it typically suffers from a high variance problem, which would lead

to sub-optimal results. (3) The doubly robust (DR) estimator
[5, 30, 37] combines the EIB estimator and IPS estimator to ensure

both the low variance and low bias. Its unbiasedness is guaranteed

if either the imputed errors or the CTRs are accurate. This property

is called the double robustness.

Among the aforementioned estimators, the DR estimator has

achieved initial success for debiasing recommender systems [23, 30,

37]. However, there are still two inherent challenges to be solved.

Despite the double robustness, the DR estimator may increase the

variance of the IPS estimator under inaccurate error imputation,

which makes the learning process even complicated and leads to

sub-optimal results. Hence, further variance reduction for the DR

approaches deserves to investigate. Furthermore, although the DR

estimator is more robust than the EIB and IPS estimator, it still re-

quires relatively accurate CTR estimation and error imputation. In

terms of the two tasks, the former has been extensively investigated

by a lot of works [7, 38], whereas the latter rarely investigated. To

estimate the imputed errors, previous DR based approaches typi-

cally introduce an extra imputation model that is agnostic of the

prediction model, such as linear regression [5], matrix factoriza-

tion [30], multilayer perceptron (MLP) [37], etc. Here, the imputed

errors, utilized as the gradient directions of the prediction model,

should be dynamically changing during its learning process. How-

ever, simply using model-agnostic methods are not sufficient to

approximate such a model-correlated target. Thus, it still calls for a

better solution on how to model the error imputation.

To address the above-mentioned challenges, we propose the en-

hanced doubly robust learning approach for debiasing post-click

conversion rate estimation. To tackle the first challenge, we propose

to reduce the variance of the DR estimator, by redesigning the goal

of the imputation learning (i.e., the learning process of the imputa-

tion model) as the minimization of its variance [3, 6]. Specifically,

we derive the bias and variance of the DR estimator, based on which

we propose the more robust doubly robust (MRDR) estimator as

a variant of the DR estimator to derive lower variance while re-

taining the double robustness. Moreover, inspired by Double DQN

[28] in reinforcement learning, we propose a novel double learning

approach for the MRDR estimator to tackle the second limitation.

In particular, we adopt two CVR models with same structure but

different parameters. The first one serves as the prediction model to

learn from both the imputed errors and the true prediction errors

for final CVR estimation. The second one serves as the imputa-

tion model to generate the pseudo label using its predicted CVR

for each event. During the learning of the prediction model, the

imputed error can be directly computed with the pseudo label and

the predicted CVR. As such, we convert the error imputation into

the general CVR estimation, and further, the imputed errors can be

dynamically estimated in a model-correlated way. For the learning

of both models, we alternate their learning process to enable them

to be mutually regularized. In addition, we periodically update the

parameters of the imputation model with the parameters of the

prediction model, which is empirically beneficial for eliminating

the high variance problem of the imputation learning. Extensive

experiments are conducted on both semi-synthetic and real-world

datasets to verify the effectiveness of both the proposed MRDR

estimator and double learning approach.

The main contributions of this work are summarized as follows.

• We conduct theoretical analysis on the bias and variance of

the DR estimator, based on which we propose the more ro-

bust doubly robust (MRDR) estimator. It can achieve further

variance reduction while retaining the double robustness.

• To dynamically utilize the information of the prediction

model for error imputation, we propose a novel double learn-

ing approach for the MRDR estimator, which is also empiri-

cally beneficial for addressing the high variance problem of

the imputation learning.

• Experimental results on the semi-synthetic dataset empir-

ically verify the effectiveness of the proposed MRDR esti-

mator. Furthermore, we conduct extensive experiments on

two real-world datasets. The results show that the proposed

enhanced doubly robust learning approach MRDR-DL out-

performs the state-of-the-art methods.

2 PRELIMINARIES
In this section, we detail the problem formulation, and introduce

some existing unbiased estimators in the post-click conversion

setting.

2.1 Problem Formulation
LetU = {𝑢1, 𝑢2, ..., 𝑢𝑚} be the set of𝑚 users, I = {𝑖1, 𝑖2, ..., 𝑖𝑛} be
the set of 𝑛 items, and D = U × I be the set of all user-item pairs.

We denote R ∈ {0, 1}𝑚×𝑛
as the conversion label matrix where

each entry 𝑟𝑢,𝑖 ∈ {0, 1} indicates whether a conversion action

occurs after user 𝑢 clicks item 𝑖 . We use R̂ ∈ R𝑚×𝑛
to represent the

predicted conversion rate matrix, where 𝑟𝑢,𝑖 ∈ [0, 1] represents the
conversion rate predicted by a model. If we have a fully observed

conversion label matrix R, the ideal loss function for minimization

can be formulated as

L𝑖𝑑𝑒𝑎𝑙 (R̂) =
1

|D|
∑

(𝑢,𝑖) ∈D
𝑒𝑢,𝑖 , (1)

where 𝑒𝑢,𝑖 is the prediction error.We usually adopt the cross entropy,

𝑒𝑢,𝑖 = 𝐶𝐸 (𝑟𝑢,𝑖 , 𝑟𝑢,𝑖 ) = −𝑟𝑢,𝑖 log 𝑟𝑢,𝑖 − (1 − 𝑟𝑢,𝑖 ) log(1 − 𝑟𝑢,𝑖 ) as the
optimization goal for binary classification. LetO ∈ {0, 1}𝑚×𝑛

be the

click indicator matrix with each entry 𝑜𝑢,𝑖 = 1 if user 𝑢 clicks item

𝑖 , and 0 otherwise. Since only post-click conversions for clicked

events can be observed, the naive estimator estimates the ideal loss



function by averaging the prediction error for clicked events as

L𝑛𝑎𝑖𝑣𝑒 (R̂) =
1

|O|
∑

(𝑢,𝑖) ∈O
𝑒𝑢,𝑖

=
1

|O|
∑

(𝑢,𝑖) ∈D
𝑜𝑢,𝑖𝑒𝑢,𝑖 ,

(2)

where O = {(𝑢, 𝑖) | (𝑢, 𝑖) ∈ D, 𝑜𝑢,𝑖 = 1} denotes the clicked events.

The naive estimator is intuitive and widely adopted by many exist-

ing methods. However, due to the selection bias, the conversions

for unclicked events are MNAR, which leads to a biased estimation,

i.e., EO [L𝑛𝑎𝑖𝑣𝑒 (R̂)] ≠ L𝑖𝑑𝑒𝑎𝑙 (R̂). Previous works [24, 25, 30] have
proved that the learning process based on a biased estimator often

leads to a sub-optimal prediction model. Hence, it is essential to

develop an unbiased estimator to address the MNAR problem. In

the following, we will introduce three existing unbiased estimators.

2.2 Error Imputation Based Estimator
The error imputation based (EIB) estimator introduces an imputa-

tion model to compute the imputed error 𝑒𝑢,𝑖 , i.e., the estimated

value of the prediction error [10, 26]. Leveraging the imputed errors

for unclicked events and the prediction errors for clicked events,

we estimate the ideal loss function with the EIB estimator as

L𝐸𝐼𝐵 (R̂) =
1

|O|
∑

(𝑢,𝑖) ∈D
𝑜𝑢,𝑖𝑒𝑢,𝑖 + (1 − 𝑜𝑢,𝑖 )𝑒𝑢,𝑖 . (3)

When the imputed error 𝑒𝑢,𝑖 is accurate for any given unclicked

event, the EIB estimator is unbiased, i.e.,EO [L𝐸𝐼𝐵 (R̂)] = L𝑖𝑑𝑒𝑎𝑙 (R̂).
However, the EIB estimator can hardly achieve accurate error im-

putation, and thus often has a large bias in practice, which would

easily mislead the learning of the prediction model.

2.3 Inverse Propensity Score Estimator
The inverse propensity score (IPS) estimator [1, 24, 25] weights each

clicked event with 1/𝑝𝑢,𝑖 , where the propensity 𝑝𝑢,𝑖 = P(𝑜𝑢,𝑖 = 1) =
E[𝑜𝑢,𝑖 ] refers to the probability of the item being clicked by the user,

i.e., the click-through rate (CTR) in the post-click conversion setting.

By introducing an auxiliary CTR task to estimate the propensity

𝑝𝑢,𝑖 , the IPS estimator can be formulated as

L𝐼𝑃𝑆 (R̂) =
1

|O|
∑

(𝑢,𝑖) ∈D

𝑜𝑢,𝑖𝑒𝑢,𝑖

𝑝𝑢,𝑖
. (4)

The IPS estimator derives an unbiased estimate of the ideal loss func-

tion, i.e., EO [L𝐼𝑃𝑆 (R̂)] = L𝑖𝑑𝑒𝑎𝑙 (R̂), when the estimated propen-

sity 𝑝𝑢,𝑖 is accurate for any given clicked event. However, as the

clicked events merely account for a small part of D, the CTR is typ-

ically assigned with a small value. Hence, the IPS estimator suffers

from an especially severe high variance problem.

2.4 Doubly Robust Estimator
To address the large bias problem of the EIB estimator and the high

variance problem of the IPS estimator, the doubly robust (DR) esti-

mator is adopted by many previous works [5, 30, 37]. It combines

the EIB estimator and the IPS estimator in a doubly robust way.

Particularly, this estimator uses the imputed errors 𝑒𝑢,𝑖 to estimate

the prediction errors for all the events, and correct the error de-

viation 𝛿𝑢,𝑖 = 𝑒𝑢,𝑖 − 𝑒𝑢,𝑖 for the unclicked events. The propensity

𝑝𝑢,𝑖 is inversely weighted to the error deviation for eliminating the

MNAR effect. The loss function of the DR estimator can be defined

as

L𝐷𝑅 (R̂) =
1

|D|
∑

(𝑢,𝑖) ∈D
𝑒𝑢,𝑖 +

𝑜𝑢,𝑖 (𝑒𝑢,𝑖 − 𝑒𝑢,𝑖 )
𝑝𝑢,𝑖

. (5)

The DR estimator is unbiased, i.e., EO [L𝐷𝑅 (R̂)] = L𝑖𝑑𝑒𝑎𝑙 (R̂), if
either the imputed error 𝑒𝑢,𝑖 of any event or the propensity 𝑝𝑢,𝑖 of

any clicked event is accurate. This property is recognized as double

robustness. To compute the imputed errors, previous works typi-

cally introduce a separate imputation model. Since the imputation

learning is actually a regression problem, DR uses the squared loss,

L𝐷𝑅
𝑒 =

∑
(𝑢,𝑖) ∈O

(𝑒𝑢,𝑖 − 𝑒𝑢,𝑖 )2
𝑝𝑢,𝑖

, (6)

to train the imputation model. The inverse propensity score is

weighted to consider the MNAR effect, which also leads to the high

variance problem of the imputation learning.

3 ENHANCED DOUBLY ROBUST LEARNING
APPROACH

In this section, we elaborate the proposed enhanced doubly robust

learning approach. We first analyze the bias and variance of the

doubly robust estimator, based on which we propose the more

robust doubly robust estimator for further variance reduction. Then,

we detail the proposed novel double learning approach for the

MRDR estimator.

3.1 Bias and Variance Analysis of DR Estimator
Initially, we formulate the bias of the DR estimator to prove its

double robustness.

Theorem 3.1. Let 𝛿𝑢,𝑖 = 𝑒𝑢,𝑖 − 𝑒𝑢,𝑖 denote the additive error de-
viation, and Δ𝑢,𝑖 = 1 − 𝑝𝑢,𝑖

𝑝𝑢,𝑖
the multiplicative propensity deviation.

Then, the bias of the DR estimator is

𝐵𝑖𝑎𝑠
[
L𝐷𝑅 (R̂)

]
=

1

|D|

������ ∑
(𝑢,𝑖) ∈D

Δ𝑢,𝑖𝛿𝑢,𝑖

������ . (7)

Proof. See Theorem 3.2 in [37] for the proof. □

As shown in Theorem 3.1, the DR estimator is close to the ideal

loss function, i.e., 𝐵𝑖𝑎𝑠
[
L𝐷𝑅 (R̂)

]
≈ 0, if either 𝛿𝑢,𝑖 ≈ 0 or Δ𝑢,𝑖 ≈ 0,

whereas the EIB estimator requires 𝛿𝑢,𝑖 ≈ 0 and the IPS estimator

requires Δ𝑢,𝑖 ≈ 0. This property is called double robustness. Then,

we derive the variance of the DR estimator.

Theorem 3.2. The variance of the DR estimator is

VO [L𝐷𝑅 (R̂)] =
1

|D|2
∑

(𝑢,𝑖) ∈D

𝑝𝑢,𝑖 (1 − 𝑝𝑢,𝑖 )
𝑝2
𝑢,𝑖

(𝑒𝑢,𝑖 − 𝑒𝑢,𝑖 )2 . (8)



Figure 1: Workflow of the double learning approach.

Proof. For a single term of the DR estimator, its variance on

the click indicator 𝑜𝑢,𝑖 is

V𝑜𝑢,𝑖

[
𝑒𝑢,𝑖 +

𝑜𝑢,𝑖 (𝑒𝑢,𝑖 − 𝑒𝑢,𝑖 )
𝑝𝑢,𝑖

]
= V𝑜𝑢,𝑖 [𝑜𝑢,𝑖 ] ·

(
𝑒𝑢,𝑖 − 𝑒𝑢,𝑖
𝑝𝑢,𝑖

)
2

=

(
E𝑜𝑢,𝑖 [𝑜2𝑢,𝑖 ] −

(
E𝑜𝑢,𝑖 [𝑜𝑢,𝑖 ]

)
2

)
·
(
𝑒𝑢,𝑖 − 𝑒𝑢,𝑖
𝑝𝑢,𝑖

)
2

= E𝑜𝑢,𝑖 [𝑜𝑢,𝑖 ]
(
1 − E𝑜𝑢,𝑖 [𝑜𝑢,𝑖 ]

)
·
(
𝑒𝑢,𝑖 − 𝑒𝑢,𝑖
𝑝𝑢,𝑖

)
2

= E𝑜𝑢,𝑖

[
𝑜𝑢,𝑖

1 − 𝑝𝑢,𝑖
𝑝2
𝑢,𝑖

(𝑒𝑢,𝑖 − 𝑒𝑢,𝑖 )2
]
. (9)

Then, summing across all terms of the DR estimator, we can derive

the variance:

VO [L𝐷𝑅 (R̂)] = VO


1

|D|
∑

(𝑢,𝑖) ∈D
𝑒𝑢,𝑖 +

𝑜𝑢,𝑖 (𝑒𝑢,𝑖 − 𝑒𝑢,𝑖 )
𝑝𝑢,𝑖


=

1

|D|2
∑

(𝑢,𝑖) ∈D
V𝑜𝑢,𝑖

[
𝑒𝑢,𝑖 +

𝑜𝑢,𝑖 (𝑒𝑢,𝑖 − 𝑒𝑢,𝑖 )
𝑝𝑢,𝑖

]
=

1

|D|2
∑

(𝑢,𝑖) ∈D

𝑝𝑢,𝑖 (1 − 𝑝𝑢,𝑖 )
𝑝2
𝑢,𝑖

(𝑒𝑢,𝑖 − 𝑒𝑢,𝑖 )2 .

(10)

□

Similarly, we can derive the variance of the IPS estimator as

VO [L𝐼𝑃𝑆 (R̂)] =
1

|D|2
∑

(𝑢,𝑖) ∈D

𝑝𝑢,𝑖 (1 − 𝑝𝑢,𝑖 )
𝑝2
𝑢,𝑖

𝑒2𝑢,𝑖 . (11)

Theorem 3.2 and Equation 11 illustrate that the variance of both

estimators depends on the estimated propensity, i.e., the predicted

CTR 𝑝𝑢,𝑖 , which may lead to a high variance problem. However, it

is worth noting that the DR estimator still reduces the variance of

the IPS estimator, if any given event satisfies 0 ≤ 𝑒𝑢,𝑖 ≤ 2𝑒𝑢,𝑖 .

3.2 More Robust Doubly Robust Estimator
The theoretical analysis demonstrates that despite the double ro-

bustness, the DR estimator suffers from the risk of increasing the

variance of the IPS estimator under inaccurate error imputation.

Hence, we propose a more robust doubly robust (MRDR) estimator

for further variance reduction. Specifically, we propose to learn

the imputation model of the DR estimator by minimizing its vari-

ance. In other words, it is a variation of the DR estimator, and the

only difference is that its loss function for imputation learning is

derived from minimizing DR’s variance. This means that the pro-

posed MRDR estimator not only retains the double robustness, but

also derives a lower variance than the original DR estimator. Based

on Equation 9, we take the expectation onD and estimate 𝑝𝑢,𝑖 with

𝑝𝑢,𝑖 to derive the loss function of the imputation learning in the

MRDR estimator as

L𝑀𝑅𝐷𝑅
𝑒 =

∑
(𝑢,𝑖) ∈D

𝑜𝑢,𝑖 ·
1 − 𝑝𝑢,𝑖
𝑝2
𝑢,𝑖

· (𝑒𝑢,𝑖 − 𝑒𝑢,𝑖 )2

=
∑

(𝑢,𝑖) ∈O

1 − 𝑝𝑢,𝑖
𝑝𝑢,𝑖

·
(𝑒𝑢,𝑖 − 𝑒𝑢,𝑖 )2

𝑝𝑢,𝑖
.

(12)

Comparing the loss function of imputation learning in MRDR with

that in DR, we note that MRDR changes the weights from 1/𝑝𝑢,𝑖 to
(1 − 𝑝𝑢,𝑖 )/𝑝2𝑢,𝑖 , which has the property


1

𝑝𝑢,𝑖
<

1−𝑝𝑢,𝑖
𝑝2

𝑢,𝑖

, if 𝑝𝑢,𝑖 <
1

2

1

𝑝𝑢,𝑖
>

1−𝑝𝑢,𝑖
𝑝2

𝑢,𝑖

, if 𝑝𝑢,𝑖 >
1

2

. (13)

As such, the MRDR estimator increases the penalty of the clicked

events with low propensity, and decreases the penalty of the rest

of the clicked events. In this way, the imputation model is learned

better, which further enables MRDR to reduce the variance of the

DR estimator.



3.3 Double Learning Approach
In this subsection, we detail the proposed double learning approach

for the MRDR estimator. Given a vector x𝑢,𝑖 encoding all the fea-
tures of user 𝑢 and item 𝑖 , previous works typically introduce two

separate models: an imputation model 𝑒𝑢,𝑖 = 𝑓𝜃 (x𝑢,𝑖 ) estimates

the imputed errors, and a prediction model 𝑟𝑢,𝑖 = 𝑔𝜙 (x𝑢,𝑖 ) learns
from the imputed errors and true conversion labels to predict the

CVR. Here, the imputation model is agnostic of the prediction

model, and merely takes the user-item features x𝑢,𝑖 for error impu-

tation. In other words, during the learning process of the prediction

model, the imputed error cannot be dynamically estimated. From

an optimization perspective, the imputation model plays the role of

estimating the gradients for the learning of the prediction model.

However, we argue that simply utilizing model-agnostic methods is

not sufficient to approximate such a model-correlated target. To this

end, we propose a novel double learning approach, which utilizes

the pseudo-labelling technique to provide dynamically changing

imputed errors for the prediction model. As such, the complicated

error imputation is simplified as a general CVR estimation task. We

show the workflow of the double learning approach in Figure 1.

Specifically, we introduce two models with the same structure

but different parameters: the prediction model 𝑔𝜙 (x𝑢,𝑖 ) and the

imputation model 𝑔𝜃 (x𝑢,𝑖 ). When we need to learn the prediction

model, we first generate the pseudo label 𝑟𝑢,𝑖 for each event based

on the imputation model. Then, we estimate the imputed error by

computing the cross entropy between the predicted conversion rate

𝑟𝑢,𝑖 and the pseudo label 𝑟𝑢,𝑖 , i.e., 𝑒𝑢,𝑖 = 𝐶𝐸 (𝑟𝑢,𝑖 , 𝑟𝑢,𝑖 ). In this way,

the imputation model 𝑔𝜃 (x𝑢,𝑖 ) is converted to a CVR estimation

task; further to this, the original regression problem is converted to

a binary classification problem. Therefore, we replace the squared

loss term (𝑒𝑢,𝑖 − 𝑒𝑢,𝑖 )2 in Equation 12 with a cross-entropy term.

The imputation learning process of the MRDR estimator is thereby

redesigned as

L𝑀𝑅𝐷𝑅
𝑒 (𝜃 ) =

∑
(𝑢,𝑖) ∈O

1 − 𝑝𝑢,𝑖
𝑝2
𝑢,𝑖

·𝐶𝐸 (𝑟𝑢,𝑖 , 𝑔𝜃 (x𝑢,𝑖 )) + 𝜆∥𝜃 ∥2𝐹 , (14)

where 𝜃 denotes all the parameters of the imputationmodel𝑔𝜃 (x𝑢,𝑖 )
and 𝜆 controls the 𝐿2 regularization strength to prevent overfitting.

Note that, although we change the original formulation of the loss

function of the imputation model in MRDR, the idea of increasing

the penalty of the low-propensity clicked events and decreasing the

penalty of the rest is kept. Meanwhile, we formulate the learning

of the prediction model as

L𝑀𝑅𝐷𝑅
𝑟 (𝜙) =

∑
(𝑢,𝑖) ∈D

𝑒𝑢,𝑖 +
𝑜𝑢,𝑖 (𝑒𝑢,𝑖 − 𝑒𝑢,𝑖 )

𝑝𝑢,𝑖
+ 𝜇∥𝜙 ∥2𝐹 , (15)

where 𝜙 , 𝑒𝑢,𝑖 = 𝐶𝐸 (𝑟𝑢,𝑖 , 𝑔𝜙 (x𝑢,𝑖 )) and 𝑒𝑢,𝑖 = 𝐶𝐸 (𝑔𝜃 (x𝑢,𝑖 ), 𝑔𝜙 (x𝑢,𝑖 ))
denote all the parameters of the prediction model 𝑔𝜙 (x𝑢,𝑖 ), the
prediction error, and the imputed error, and 𝜇 controls the 𝐿2 regu-

larization strength to prevent overfitting.

Inspired by Double DQN [28], we redesign the learning approach

of the both models. Generally, we alternate the learning process

between the imputation model and the prediction model via mini-

batch stochastic gradient descent. As such, two models regularize

each other and jointly reach convergence. Since that the MRDR

estimator merely enhances the inverse propensity weight of the

Algorithm 1: The Proposed Enhanced Doubly Robust

Learning Approach, MRDR-DL

Input: O, D, 𝑝

Output: 𝜙
1 Initialize the parameters 𝜃 , 𝜙

2 while stopping criteria is not satisfied do
3 𝜃 := 𝜙

4 for number of steps for training the imputation model do
5 Sample a batch of clicked events from O
6 Update 𝜃 by descending along the gradient

▽𝜃L𝑀𝑅𝐷𝑅
𝑒 (𝜃 )

7 end
8 Generate pseudo label 𝑟𝑢,𝑖 for any event ∀(𝑢, 𝑖) ∈ D
9 for number of steps for training the prediction model do
10 Sample a batch of events from D1

11 Update 𝜙 by descending along the gradient

▽𝜙L𝑀𝑅𝐷𝑅
𝑟 (𝜙)

12 end
13 end

ML 100K Coat Shopping Yahoo! R3

#users 943 290 15400

#items 1682 300 1000

#MNAR ratings 100000 6960 311704

#MAR ratings 0 4640 54000

Table 1: Statistic details of the datasets.

imputation learning into (1 − 𝑝𝑢,𝑖 )/𝑝2𝑢,𝑖 , it suffers from the high

variance of the imputation learning, which also happens in the DR

estimator as mentioned in Section 2.4. Therefore, each time before

learning the imputation model, we update its parameters with those

of the prediction model, i.e., 𝜃 := 𝜙 . In this way, the imputation

model will be periodically corrected, and the information that the

enhanced inverse propensity weight brings is kept. We empirically

demonstrate that such learning scheme is beneficial for eliminating

the high variance problem of the imputation learning. We sum-

marize the proposed enhanced doubly robust learning approach,

named MRDR-DL, in Algorithm 1.

4 SEMI-SYNTHETIC EXPERIMENTS
Following previous works [23, 25, 30], we conduct semi-synthetic

experiments to investigate the following research question (RQ).

RQ1. Does the MRDR estimator lead to more accurate loss estima-

tion than other estimators?

4.1 Experimental Setup
4.1.1 Dataset and preprocessing. To compute the accuracy of the

estimated loss, we need a fully observed conversion label matrix,

1
Due to the sparsity of the clicked events, we decrease the sample probability of the

unclicked events in practice.



which is unavailable in real-world datasets. Thus, we create a semi-

synthetic evaluation dataset using the MovieLens (ML) 100K
2
[9]

dataset in order to allow us to conduct the semi-synthetic experi-

ment. The statistical details of the dataset are presented in Table 1.

We employ the following preprocessing procedures [23] to convert

the explicit feedback setting to the post-click conversion setting,

and derive a fully observed conversion label matrix and a click

indicator matrix.

(1) Use matrix factorization [12] to complete the rating matrix,

but the predicted ratings are unrealistically high for all user-item

pairs. Tomatch amore realistic rating distribution [𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5]
given in [19], we sort all the ratings in ascending order, assign a

value of 1 to the bottom 𝑝1 fraction of the matrix entries, assign a

value of 2 to the next 𝑝2 fraction, and so on.

(2) Transform the predicted ratings 𝑅𝑢,𝑖 ∈ {1, 2, 3, 4, 5} into CTR

𝑝𝑢,𝑖 ∈ (0, 1) with 𝑝𝑢,𝑖 = 𝑝𝛼min(4,6−𝑅𝑢,𝑖 )
, where 𝑝 is set to 1 and 𝛼 is

set to 0.5 in our experiments.

(3) Transform the predicted ratings 𝑅𝑢,𝑖 into true CVR 𝑟𝑡𝑟𝑢𝑒
𝑢,𝑖

by

correspondingly replacing the rating {1, 2, 3, 4, 5} with the conver-

sion rate {0.1, 0.3, 0.5, 0.7, 0.9}. Note that we can only observe the

binary conversion labels rather than the true values of the CVR

in practice. Thus, we simply assign fixed values to them based on

different predicted ratings.

(4) Sample the binary click indicator and conversion label with

the Bernoulli sampling; that is,

𝑜𝑢,𝑖 ∼ 𝐵𝑒𝑟𝑛(𝑝𝑢,𝑖 ), 𝑟𝑢,𝑖 ∼ 𝐵𝑒𝑟𝑛(𝑟𝑡𝑟𝑢𝑒𝑢,𝑖 ),∀(𝑢, 𝑖) ∈ D, (16)

where 𝐵𝑒𝑟𝑛(·) denotes the Bernoulli distribution. Thereafter, we
can derive a fully-observed conversion label matrix R and a click

indicator matrix O.

4.1.2 Experimental details. Given a predicted CVR matrix R̂, we
can directly compute the ideal loss by averaging the prediction error

of each entry between R and R̂. In contrast, the estimators derive

the estimated loss with partial entries in R whose corresponding

click indicators 𝑜𝑢,𝑖 equal 1. To evaluate the performance of loss

estimation, we use the following five predicted CVR matrices [25,

30] for comparison.

• ONE: The predicted conversion rate 𝑟𝑢,𝑖 is identical to the

true CVR 𝑟𝑡𝑟𝑢𝑒
𝑢,𝑖

, except that |{(𝑢, 𝑖) |𝑟𝑡𝑟𝑢𝑒
𝑢,𝑖

= 0.9}| randomly

selected true CVR of 0.1 are flipped to 0.9.

• THREE: Same as ONE, but flipping true CVR of 0.3 instead.

• FIVE: Same as ONE, but flipping true CVR of 0.5 instead.

• SKEW: The predicted conversion rate is sampled from the

Gaussian distributionN(𝜇 = 𝑟𝑡𝑟𝑢𝑒
𝑢,𝑖

, 𝜎 =
1−𝑟𝑡𝑟𝑢𝑒

𝑢,𝑖

2
), and clipped

to [0.1, 0.9].
• CRS: The predicted conversion rate 𝑟𝑢,𝑖 = 0.1 if the true

CVR 𝑟𝑡𝑟𝑢𝑒
𝑢,𝑖

≤ 0.7. Otherwise, 𝑟𝑢,𝑖 = 0.5.

We compare the MRDR estimator with the naive, EIB, IPS, and

DR estimators. We estimate the propensity as
1

𝑝𝑢,𝑖
=

1−𝛽
𝑝𝑢,𝑖

+ 𝛽
𝑝𝑒
,

where 𝑝𝑒 = 1

|D |
∑

(𝑢,𝑖) ∈D 𝑜𝑢,𝑖 , and 𝛽 is set to 0.5 to introduce

noises. For EIB and DR, the imputed error is computed as 𝑒𝑢,𝑖 =

2
https://grouplens.org/datasets/movielens/

naive EIB IPS DR MRDR

ONE 0.0686 0.5427 0.0346 0.0131 0.0073
THREE 0.0792 0.5869 0.0401 0.0172 0.0047
FIVE 0.1023 0.6152 0.0515 0.0138 0.0119
SKEW 0.0255 0.3574 0.0124 0.0081 0.0013
CRS 0.1773 0.0610 0.0888 0.0551 0.0503

Table 2: RE of the five estimators compared to the ideal loss.

𝐶𝐸 (
∑

(𝑢,𝑖 )∈D 𝑟𝑢,𝑖/𝑝𝑢,𝑖∑
(𝑢,𝑖 )∈D 1/𝑝𝑢,𝑖 , 𝑟𝑢,𝑖 ). For MRDR, we compute the imputed er-

rors as 𝑒𝑢,𝑖 = 𝐶𝐸 (
∑

(𝑢,𝑖 )∈D (1−𝑝𝑢,𝑖 )𝑟𝑢,𝑖/𝑝2

𝑢,𝑖∑
(𝑢,𝑖 )∈D 1/𝑝𝑢,𝑖 , 𝑟𝑢,𝑖 ).

4.1.3 Evaluation metric. We compare the performance of the five

estimators by the relative error (RE) as

RE(L𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟 ) =
��L𝑖𝑑𝑒𝑎𝑙 (R̂) − L𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟 (R̂)

��
L𝑖𝑑𝑒𝑎𝑙 (R̂)

, (17)

where L𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟 denotes the estimator to be compared. RE evalu-

ates the accuracy of the estimated loss, and a smaller value of MRE

means a higher accuracy.

4.2 Experiment Results (RQ1)
In Table 2, we report the averaged RE of the five estimators over 20

times of sampling with Equation 16. We can see that IPS, DR and

MRDR estimators outperform the naive estimator in every setting.

This is caused by the selection bias that we introduce by control-

ling the propensity 𝑝𝑢,𝑖 . In contrast, the EIB estimator derives the

worst RE in four settings; this is mainly due to the large bias of the

heuristic error imputation. Additionally, the DR estimator improves

the performance of the IPS estimator by jointly considering the

imputed errors and the estimated propensities. Over all the settings,

the MRDR estimator achieves the best performance, which can

be attributed to both the double robustness and the reduced vari-

ance. Overall, the results conclude that our proposed method can

achieve more accurate loss estimation. Next, we further evaluate

our method on the task of CVR estimation on real-world datasets.

5 REAL-WORLD EXPERIMENTS
In this section, we compare the proposed learning approach with

other existing debiasing approaches using real-world datasets. We

anticipate the experimental results to answer the following RQs.

RQ2. Does the proposed approach MRDR-DL lead to higher debi-

asing performance than existing approaches?

RQ3. What influence do the various designs have on the proposed

approach MRDR-DL?

RQ4. How does the sample ratio of unclicked events to clicked

events influence the performance of MRDR-DL?

RQ5. How does the proposed double learning approach work for

both the imputation model and the prediction model?

5.1 Experimental Setup
5.1.1 Datasets and preprocessing. To evaluate the performance of

the unbiased CVR estimation, we need an MAR test set. However,

as stated in [37], we cannot force users to randomly click items in

https://grouplens.org/datasets/movielens/


DCG@K Recall@K

Datasets Methods K=2 K=4 K=6 K=2 K=4 K=6

Coat Shopping

naive 0.6694±0.0136 0.9432±0.0138 1.1321±0.0126 0.8054±0.0159 1.3903±0.0225 1.8991±0.0233
IPS 0.7093±0.0232 0.9552±0.0223 1.1248±0.0217 0.8249±0.0298 1.3520±0.0353 1.8078±0.0399

DR-JL 0.6771±0.0273 0.9266±0.0282 1.0962±0.0272 0.7949±0.0337 1.3286±0.0420 1.7849±0.0456
MRDR-DL 0.7219±0.0211 0.9905±0.0204 1.1696±0.0217 0.8499±0.0265 1.4249±0.0321 1.9060±0.0430

Yahoo! R3

Naive 0.5469±0.0058 0.7466±0.0049 0.8714±0.0040 0.6479±0.0066 1.0745±0.0074 1.4098±0.0062
IPS 0.5502±0.0018 0.7520±0.0018 0.8751±0.0014 0.6545±0.0021 1.0797±0.0025 1.4168±0.0025

DR-JL 0.5310±0.0045 0.7273±0.0053 0.8512±0.0045 0.6292±0.0049 1.0495±0.0082 1.3822±0.0081
MRDR-DL 0.5561±0.0058 0.7549±0.0023 0.8811±0.0036 0.6595±0.0074 1.0846±0.0054 1.4237±0.0059

Table 3: A comparison of the overall performance of MRDR-DL and competing methods on two real-world datasets.

order to generate unbiased data for CVR estimations. Previous work

[23] simulates the unbiased CVR estimation setting by using the

datasets with specific properties. First, the datasets need to contain

explicit feedback, which can reveal ground-truth user preference

information. Next, the datasets need to contain an additional MAR

test set, where users are asked to rate randomly selected sets of

items. This enables us to evaluate the performance of the unbiased

CVR estimation. To the best of our knowledge, there are only two

publicly available datasets that satisfy these requirements, i.e., Coat

Shopping
3
and Yahoo! R3

4
. The statistical details for both datasets

are presented in Table 1.

For both the MNAR data and the MAR data of both datasets, we

follow [23] and employ the following preprocessing procedure.

(1) We define the binary click indicator as 𝑜𝑢,𝑖 = 1 if the item 𝑖 is

rated by user 𝑢, and 𝑜𝑢,𝑖 = 0 otherwise.

(2) We define the binary conversion label as 𝑟𝑢,𝑖 = 1 if the item 𝑖

is rated greater than or equal to 4 by user 𝑢, and 𝑟𝑢,𝑖 = 0 otherwise.

(3)We derive the post-click conversion dataset as {(𝑢, 𝑖, 𝑟𝑢,𝑖 ) |𝑜𝑢,𝑖 =
1,∀(𝑢, 𝑖) ∈ D}.

For both datasets, we randomly split the MNAR datasets into

training (90%) and validation (10%) sets, while the MAR datasets

are kept as the test sets. Following the previous works [23, 35], we

filter out users who have no conversion records in the test set.

5.1.2 Baselines. We compare the proposed method with the fol-

lowing baselines:

• Naive: It simply uses the naive estimator as the loss function

to estimate CVR.

• IPS [25]: It derives the IPS estimator as the loss function by

estimating the CTR as the propensity score.

• DR-JL [30]: It utilizes the DR estimator by jointly learning

the imputation model and prediction model.

Due to the high bias problem, the EIB estimator is widely recognized

as a weak baseline [23, 25, 30], and thus is not included in our

comparison. In our experiments, both the CTR and the CVR are

estimated by factorization machine (FM) [20].

5.1.3 Experimental Protocols. We adopt the mini-batch Adam to

optimize all the methods, with the default learning rate set at 0.001.

We fix the mini-batch size to 1024 for both datasets. In terms of FM,

the embedding size is fixed as 64. We tune the 𝐿2 regularization

3
https://www.cs.cornell.edu/~schnabts/mnar

4
http://webscope.sandbox.yahoo.com/

coefficient 𝜆 in the range of {1𝑒−5, 1𝑒−4, ..., 1}. Note that, for DR
based methods, we apply a grid search when tuning the 𝐿2 regu-

larization coefficient of the imputation model and the prediction

model; also, the sample ratio for unclicked events to clicked events

is tuned in the range of {2, 4, 6, 8}. For CTR estimation, we fix the

negative sampling ratio to 4.

For all the methods, we first choose the best hyper-parameters

based on the validation set. Then, we perform the early stopping

strategy (which applies if the model performance does not im-

prove for five epochs) and report the best test result from the best-

performing model on the validation set.

We use recall and discounted cumulative gain (DCG) to evaluate

the debiasing performance of all the methods. We calculate both

metrics for each user in the test set and report the average score.

5.2 Overall Performance (RQ2)
Table 3 shows the overall performance in terms of DCG@K and

Recall@K (𝐾 ∈ {2, 4, 6}) on two real-world datasets. To reduce the

effect of randomness, we repeat the experiments 100 times for Coat

Shopping and 20 times for Yahoo! R3, and then report the mean

and standard deviation for each. The best results are highlighted in

boldface. From the table, we can see that the debiasing methods, IPS

and MRDR-DL, outperform Naive for both datasets, demonstrating

the necessity of handling the selection bias in the CVR estimation.

Meanwhile, we find that although DR-JL utilizes the unbiased DR

estimator, it still gives the worst performance on both datasets. One

possible explanation for this is that DR-JL is originally designed

for debiasing explicit MNAR feedbacks; as such, its joint learning

approach may not be applicable to CVR estimation. Overall, the

proposed method MRDR-DL consistently outperforms other meth-

ods on both datasets, which verifies the effectiveness of both the

proposed MRDR estimator and the double learning approach.

5.3 Ablation Study (RQ3)
To apply the DR estimator to the post-click conversion setting, the

proposed method, MRDR-DL, has specific design features. In this

section, we will analyze their respective impacts on the method’s

performance via an ablation study. The experimental results for

MRDR-DL and its three variants on two datasets are summarized in

Table 4. The results that are better than MRDR-DL are highlighted

in boldface. We detail the variants and analyze their respective

effects as follows.

https://www.cs.cornell.edu/~schnabts/mnar
http://webscope.sandbox.yahoo.com/


DCG@K Recall@K

Datasets Methods K=2 K=3 K=4 K=5 K=6 K=2 K=3 K=4 K=5 K=6

Coat Shopping

MRDR-DL 0.7219 0.8728 0.9905 1.0878 1.1695 0.8499 1.1518 1.4249 1.6765 1.9060

DR-DL 0.7205 0.8670 0.9806 1.0778 1.1601 0.8438 1.1368 1.4004 1.6517 1.8827

MRDR-JL 0.6948 0.8442 0.9613 1.0582 1.1442 0.8227 1.1215 1.3935 1.6439 1.8852

MRDR-DL with SL 0.7255 0.8720 0.9871 1.0827 1.1651 0.8504 1.1434 1.4107 1.6580 1.8892

Yahoo! R3

MRDR-DL 0.5561 0.6694 0.7549 0.8234 0.8811 0.6595 0.8860 1.0846 1.2616 1.4237

DR-DL 0.5463 0.6602 0.7459 0.8145 0.8714 0.6484 0.8762 1.0752 1.2525 1.4123

MRDR-JL 0.5546 0.6668 0.7544 0.8221 0.8786 0.6584 0.8828 1.0862 1.2612 1.4199

MRDR-DL with SL 0.5321 0.6439 0.7287 0.7963 0.8538 0.6298 0.8535 1.0503 1.2251 1.3863

Table 4: Ablation study of MRDR-DL on two real-world datasets.
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Figure 2: Effect of the sample ratio of unclicked events to clicked events. "All" means that we sample from all the events.

(1) DR-DL: We replace the MRDR estimator with the DR es-

timator, i.e., we change the weights of the imputation learning

from (1 − 𝑝𝑢,𝑖 )/𝑝2𝑢,𝑖 to 1/𝑝𝑢,𝑖 . The results imply that enhancing the

weights to adjust the penalty for the clicked events based on vary-

ing propensities is conducive to the variance reduction of the DR

estimator, and further improves the performance of the prediction

model.

(2) MRDR-JL: We alternate the training of the imputation model

and the prediction model without sharing the parameters periodi-

cally (i.e., we skip Step 3 of the Algorithm 1). The experiment results

verify the necessity of periodically correcting the imputation model

based on the prediction model, which is empirically beneficial for

eliminating the high variance problem of the imputation learning.

(3) MRDR-DL with SL: We replace the cross-entropy term of the

imputation learning with the squared loss term, which is theoreti-

cally derived from the variance of the DR estimator. The results of

the variant are consistent with MRDR-DL on Coat Shopping and

significantly better than MRDR-DL on Yahoo! R3. One reason is

that the squared loss aims at minimizing the deviation between

imputed errors and true prediction errors, whereas the pseudo-label

generation is essentially a binary classification problem. Hence, it

is more intuitive to have cross entropy as the optimization goal.

5.4 Parameter Sensitivity Study (RQ4)
By jointly considering both clicked and unclicked events, DR based

estimators can enjoy the double robustness. To investigate the

impact of the unclicked events for the proposed MRDR-DL method,

we vary the sample ratio of unclicked events to clicked events in the

range of {0, 2, 4, 6, 8, All}. Here, "All" means that the sample ratio is

set to the maximum possible value, which is 12.5 for Coat Shopping

and 49.4 for Yahoo! R3. Figure 2 shows DCG@K and Recall@K for

MRDR-DL with respect to different sample ratios on both datasets.

As we can see, MRDR-DL with a sample ratio of 0 (i.e., we merely

sample from the clicked events) derives the worst performance in

most settings. This shows that the well-learned imputation model

enables the unclicked events to provide the prediction model with

useful information. Furthermore, we find that sampling from all the

events adversely hurts the performance of the prediction model,

even though we should in theory. One reason for this might be

that clicked events are typically sparse in the real-world datasets,

meaning that we cannot ensure that the prediction model obtains

sufficient information. For both datasets, the optimal sample ratio

is around 4 to 8. Setting the sample ratio too conservatively or too

aggressively may adversely affect the prediction performance.

5.5 Analysis of the Double Learning Approach
(RQ5)

In this subsection, we will further investigate the proposed double

learning approach. We plot the training curves of the prediction

model and the imputation model of MRDR-DL on Coat Shopping

in Figure 3. In the proposed method MRDR-DL, the prediction
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Figure 3: Training curves for the prediction model and the
imputation model of MRDR-DL on Coat Shopping.

model aims at estimating CVR, while the imputation model aims at

computing the imputed errors. Hence, we adopt DCG@4, and mean

absolute error (MAE) for imputed errors and true prediction errors,

respectively, to evaluate their testing performance. As shown in

Figure 2, the training loss of the prediction model slightly fluctuates

in the first 300 epochs before gradually reaching convergence. In

contrast, the training curve of the imputation model is more stable.

The reason for this is that the imputation model is not well-trained

enough to provide the prediction model with sufficiently accurate

information at the very beginning, whereas the imputation model is

trained on clicked events with ground-truth labels. Further epochs

of the double learning approach enable both models to exchange

their information periodically. In this way, both models are jointly

well-learned, reaching convergence together after about 900 epochs.

Note that the testing curve of the prediction model fluctuates in the

training process. This is reasonable because we train it with point-

wise loss (i.e., cross entropy), whereas we evaluate it with a list-wise

metric (i.e., DCG@4) when checking its debiasing performance.

6 RELATEDWORK
6.1 General Approaches to CVR Estimation
CVR estimation is a key component of the recommender system be-

cause it directly contributes to the final revenue. Due to the inherent

similarity, CVR estimation typically refers to the advances made by

the CTR prediction task and implicit recommendation in practice,

such as traditional models [11, 15], deep learning based models

[7, 27, 36, 38] and reinforcement learning based models [39–41].

However, few studies directly investigate the CVR estimation tasks.

Previous works often employ traditional models such as logistic

regression [13, 21] and gradient boosting decision tree [16], while

deep learning techniques like neural network [18, 32] and graph

convolution network [1, 14] are also adopted for CVR estimation.

However, the selection bias issue is still underexplored, which has

a significant influence on improving performance in practice.

6.2 Counterfactual Learning from MNAR Data
Most data for learning the recommender systems are MNAR, which

is caused by various biases, including selection bias, conformity

bias, exposure bias, etc [4]. Previous works typically adopt coun-

terfactual learning methods to address these issues. Specifically,

EIB methods [10, 26] rely on a missing data model to model the

missing mechanism. IPS methods employ logistic regression [25],

expectation-maximization algorithm [34], and matrix completion

[17] to estimate the propensity for correcting the mismatch be-

tween observed and unobserved data. DR methods [30, 37] utilize

an imputation model and a prediction model to jointly learn from

the MNAR data. Other methods based on information bottleneck

[31], meta learning [22], and causal embedding [2, 29] have been

also explored to address these biases. Among above, IPS and DR has

been widely applied to the recommender systems. However, how

to specify appropriate error imputation and propensity estimation

is a critical issue affecting their unbiasedness, which needs to be

resolved in the post-click conversion setting.

6.3 Selection Bias in CVR Estimation
Selection bias is ubiquitous in recommender systems, especially in

the CVR estimation task. A few studies have investigated it, achiev-

ing effective results. ESMM [18] models both the CTR and CVR

tasks, using muti-task learning to eliminate the selection bias issue

in a heuristic way. Similarly, 𝐸𝑆𝑀2
[32], which is also essentially

biased, extends ESMM by introducing additional auxiliary tasks.

In contrast, GMCM [1] uses the IPS estimator to derive unbiased

error evaluation when learning the CVR estimation task. In ad-

dition, Multi-IPW and Multi-DR [37] enjoy the unbiasedness of

the IPS and DR estimator by learning both CTR and CVR tasks

through multi-task learning. Although they consider the selection

bias, the above approaches are evaluated using biased datasets; thus,

their experimental results cannot be used to verify their debiasing

performance, which is a widely-recognized limitation in practice.

Furthermore, a recent work [23] proposes to utilize the DR estima-

tor for debiasing ranking metric with post-click conversions, which

mainly concerns the evaluation of the recommender systems. In

contrast, we focus on debiasing the learning of the CVR estimation,

and we use two real-world datasets containing unbiased data to

evaluate the debiasing performance.

7 CONCLUSION AND FUTUREWORK
In this paper, we explore the problem of the selection bias in post-

click conversion rate estimation. First, we analyze the bias and the

variance of the DR estimator. Then, based on the theoretical anal-

ysis, we propose the more robust doubly robust estimator, which

reduces the variance of the DR estimator while retaining the double

robustness. Finally, we propose a novel double learning approach

for MRDR estimator. It can dynamically utilize the information

of the prediction model for the imputation model and empirically

eliminate the high variance problem of the imputation learning. In

the experiments, we verify the effectiveness of the proposed MRDR

estimator on semi-synthetic datasets. In addition, we conduct ex-

tensive experiments on two real-world datasets to demonstrate the

superiority of the proposed debiasing approach. For future work,

we believe that the explainability [8] of the debiasing approach

warrants further investigation.
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