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a b s t r a c t 

Feature selection, aiming at eliminating irrelevant and redundant features, is an important data prepro- 

cessing technology for downstream tasks, e.g., classification. With the explosive growth of data in vari- 

ous fields, some data are high-dimensional and contain critical and complex hidden relationships, which 

brings new challenges to feature selection: i) How to find out the underlying available relationships from 

the data, and ii) how to use the learned relations to better select features? To deal with these challenges, 

we propose a novel wrapper feature selection method named R e lation Awa r e Fe a ture S election M e thod 

(ERASE), which can learn and use the underlying sample relations and feature relations for feature se- 

lection. Different from existing methods, our method jointly learns sample relationships and feature re- 

lationships through a graph of samples and trees of features. Furthermore, it uses the relations to select 

the optimal feature subset according to the new proposed Relation-based Sequence Floating Selection 

Strategy. Extensive experimental results on nine datasets from different domains demonstrate that our 

method achieves the best performance in most cases compared with other feature selection methods, 

including state-of-the-art wrapper methods. 

© 2023 Elsevier Ltd. All rights reserved. 
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. Introduction 

Feature selection is one of the most important data processing 

trategies, which has been widely used in pattern recognition [1] , 

achine learning [2] , and data mining [3] . By eliminating irrel- 

vant and redundant features, feature selection preserves a sub- 

et of the most salient features and improves the performance of 

earning algorithms [4] . According to different selection strategies, 

eature selection algorithms are generally categorized into three 

ategories: embedded, filter, and wrapper methods [5] . Various 

tudies have indicated that wrapper methods can obtain better re- 

ults than filter and embedded methods in most scenarios [6] . Re- 

ently, with the explosive growth of data in various fields, some 

ata are not only high-dimensional but also contain some criti- 

al and complex hidden relationships. Even though many wrap- 

er methods achieve better performance than embedded and fil- 

er methods, they still can not handle these data and their hidden 

elations well. This brings some new challenges to feature selec- 

ion. Challenge I: How to find out the underlying available relation- 

hips from the data? Challenge II: How to use the learned relations 

o better select features? In this paper, we propose a novel wrap- 
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031-3203/© 2023 Elsevier Ltd. All rights reserved. 
er feature selection method called Relation Aware Feature Selec- 

ion Method, abbreviated ERASE (rElation awaRe feAture Selection 

Ethod), to tackle these challenges. 

Although several studies have considered the relations between 

eatures [7] , the underlying relations between samples are often 

eglected. However, in many applications, the underlying relations 

etween samples also contain very useful information for learning 

asks. 

As an illustrative toy example (see Fig. 1 ), for three glass beads 

enoted as G 1 (Blue, Triangle), G 2 (Cyan, Sphere), and G 3 (Red, El- 

ipsoid), the relationships between pairwise samples ( G 1 , G 2 ), ( G 1 ,

 3 ), and ( G 2 , G 3 ) are reflected in the two attributes of color and

hape. If the task is to identify their colors (shapes), then the first 

second) feature should be selected and the relationships of G 1 , G 2 , 

nd G 3 regarding color (shape) similarity are important. Hence, we 

eed to learn different sample relations for different tasks, which 

s related to selected features and crucial for feature selection. We 

ote that some recent feature selection methods have also begun 

o focus on learning the underlying sample relations [8,9] . How- 

ver, these methods can still be improved from following aspects: 

) they are filter methods and, in most cases, have worse per- 

ormance than wrapper methods; ii) the number of features se- 

ected by these filter methods must be provided in advance, and 

hus they cannot dynamically select a feature subset with different 

engths in different iterations; and iii) these methods, only con- 
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Fig. 1. Toy example of glass bead classification. 
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ider generating a fixed sample relationship graph based on pre- 

efined rules. Consequently, predefined relations of samples will 

ring a large amount of noise and thus be counterproductive when 

hey are unsuitable for applications. 

In view of this, we propose the ERASE that can jointly learn 

ample and feature relations to solve the feature selection prob- 

em better. Given that a graph is a natural way to characterize 

he similarity between samples, and trees are capable of highlight- 

ng the critical hierarchical relations between features, we learn 

he sample graph and trees of features in ERASE. The contribu- 

ions are summarized as follows. i) Our method can simultaneously 

earn different structures of samples and features. To address Chal- 

enge I , we propose a method that can discover the underlying sam- 

le relations using a graph and the underlying feature relations using 

rees. In other words, our approach can learn the graph of samples 

nd the trees of features together in a unified framework, which is 

he main difference between our method and the others; ii) We pro- 

ose a new feature subset selection strategy. To deal with Challenge 

I , we first define a new kind of forest-related feature relations based 

n the learned trees of features. Then, we propose a new Relation- 

ased Sequence Floating Selection Strategy (RSFSS), which can utilize 

he forest-related feature relations to select the optimal feature subset; 

ii) Our method achieves better performance than 13 baseline methods 

n nine benchmark datasets. We use nine datasets with different fea- 

ure dimensions from multiple areas to validate our proposed method, 

nd it has superior performance than the other methods in terms of 

oth accuracy and dimension reduction. 

The remainder of this paper is organized as follows. 

ection 2 reviews the related work on feature selection. In 

ection 3 , our proposed method ERASE is described in detail. 

ection 4 presents the design of the experiments and the analyses 

f the experimental results. Finally, conclusions and a plan for 

uture work are presented in Section 5 . 

. Related works 

Feature selection is still a complicated problem, primarily be- 

ause of the large search space for features [10] . For a dataset with

features, the total number of possible solutions is 2 N − 1 [11] . 

ence, the time complexity of finding an optimal subset of fea- 

ures by exhaustive search is O(2 N ) [12] , which is impractical in 

ost situations. In the past two decades, evolutionary compu- 

ation algorithms have demonstrated powerful search abilities in 

ealing with complex real-world problems when the search space 

s huge [13,14] . Evolutionary computation algorithms are inspired 

y the social behavior of some species in nature, such as breed- 

ng [15] , hunting [16] , and foraging [17] . Recent representative evo- 

utionary computation algorithms include prairie dog optimization 

lgorithm [18] , reptile search algorithm [19] , butterfly optimiza- 

ion algorithm [20] , and forest optimization algorithm [15] . In- 

pired by evolutionary computation algorithms, many evolutionary 

omputation-based wrapper feature selection methods have been 

roposed and are at the forefront owing to their strong global 

earch capabilities [21,22] . Alweshah et al. use two new opera- 

ors with the monarch butterfly optimization algorithm and pro- 

ose a new feature selection algorithm, which shows effectiveness 

n terms of classification accuracy and dimension reduction [23] . 
2 
n [24] , a graph model is used to characterize the interactions be- 

ween features, and the gravitational search algorithm [25] is used 

o select the optimal feature subset. Based on the hyperbolic trans- 

er function, authors in [26] propose a binary version of the coy- 

te optimization algorithm for classification. However, these meth- 

ds inevitably retain some limitations of evolutionary computation 

ethods, including uncontrollable random initialization and pre- 

ature convergence [27,28] . 

Other methods related to this study include decision-tree-based 

lgorithms. These algorithms have always received extensive atten- 

ion from researchers in the study of feature selection because of 

he following two important properties: i) features used to con- 

truct a tree are more closely related to each other than to the 

nused features [29] ; ii) the hierarchy of features in a tree reflects 

heir informativeness, and the features closer to the root are more 

nformative [30] . In decision-tree-based algorithms, the importance 

f a feature can be defined according to the gain values obtained 

y the feature itself in the node-splitting process [30] for guiding 

eature selection. In addition, with the extensive research and de- 

elopment of ensemble learning, various ensemble learning algo- 

ithms based on decision trees tend to have better feature selection 

erformance than other methods that use only a single decision 

ree, for example, RF [31] , GBDT [32] , and XGBoost [33] . When en-

emble learning strategies are used to build a unified model with 

ultiple decision trees, the importance of a feature is commonly 

efined as the average or sum of the gain values caused by the fea- 

ure across all trees [34] . Currently, there are two main ensemble 

earning schemes. One is bagging, in which the representative al- 

orithm is random forest [31] . The other is boosting, in which the 

epresentative algorithms are GBDT [32] and XGBoost [33] . How- 

ver, these methods can only organize features into a tree struc- 

ure, ignoring the use of clear and specific feature relationships to 

uide feature selection to achieve better results. 

. Methodology 

Learning and utilizing sample relations and feature relations are 

ssential in feature selection. Graphs are a natural and appropri- 

te way to represent the complex relational information between 

amples. Trees are more suitable for characterizing the important 

ierarchical relations between features. In this section, we present 

ur new feature selection method ERASE, which can simultane- 

usly learn two different structures for selecting the optimal fea- 

ure subset. Before introducing the details of ERASE, we first give 

he notations and problem statement as follows: 

Notations: We use boldfaced characters to represent sequences, 

ectors and matrices. Suppose that M is a matrix, then M [ m, ·] ,
 [ ·, n ] , and M [ m, n ] denote its m th row, n th column, and (m, n ) th

lement, respectively. The sequence (x 1 , . . . , x N ) is abbreviated as 

 x i ] 
N 
i =1 

or [ x i ] if the index set that i runs over is clear from the con-

ext. The i th element of a sequence x is x [ i ] . Consider a dataset

ith M samples X = [ x 1 , x 2 , . . . , x M 

] � . For each m ∈ { 1 , 2 , . . . , M} ,
 m 

∈ R 

N has N features. The labels of these samples are Y = 

 y 1 , y 2 , . . . y M 

] � , where each y m 

∈ { 1 , 2 , . . . , C} with C being the

umber of classes. The important notations throughout the paper 

re summarized in Table 1 . 
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Fig. 2. Toy example of using ERASE for feature selection of input X ∈ R 

6 ×8 . We use x 1 , x 2 , . . . , x 6 and n 1 , n 2 , . . . , n 8 to denote the samples and features, respectively. We learn 

the sample relations using the method in Section 3.1 . We learn three trees, T 1 , T 2 and T 3 , using the method in Section 3.2 and regard them as the Ensemble Forest. Then, 

the Ensemble Forest is input into RSFSS (see Section 1 ) to select the feature subset S . In RSFSS, there are three important components, i.e., F , C and R n ∈ { R 1 , R 2 , . . . , R 8 } , and 

they are defined in Section 3.2 . 

Table 1 

Summary of important notations. 

Notation Description 

X Input dataset 

Y Labels 

A Adjacency matrix of the sample graph 

E F Ensemble forest of features 

R n Set of forest-related features of the n th feature 

F Sequence of feature importance 

C Sequence of feature redundancy 

S Feature subset 
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Problem Statement: Feature selection by learning an unknown 

raph of samples and trees of features. Given feature matrix X , 

e aim to solve the following problem: how to learn the unknown 

raph of samples and unknown trees of features, and to utilize 

hem to select the optimal feature subset S ? 

In our method, we first jointly learn the graph structure of 

he sample relations and tree structure of the feature relations. 

hen, we use the proposed Relation-based Sequence Floating Se- 

ection Strategy (RSFSS) to deal with the forest-related feature re- 

ations and select the optimal feature subset. We provide a toy ex- 

mple in Fig. 2 . For the X ∈ R 

6 ×8 in Fig. 2 , we use x 1 , x 2 , . . . , x 6 
nd n 1 , n 2 , . . . , n 8 to denote its samples and features, respectively.

hen we jointly learn the graph of x 1 , x 2 , . . . , x 6 and the trees of

 1 , n 2 , . . . , n 8 to obtain the Ensemble Forest ( T 1 , T 2 and T 3 ). Fi-

ally, the Ensemble Forest is input into RSFSS to select the feature 

ubset S . 

.1. Learn and utilize sample relations 

In ERASE, we consider the similarity relationship between sam- 

les, and thus construct a graph whose vertices represent samples 

nd edges denote the similarity of vertices. Because the graph of 

he samples is usually unknown in various applications [24,26] , we 

im to learn the adjacency matrix A of the sample graph in this 

ection. 
3 
Specifically, we process X by using (1) and obtain 

˜ X . 

˜ 
 = GJ � X , (1) 

here G ∈ R 

M×1 is a trainable matrix, J ∈ R 

1 ×N is an all-one matrix,

nd � represents the element-wise product. 

Further, we define the sample relationship similarity matrix H 

y 

 = 

˜ X ̃

 X 

� . (2) 

Finally, to highlight the important sample relationships, we set 

he top η values in each row of H to one and the others to zero to

parsify H . The sparsified matrix H is adjacency matrix A , which is

sed to characterize the sample relationships. 

Then we utilize A in the following formula to incorporate sam- 

le relations information into X 

′ : 

 

′ = D 

− 1 
2 (A + I ) D 

− 1 
2 X , (3) 

here D denotes an M × M diagonal matrix with D [ m, m ] �
M ∑ 

p=1 

A [ m, p] + 1 for each m ∈ { 1 , 2 , . . . , M} , and I denotes the iden-

ity matrix. 

.2. Learn and utilize feature relations 

In this section, we introduce how to use X 

′ to guide feature 

elation learning and use feature relations to solve the problem of 

eature selection. 

First, we use XGBoost to generate T trees, which is used to 

haracterize nonlinear interactions between features [33] . Specifi- 

ally, for t ∈ { 1 , 2 , . . . , T } , we denote the tth tree as T t . We denote

 

(
y i , ̂  y (t−1) 

i 

)
as a differentiable convex loss function which mea- 

ures the difference between the true label y i and the (t − 1) th 

rediction ˆ y (t−1) 
i 

, and we use X 

′ = [ x ′ 1 , x ′ 2 , . . . , x ′ M 

] � to generate the

th tree by minimizing the following objective: 

 

(t) = 

M ∑ 

i =1 

[ 
g i T t 

(
x 

′ 
i 

)
+ 

1 

2 

h i T 2 t 

(
x 

′ 
i 

)] 
+ γ P t + 

1 

2 

λ
P t ∑ 

j=1 

w 

2 
j , (4) 
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here γ and λ are two hyperparameters, P t is the number of 

eaves in the tth tree, w j is the weight of the jth leaf, g i =
 

ˆ y 
(t−1) 
i 

l 

(
y i , ̂  y (t−1) 

i 

)
and h i = ∂ 2 

ˆ y 
(t−1) 
i 

l 

(
y i , ̂  y (t−1) 

i 

)
are first and sec- 

nd order gradient statistics of the loss function with ˆ y (t−1) 
i 

= 

 t−1 
k =1 

T k (x ′ 
i 
) , and for t ∈ { 1 , 2 , . . . , T } , T t (x ’ 

i 
) = W 

q (x ’ 
i 
) with q : R 

M →
 t and W ∈ R 

P t . 

To jointly learn the graph structure of the samples and tree 

tructure of the features, we choose a relatively simple but effec- 

ive evolutionary computation-based optimization method, the for- 

st optimization algorithm (FOA) [15] . Specifically, in each iteration 

f the FOA, the graph guides the generation of trees using (3) , and

he trees are used to update the sample graphs by optimizing (4) . 

n this manner, both sample graph and feature trees are learned 

nder the same objective (4) . For simplicity, this optimization pro- 

ess is denoted as FOA (G , X , η) in the following sections. 

Furthermore, we propose a new feature subset search algorithm 

hat uses feature relations to select the features. Before introducing 

ur new algorithm, we first provide the required definitions. 

efinition 1 (Ensemble Forest) . In this paper, we define the se- 

uence of T trees generated by minimizing (4) as an Ensemble For- 

st, denoted as E F � (T 1 , T 2 , . . . , T T ) , where T 1 , T 2 , . . . , T T represent

he trees whose indices are 1 , 2 , . . . , T , respectively. 

efinition 2 (Forest-Related Features) . For trees in the Ensemble 

orest, we believe that edge information can help in feature selec- 

ion. In this study, we regard the features of two nodes that are 

irectly connected in each tree as related features. We define all 

elated features of a feature obtained by iterating over [ T t ] T t=1 
as its

orest-related features. For n ∈ { 1 , 2 , . . . , N} , the set of forest-related

eatures of the n th feature is denoted as R n . 

efinition 3 (Leaf Splitting Gains) . For t ∈ { 1 , 2 , . . . , T } and T t =
 F [ t] , let L (t) 

j 
denote the jth leaf of T t and I (t) 

j 
� { i : q (x ′ 

i 
) = L (t) 

j 
} be

he sample index set of L (t) 
j 

. Assume that I (t) 
j 

= I L ∪ I R , where I L 
Fig. 3. Flowchart of the

4 
nd I R are the sample index sets of the left and right child nodes, 

espectively, after splitting L (t) 
j 

. Then, the gain value of splitting L (t) 
j 

s 

 

(t) 
j 

= 

(∑ 

i ∈I L g i 
)2 

∑ 

i ∈I L h i + λ
+ 

(∑ 

i ∈I R g i 
)2 

∑ 

i ∈I R h i + λ
−

(∑ 

i ∈I (t) 
j 

g i 

)2 

∑ 

i ∈I (t) 
j 

h i + λ
. (5) 

efinition 4 (Feature Importance of Ensemble Forest) . For n ∈ 

 1 , 2 , . . . , N} , if the n th feature is used to split the leaves in the

nsemble Forest, then its importance is 

f n = 

T ∑ 

t=1 

P t ∑ 

j=1 

G 

(t) 
j 

, (6) 

here P t denotes the total number of leaves in T t . For the features

hat are not used to split any leaf in the Ensemble Forest, their 

mportance would be zero by default. Then, we denote the feature 

mportance sequence as F � ( f 1 , f 2 , . . . , f N ) . 

efinition 5 (Redundant Features) . Some features in the Ensem- 

le Forest are rarely used to split leaves. We regard the number 

f feature splitting leaves as an important criterion for judging re- 

undant features, and we define a sequence C � (c 1 , c 2 , . . . , c N ) to

tore the redundancy for each feature, where c n (n ∈ { 1 , 2 , . . . , N} )
ndicates the number of times that the n th feature is used to split

he leaves in the Ensemble Forest. For example, if the n th feature 

s used 10 times to split the leaves in the Ensemble Forest, then 

 n = 10 . The smaller the value of c n , the more likely it is that the

 th feature is redundant. 

Next, we propose a new Relation-based Sequence Floating Se- 

ection Strategy (RSFSS) to search the feature subset by minimizing 

he following fitness function. 

itness (S ) = αE r (S ) + β
| S | 
N 

, (7) 
 proposed ERASE. 
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Table 2 

Brief descriptions of baseline methods. 

Algorithm Description 

VCOA Coyote optimization algorithm using a v-shaped 

transfer function for feature selection [26] 

BMBO Monarch butterfly optimization algorithm for feature 

selection [23] 

SBOA Butterfly optimization algorithm for feature 

selection [35] 

HGSA Gravitational search algorithm for feature 

selection [24] 

Rc-BBFA Firefly algorithm for feature selection [42] 

FSFOA Forest optimization algorithm for feature 

selection [43] 

BALO Ant lion algorithm for feature selection [44] 

BGWO2 Grey wolf optimization algorithm for feature 

selection [45] 

BPSO Particle swarm optimization for feature selection [46] 

GA Genetic algorithm for feature selection [47] 

GBDT Gradient boosting decision tree for feature 

selection [32] 

XGBoost XGBoost for feature selection [33] 

RF Random forest for feature selection [31] 

Table 3 

Details of the experimental datasets. 

Dataset # Samples # Features # Classes Type 

Tic-tac-toe 958 9 2 Game 

CongressEW 435 16 2 Social 

SpectEW 267 22 2 Medical 

Ionosphere 351 34 2 Physical 

KrvskpEW 3196 36 2 Game 

Pubmed 19,717 500 3 Citation 

CNAE-9 1080 856 9 Business 

Cora 2708 1433 7 Citation 

Citeseer 3327 3703 6 Citation 
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here S denotes the feature subset, | S | denotes the number of fea-

ures in S , E r (S ) denotes the error rate (i.e., 1 - accuracy) of a given

lassifier for S , and α ∈ [0 , 1] and β = 1 − α are the two hyperpa-

ameters used to control the classification quality and dimension 

eduction. The fitness function is similar to that in [24,35] , and fol- 

owing these works, we use a k-Nearest Neighbors ( k -NN) classifier 

o compute the error rate in (7) . 

In RSFSS, we first initialize S = ∅ . Recall that F and C are de-

ned in Definitions 4 and 5 , respectively. Second, we sort the ele- 

ents of F in descending order and obtain a sequence of features 

 

′ = (f ′ 
1 
, f ′ 

2 
, . . . , f ′ 

N 
) . Third, we sort the elements of C in ascend-

ng order and obtain a sequence of features C 

′ = (c ′ 1 , c ′ 2 , . . . , c ′ N ) .
he feature subset selection process in RSFSS is composed of three 

arts: feature subset expansion according to important features, 

eature subset expansion according to forest-related feature rela- 

ions, and feature subset reduction according to redundant fea- 

ures. 

1. Feature subset expansion according to important features: In 

this part, for n ∈ { 1 , 2 , . . . , N} , we sequentially select f ′ n ∈ F ′ such

that the Fitness (S ∪ { f ′ n } ) iteratively decreases. 
Table 4 

Values of main hyperparameters. 

Hyperparameters Tic-tac-toe CongressEW SpectEW Ionos

η in Section 3.1 10 3 10 3 

T in Section 3.2 

Max tree depth 

α in (7) 

β in (7) 

5 
2. Feature subset expansion according to forest-related feature 

relations: In this part, for n ∈ { 1 , 2 , . . . , N} and f ′ n ∈ F ′ , we first

obtain the set of all the forest-related features of f ′ n and denote 

this set as 

R 

′ 
n = R (f ′ n ) , (8) 

where R : F ′ → { R 1 , R 2 , . . . , R N } is a bijective function, and R n ∈
{ R 1 , R 2 , . . . , R N } is the set of forest-related features of the n th

feature (see Definition 2 ). Next, if f ′ n ∈ S , then each r ∈ R 

′ 
n is

sequentially selected for S such that Fitness (S ∪ { r } ) iteratively 

decreases. 

3. Feature subset reduction according to redundant features: In 

this part, after feature subset expansion, we remove the inap- 

propriate features from S according to the order of features in 

C 

′ to reduce the number of features in the feature subset and 

further decrease the fitness function. 

The pseudocode of RSFSS is given in Algorithm 1 . 

Algorithm 1: RSFSS. 

Input : E F // Ensemble Forest, which is defined in 
Definition 1 

Output : The selected feature subset S 

1 Initialize S = ∅ ; 

2 Initialize variable V = 10 ; // V stores the fitness value 
given in (7) 

3 Obtain F and C using E F (see Definition 5 and Definition 5); 

4 Sort the elements of F in descending order and obtain 

F ′ = (f ′ 
1 
, f ′ 

2 
, . . . , f ′ 

N 
) ; 

5 Sort the elements of C in ascending order and obtain 

C 

′ = (c ′ 
1 
, c ′ 

2 
, . . . , c ′ 

N 
) ; 

6 for 1 ≤ n ≤ N do 

7 if the importance value of f ′ n in F is greater than 0 then 

// Feature subset expansion according to 
important features 

8 if Fitness (S ∪ { f ′ n } ) < V then 

9 V = Fitness (S ∪ { f ′ n } ) , S = S ∪ { f ′ n } ; 
10 if f ′ n ∈ S then 

// Feature subset expansion according to 
forest-related feature relations 

11 Find the set R 

′ 
n containing all the forest-related 

features of f ′ n according to (8); 

12 foreach r ∈ R 

′ 
n do 

13 if Fitness (S ∪ { r } ) < V then 

14 V = Fitness (S ∪ { r } ) , S = S ∪ { r } ; 
// Feature subset reduction according to 

redundant features 
15 for 1 ≤ v ≤ N do 

16 if the redundant value of c ′ v in C is greater than 0 

then 

17 if Fitness (S − { c ′ v } ) < V then 

18 V = Fitness (S − { c ′ v } ) , S = S − { c ′ v } ; 
19 return S ; 
phere KrvskpEW Pubmed CNAE-9 Cora Citeseer 

2 8 9 9 10 
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0.99 

0.01 



Z. Liu, J. Yang, L. Wang et al. Pattern Recognition 140 (2023) 109566 

Table 5 

Acc and Dr results of the comparative algorithms in percentage for using 1NN in (7) . Each value is the average result of 20 Monte Carlo experiments. Each number in 

brackets indicates the ranking and Avg. reports the average ranking of each algorithm. The top three results are in bold. 

Metrics Tic-tac-toe CongressEW SpectEW Ionosphere KrvskpEW Pubmed CNAE-9 Cora Citeseer Avg. 

ERASE Acc 92.22 (1) 97.02 (2) 87.16 (1) 95.66 (1) 98.12 (1) 83.97 (1) 93.83 (1) 74.85 (1) 75.55 (1) 1.11 

Dr 40.0 (4) 78.75 (8) 79.55 (2) 82.94 (2) 51.39 (12) 93.04 (2) 95.25 (1) 94.43 (1) 97.56 (1) 3.67 

VCOA Acc 81.08 (7) 96.49 (6) 86.42 (5) 95.66 (1) 97.27 (4) 76.47 (6) 91.48 (3) 67.88 (2) 48.55 (5) 4.33 

Dr 37.78 (6) 85.62 (5) 74.09 (4) 73.82 (4) 67.78 (5) 31.48 (13) 29.53 (12) 12.64 (13) 75.75 (7) 7.67 

BMBO Acc 78.75 (11) 96.03 (10) 84.2 (9) 91.6 (11) 95.02 (9) 73.59 (11) 82.9 (12) 45.87 (14) 26.03 (13) 11.11 

Dr 35.56 (7) 68.75 (11) 53.18 (14) 60.0 (13) 54.44 (10) 50.08 (9) 52.51 (7) 53.85 (6) 53.41 (9) 9.56 

SBOA Acc 81.6 (4) 96.79 (4) 84.81 (8) 92.74 (8) 95.88 (7) 72.54 (12) 83.55 (10) 46.13 (12) 26.96 (10) 8.33 

Dr 35.56 (7) 71.25 (10) 65.0 (9) 64.71 (11) 52.5 (11) 50.54 (7) 50.09 (8) 51.62 (8) 51.37 (11) 9.11 

HGSA Acc 81.11 (5) 97.25 (1) 84.94 (7) 92.74 (8) 95.66 (8) 72.37 (13) 82.99 (11) 45.9 (13) 26.02 (14) 8.89 

Dr 32.22 (14) 55.62 (14) 57.73 (13) 59.71 (14) 43.89 (14) 49.56 (12) 49.82 (9) 49.83 (11) 50.01 (14) 12.78 

Rc-BBFA Acc 81.84 (3) 96.26 (8) 86.79 (2) 94.72 (4) 97.32 (3) 74.9 (9) 89.75 (5) 53.63 (9) 31.02 (9) 5.78 

Dr 34.44 (10) 86.88 (4) 65.45 (8) 73.82 (4) 62.78 (6) 50.5 (8) 49.36 (10) 50.1 (10) 51.3 (12) 8.0 

FSFOA Acc 81.87 (2) 96.87 (3) 86.79 (2) 95.47 (3) 97.97 (2) 76.11 (7) 90.46 (4) 66.83 (3) 49.1 (4) 3.33 

Dr 33.33 (13) 64.38 (13) 70.91 (5) 73.24 (6) 55.56 (8) 31.32 (14) 22.37 (13) 24.92 (12) 75.16 (8) 10.22 

BALO Acc 80.28 (9) 96.11 (9) 82.59 (11) 93.02 (7) 95.02 (9) 74.37 (10) 89.44 (7) 65.47 (4) 49.36 (3) 7.67 

Dr 34.44 (10) 80.62 (7) 84.09 (1) 70.29 (8) 59.17 (7) 50.02 (10) 21.0 (14) 5.64 (14) 82.16 (5) 8.44 

BGWO2 Acc 79.83 (10) 96.03 (10) 86.54 (4) 94.53 (5) 96.78 (5) 78.62 (3) 92.13 (2) 64.18 (5) 61.13 (2) 5.11 

Dr 40.0 (4) 89.38 (3) 74.55 (3) 80.88 (3) 76.67 (4) 85.66 (4) 78.46 (5) 81.13 (4) 81.83 (6) 4.0 

BPSO Acc 80.87 (8) 96.56 (5) 86.3 (6) 94.34 (6) 96.38 (6) 75.52 (8) 89.69 (6) 56.77 (8) 33.87 (8) 6.78 

Dr 35.56 (7) 81.25 (6) 69.09 (6) 66.47 (10) 55.28 (9) 50.86 (6) 53.69 (6) 52.5 (7) 52.68 (10) 7.44 

GA Acc 81.11 (5) 96.34 (7) 84.2 (9) 91.79 (10) 94.82 (11) 72.3 (14) 82.5 (13) 46.22 (11) 26.47 (11) 10.11 

Dr 34.44 (10) 67.5 (12) 67.73 (7) 62.94 (12) 47.78 (13) 49.86 (11) 49.35 (11) 50.77 (9) 50.23 (13) 10.89 

GBDT Acc 67.57 (13) 91.76 (14) 75.56 (14) 87.08 (14) 91.89 (12) 82.01 (2) 86.6 (9) 58.07 (6) 38.61 (7) 10.11 

Dr 58.89 (2) 93.12 (1) 65.0 (9) 86.18 (1) 83.33 (2) 93.18 (1) 89.99 (3) 84.3 (3) 86.17 (3) 2.78 

XGBoost Acc 72.36 (12) 92.37 (13) 76.54 (12) 88.3 (12) 89.95 (13) 76.92 (4) 87.47 (8) 48.55 (10) 26.08 (12) 10.67 

Dr 56.67 (3) 93.12 (1) 63.64 (11) 72.94 (7) 83.33 (2) 79.28 (5) 88.49 (4) 73.99 (5) 84.13 (4) 4.67 

RF Acc 64.72 (14) 94.2 (12) 76.42 (13) 88.11 (13) 89.05 (14) 76.78 (5) 82.31 (14) 56.95 (7) 40.78 (6) 10.89 

Dr 71.11 (1) 73.75 (9) 61.82 (12) 69.71 (9) 85.28 (1) 87.84 (3) 90.72 (2) 89.24 (2) 88.95 (2) 4.56 

Table 6 

Acc and Dr results of the comparative algorithms in percentage for using 5NN in (7) . Each value is the average result of 20 Monte Carlo experiments. Each number in 

brackets indicates the ranking and Avg. reports the average ranking of each algorithm. The top three results are in bold. 

Metrics Tic-tac-toe CongressEW SpectEW Ionosphere KrvskpEW Pubmed CNAE-9 Cora Citeseer Avg. 

ERASE Acc 90.83 (1) 97.25 (1) 87.9 (1) 93.96 (1) 97.63 (2) 86.19 (1) 92.07 (1) 74.37 (1) 74.17 (1) 1.11 

Dr 48.89 (8) 78.75 (7) 76.82 (1) 84.71 (2) 65.28 (6) 94.3 (1) 95.86 (1) 95.46 (1) 98.39 (1) 3.11 

VCOA Acc 80.24 (5) 95.73 (11) 86.42 (7) 92.83 (4) 97.39 (3) 78.72 (7) 91.82 (2) 71.84 (2) 49.69 (4) 5.0 

Dr 47.78 (10) 92.5 (3) 58.18 (11) 81.18 (5) 70.83 (5) 53.02 (7) 23.71 (14) 11.65 (13) 83.95 (7) 8.33 

BMBO Acc 77.95 (11) 96.11 (7) 85.68 (10) 89.62 (8) 95.97 (7) 76.38 (11) 79.1 (14) 45.15 (14) 10.63 (10) 10.22 

Dr 37.78 (12) 70.62 (12) 58.18 (11) 68.24 (11) 51.11 (12) 53.76 (6) 53.35 (7) 53.4 (6) 52.82 (10) 9.67 

SBOA Acc 79.97 (7) 96.56 (5) 87.04 (4) 89.25 (10) 95.48 (9) 76.38 (11) 82.44 (11) 51.09 (11) 10.27 (11) 8.78 

Dr 53.33 (4) 71.88 (10) 64.09 (5) 66.18 (13) 55.28 (9) 51.52 (10) 50.32 (8) 50.86 (7) 53.11 (9) 8.33 

HGSA Acc 81.15 (3) 96.79 (2) 86.67 (6) 89.43 (9) 95.84 (8) 76.01 (14) 82.41 (12) 50.02 (13) 10.26 (12) 8.78 

Dr 33.33 (13) 59.38 (14) 50.45 (14) 61.18 (14) 42.22 (14) 49.3 (12) 49.79 (10) 49.67 (9) 50.34 (14) 12.67 

Rc-BBFA Acc 80.35 (4) 96.64 (4) 86.42 (7) 92.26 (5) 97.23 (5) 78.41 (8) 89.17 (6) 60.01 (7) 11.48 (9) 6.11 

Dr 50.0 (7) 86.25 (5) 67.27 (4) 74.71 (8) 63.61 (7) 50.76 (11) 49.61 (11) 49.41 (10) 51.5 (12) 8.33 

FSFOA Acc 82.88 (2) 96.79 (2) 87.9 (1) 93.11 (3) 97.9 (1) 78.94 (6) 90.77 (3) 71.78 (3) 46.98 (5) 2.89 

Dr 7.78 (14) 70.62 (12) 60.0 (8) 78.82 (6) 43.89 (13) 31.82 (14) 27.87 (13) 21.94 (12) 81.93 (8) 11.11 

BALO Acc 78.82 (9) 95.8 (10) 82.72 (11) 91.13 (7) 95.41 (10) 77.73 (10) 89.17 (6) 70.2 (4) 54.86 (3) 7.78 

Dr 48.89 (8) 77.5 (8) 75.0 (2) 82.94 (4) 52.78 (10) 47.2 (13) 33.95 (12) 4.64 (14) 88.94 (2) 8.11 

BGWO2 Acc 78.44 (10) 96.41 (6) 87.41 (3) 93.77 (2) 96.67 (6) 81.15 (3) 89.38 (5) 64.31 (5) 63.2 (2) 4.67 

Dr 53.33 (4) 88.75 (4) 71.36 (3) 83.53 (3) 77.78 (4) 86.06 (4) 79.05 (5) 80.01 (4) 84.85 (5) 4.0 

BPSO Acc 79.79 (8) 95.88 (9) 86.79 (5) 91.89 (6) 97.27 (4) 78.39 (9) 90.0 (4) 61.02 (6) 13.83 (8) 6.56 

Dr 52.22 (6) 86.25 (5) 58.64 (10) 76.18 (7) 63.06 (8) 51.72 (9) 53.7 (6) 50.84 (8) 52.78 (11) 7.78 

GA Acc 80.1 (6) 96.11 (7) 86.3 (9) 88.96 (11) 94.56 (11) 76.17 (13) 82.35 (13) 50.48 (12) 10.08 (13) 10.56 

Dr 47.78 (10) 71.88 (10) 59.55 (9) 67.06 (12) 52.22 (11) 51.8 (8) 49.92 (9) 49.16 (11) 51.23 (13) 10.33 

GBDT Acc 70.76 (13) 94.96 (13) 80.25 (12) 86.98 (13) 94.26 (12) 84.42 (2) 87.07 (9) 56.84 (10) 17.66 (7) 10.11 

Dr 58.89 (2) 93.12 (1) 63.64 (6) 85.88 (1) 83.33 (2) 93.1 (2) 90.01 (3) 84.37 (3) 86.21 (4) 2.67 

XGBoost Acc 73.65 (12) 95.57 (12) 77.9 (14) 86.23 (14) 93.55 (13) 80.36 (5) 87.41 (8) 57.38 (9) 9.74 (14) 11.22 

Dr 56.67 (3) 93.12 (1) 63.64 (6) 72.94 (9) 83.33 (2) 79.28 (5) 88.49 (4) 73.99 (5) 84.13 (6) 4.56 

RF Acc 68.85 (14) 94.35 (14) 79.88 (13) 87.17 (12) 90.55 (14) 80.63 (4) 82.5 (10) 59.69 (8) 20.04 (6) 10.56 

Dr 71.11 (1) 74.38 (9) 58.18 (11) 70.88 (10) 83.89 (1) 87.8 (3) 90.98 (2) 88.95 (2) 88.88 (3) 4.67 
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.3. Computational complexity analysis 

In this section, we analyze the computational complexity of 

RASE. The computational complexity of generating an Ensemble 

orest is O(MNT D ) , where M denotes the number of samples, 

represents the number of features, T indicates the number 

f trees in the Ensemble Forest, and D refers to the maximum 

epth of trees in the Ensemble Forest. The computational com- 
6 
lexity of learning the sample relationship graph is O(ZMNT D ) , 

here Z denotes the total number of individuals generated in 

OA (G , X , η) . When selecting a feature subset using RSFSS, we 

rst need to generate an Ensemble Forest using the learned 

ample relationship graph, whose computational complexity is 

(MNT D ) . Let A = min { 2 D T − T , N} be the maximum number

f features whose feature importance scores are greater than 

ero. Then, we compute the fitness function value using k -NN, 
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Fig. 4. Violin plot of Acc when 1NN is used in (7) . For each sub-plot from (a) ∼(i), the horizontal axis indicates the percentage value of Acc, and the vertical axis represents 

the algorithm. In each violin plot, the white dot denotes the median, and the left and right edges of the black box indicate the 25th and 75th percentiles, respectively. 
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Algorithm 2: ERASE. 

Input : X 

Output : The selected feature subset S 

1 Initialize G and η; 

2 G 

∗ ← FOA (G , X , η) ; // Optimize G 

3 ˜ X 

∗ ← G 

∗J � X ; // See (1) 
4 Generate X 

′ ∗ using ˜ X 

∗ and η according to (2) and (3); 

5 Generate E 

∗
F 

using X 

′ ∗ according to (4) and Definition 1; 

6 S ← RSFSS (E 

∗
F 
) ; // Input E 

∗
F 
into Algorithm 1 

7 return S ; 

u

f  

a

t

9  
hich can be optimized using a multidimensional binary search 

ree (i.e., K-D Tree) [36] , and the time complexity is reduced 

o O(AM logM ) [36,37] . Therefore, the computational complexity 

f RSFSS is O(MNT D + A 

3 MlogM) . Combining O(ZMNT D ) and

(MNT D + A 

3 MlogM) , we conclude that the time complexity of 

RASE is O(ZMNT D + MNT D + A 

3 MlogM) , and is approximately

ax {O((Z + 1) MNT D ) , O(A 

3 M logM ) } . 
.4. Pseudocode of ERASE 

We provide the pseudocode of ERASE, shown in Algorithm 2 . 

he intuitive and detailed process of ERASE is shown in Fig. 3 . 

. Experiments 

In the experiments, we evaluate the performance of the pro- 

osed ERASE and 13 baseline methods on nine datasets. 

.1. Experimental settings 

Baselines: We choose 13 methods as baselines and briefly intro- 

uce them in Table 2 . 
7 
Datasets: Nine datasets with different feature dimensions are 

sed to validate the proposed method. These datasets are Pubmed 

rom [38] , Cora from [39] , Citeseer from [40] , and six datasets

vailable in the UCI Machine Learning Repository [41] , namely Tic- 

ac-toe, CongressEW, SpectEW, Ionosphere, KrvskpEW, and CNAE- 

. A brief description of the datasets is provided in Table 3 . These
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Fig. 5. Violin plot of Acc when 5NN is used in (7) . For each sub-plot from (a) ∼(i), the horizontal axis indicates the percentage value of Acc, and the vertical axis represents 

the algorithm. In each violin plot, the white dot denotes the median, and the left and right edges of the black box indicate the 25th and 75th percentiles, respectively. 
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1 Codes is available at https://github.com/Peter7777777/ERASE . 
atasets are chosen from different application domains and are di- 

erse in numbers of features, samples, and classes. 

Evaluation Criteria: We choose accuracy and dimension reduc- 

ion as the main metrics to evaluate the performance of our 

ethod. Accuracy (Acc) and dimension reduction (Dr) are two 

ommonly used criteria for feature selection evaluations [26,43] . 

ccuracy is defined as: 

cc = 

TP + TN 

TP + TN + FP + FN 

, (9) 

here TP, TN, FP, and FN are the true positives, true negatives, false 

ositives, and false negatives, respectively. Dimension reduction is 

efined as 

r = 

N − | S | 
N 

, (10) 

here N and | S | are the number of features of the dataset and

ardinality of the selected feature subset, respectively. 

In all the experiments, all the datasets are split 20 times to 

nsure statistical significance, and the train-test split ratio is 7:3. 

uring the training process, the training data are submitted to the 

lassification task in a 10-fold cross-validation scheme to than the 
8

yperparameters. The settings of the main hyperparameters of the 

roposed method are listed in Table 4 . 

The hyperparameters of the baseline methods are set accord- 

ng to the values suggested in the corresponding papers listed in 

able 2 . The hyperparameter η is tuned in set { 1 , 2 , . . . , 10 } . 
Experimental Environment: Python 3.7 and scikit-learn [48] are 

sed to implement our method 

1 , and all the codes are run on an

SUS machine with Intel Core i7 CPU (3.80 GHz), NVIDIA GeForce 

TX 3060 GPU, 32GB DDR4 RAM, and 2TB hard disks. 

.2. Performance of ERASE 

The k -NN classifier has been successfully employed in vari- 

us feature selection methods [24,42,44] . Following [23,35] , we set 

 = 1 and k = 5 in all the experiments, and the results are given in

ables 5 and 6 , respectively. From Tables 5 and 6 , we can observe

hat ERASE obtains the highest Acc and Dr values in the vast ma- 

ority of cases. On all nine datasets, ERASE achieves the best per- 

ormance on eight datasets both when k = 1 and k = 5 . It is worth

https://github.com/Peter7777777/ERASE
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Fig. 6. Convergence curves of the average value of the fitness function of ERASE and other baselines when 1NN is used in (7) . We conduct 20 Monte Carlo experiments 

for each method. For each sub-plot from (a) ∼(i), the horizontal axis indicates the iterative steps, and the vertical axis indicates the average value of the fitness function in 

percentage. 
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oting that on Tic-tac-toe, ERASE is nearly 10% higher than the 

est baseline FSFOA, and on Citeseer, ERASE is nearly 12% higher 

han the best baseline BGWO2. In terms of Dr, the performance of 

RASE is in the top two on the six datasets, in both cases where

NN and 5NN are used. Comparing our method with the ensemble 

earning algorithms GBDT, XGBoost, and RF, we notice that ERASE 

nsures both good Dr and Acc in most cases, but GBDT, XGBoost, 

nd RF cannot. We compute the average Acc and average Dr across 

ifferent datasets for all methods. The results indicate that the av- 

rage Acc and average Dr of ERASE are in the first and second 

laces, respectively. However, the other baseline algorithms cannot 

nsure that the average rankings of both Acc and Dr are in the top 

hree simultaneously. Therefore, the average rankings also indicate 
a

9

hat ERASE performs better than the baseline methods in terms of 

cc and Dr. 

.3. Statistical analysis 

Tables 5 and 6 demonstrate that ERASE performs better than 

he baseline methods. In this section, we conduct some statisti- 

al analysis of the results of the proposed algorithm. Figures 4 and 

 depict the violin plots of Acc when 1NN and 5NN are used in (7) ,

espectively. For each sub-plot of Figs. 4 and 5 , the horizontal axis 

ndicates Acc in percentage and the vertical axis denotes the algo- 

ithm. From Figs. 4 and 5 , we observe that the medians of ERASE 

re higher than those of the other algorithms on most datasets. 
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Fig. 7. Convergence curves of the average value of the fitness function of ERASE and other baselines when 5NN is used in (7) . We conduct 20 Monte Carlo experiments 

for each method. For each sub-plot from (a) ∼(i), the horizontal axis indicates the iterative steps, and the vertical axis indicates the average value of the fitness function in 

percentage. 
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Next, we use the Wilcoxon rank sum test to measure the differ- 

nce between our algorithm and other algorithms. The Wilcoxon 

ank sum test, proposed by Frank Wilcoxon, is a well-known non- 

arametric test to check whether the results of the proposed meth- 

ds are statistically different from those of the comparative meth- 

ds. In various studies related to feature selection, a parameter 

alled the p-value is utilized to verify the significance level of the 

wo algorithms [35,44] . The null hypothesis of the test is that the 

esults from two different methods are from continuous distribu- 

ions with equal medians, and the test returns the p-value to de- 

ermine whether the null hypothesis is accepted or rejected. Be- 

ause a p-value less than 0.05 indicates strong evidence that the 

ull hypothesis is rejected, there is less than a 5% probability that 
10 
he null hypothesis is correct. We then compute the p-values of the 

ilcoxon rank sum test of ERASE versus other algorithms when 

sing 1NN and 5NN, and present the results in Tables 7 and 8 , re-

pectively. From Tables 7 and 8 , we observe that, in most cases, the 

p-values are less than 0.05, indicating that the results of ERASE are 

ignificantly different from the results of the baseline methods on 

he majority of the datasets. 

Finally, to analyze the convergence of the proposed ERASE, the 

tness function convergence curves of ERASE versus the other ap- 

roaches when using 1NN and 5NN are shown in Figs. 6 and 7 ,

espectively. From Figs. 6 and 7 , we can see that the curve of our

lgorithm decreases significantly within the first 10 steps, and the 

ptimization process can be basically completed within 20 steps. 
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Table 7 

p-values of the Wilcoxon rank sum test of the proposed ERASE vs. other algorithms when 1NN is used in (7) . The p-values greater 

than 0.05 are underlined. 

Tic-tac-toe CongressEW SpectEW Ionosphere KrvskpEW Pubmed CNAE-9 Cora Citeseer 

VCOA 8.88E-5 5.62E-2 3.95E-1 4.09E-1 2.88E-2 9.13E-5 4.89E-3 8.88E-5 9.08E-5 

BMBO 8.98E-5 1.59E-2 4.56E-2 3.85E-3 8.98E-5 9.03E-5 8.29E-5 9.13E-5 9.03E-5 

SBOA 8.78E-5 3.05E-1 6.76E-2 1.96E-2 8.73E-5 9.13E-5 8.06E-5 9.08E-5 9.03E-5 

HGSA 8.78E-5 2.76E-1 5.42E-2 1.95E-2 8.83E-5 9.08E-5 8.58E-5 9.08E-5 8.98E-5 

Rc-BBFA 8.78E-5 2.73E-2 4.85E-1 2.22E-1 2.18E-3 9.13E-5 1.32E-4 9.03E-5 9.03E-5 

FSFOA 8.78E-5 3.47E-1 4.54E-1 3.51E-1 2.23E-1 9.13E-5 2.13E-3 9.13E-5 8.98E-5 

BALO 8.93E-5 3.45E-2 1.83E-2 3.40E-2 8.93E-5 9.08E-5 2.08E-4 9.08E-5 9.03E-5 

BGWO2 9.03E-5 1.20E-2 4.39E-1 1.48E-1 8.73E-5 9.08E-5 3.22E-3 9.13E-5 9.03E-5 

BPSO 8.93E-5 9.71E-2 4.09E-1 1.04E-1 8.83E-5 9.08E-5 2.74E-4 9.13E-5 9.03E-5 

GA 8.78E-5 7.59E-2 2.17E-2 5.38E-3 8.93E-5 9.13E-5 8.44E-5 9.13E-5 9.08E-5 

GBDT 9.03E-5 4.69E-4 1.47E-4 2.38E-4 8.88E-5 9.13E-5 8.54E-5 8.93E-5 9.08E-5 

XGBoost 8.98E-5 3.51E-3 8.25E-5 5.44E-4 8.88E-5 9.08E-5 8.58E-5 9.13E-5 9.03E-5 

RF 9.03E-5 1.13E-4 1.13E-4 1.69E-3 8.93E-5 9.08E-5 8.49E-5 9.08E-5 9.03E-5 

Table 8 

p-values of the Wilcoxon rank sum test of the proposed ERASE vs. other algorithms when 5NN is used in (7) . The p-values greater 

than 0.05 are underlined. 

Tic-tac-toe CongressEW SpectEW Ionosphere KrvskpEW Pubmed CNAE-9 Cora Citeseer 

VCOA 8.83E-5 5.69E-3 1.60E-1 1.01E-1 1.35E-1 9.13E-5 2.12E-1 4.52E-3 9.08E-5 

BMBO 8.98E-5 1.94E-2 9.08E-2 2.35E-3 1.54E-3 9.13E-5 8.63E-5 9.13E-5 9.08E-5 

SBOA 8.83E-5 7.59E-2 2.45E-1 1.32E-3 8.29E-5 9.03E-5 8.49E-5 9.13E-5 9.03E-5 

HGSA 8.83E-5 2.20E-1 1.51E-1 7.48E-4 6.41E-4 9.13E-5 8.58E-5 9.13E-5 9.03E-5 

Rc-BBFA 8.83E-5 1.22E-1 1.25E-1 4.65E-2 3.72E-2 9.13E-5 5.93E-4 8.98E-5 9.08E-5 

FSFOA 8.83E-5 2.39E-1 4.85E-1 1.10E-1 8.53E-2 9.08E-5 1.52E-2 4.45E-2 9.08E-5 

BALO 8.98E-5 1.90E-2 3.29E-3 9.62E-4 1.02E-4 9.13E-5 4.79E-3 1.64E-4 9.03E-5 

BGWO2 8.83E-5 5.68E-2 3.36E-1 4.85E-1 1.65E-3 9.13E-5 5.48E-3 9.13E-5 9.08E-5 

BPSO 8.98E-5 9.66E-3 1.99E-1 2.30E-2 6.90E-2 9.13E-5 2.41E-2 9.03E-5 9.03E-5 

GA 9.03E-5 1.89E-2 9.49E-2 2.53E-3 8.78E-5 9.08E-5 8.63E-5 9.13E-5 9.03E-5 

GBDT 9.03E-5 9.94E-4 2.67E-4 8.34E-5 8.73E-5 9.13E-5 1.12E-4 9.13E-5 9.08E-5 

XGBoost 8.98E-5 4.64E-3 1.32E-4 8.15E-5 8.78E-5 9.13E-5 1.34E-4 9.13E-5 8.98E-5 

RF 8.98E-5 2.61E-4 2.28E-4 1.91E-4 8.88E-5 9.13E-5 8.54E-5 9.03E-5 9.08E-5 

Fig. 8. Histogram for comparing average Acc when 1NN is used in (7) . ERASESR denotes primarily utilizing sample relations for feature selection. ERASEFR indicates only 

utilizing feature relations for feature selection. We conduct 20 Monte Carlo experiments for each method. The black line in each bar indicates standard deviation. 
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omparing the convergence curves of ERASE and the other meth- 

ds, we observe that the convergence speed of ERASE is competi- 

ive with that of the others. It is worth noting that the worst con- 

ergence curve of our method is better than the optimal ones of 

ther algorithms on the Tic-tac-toe, Pubmed, and Citeseer. 

.4. Ablation study 

To evaluate the effectiveness of sample and feature relations, 

e conduct an ablation study to compare ERASE with its two 

ariants, ERASESR and ERASEFR. In ERASESR, we primarily con- 
11 
ider utilizing sample relations to select feature subsets, whereas 

n ERASEFR, we only consider utilizing feature relations to select 

eature subsets. For ERASESR, we use the graph of samples learned 

n the last iteration of the FOA, and use the randomly initialized 

rees of features. For ERASEFR, we only use the trees of features 

earned in the last iteration of the FOA. The results of the ablation 

tudy are shown in Figs. 8 and 9 . 

From the results of Figs. 8 and 9 , we see that on some datasets,

he performance of ERASESR is better than that of ERASEFR, and 

n other datasets, the performance of ERASEFR is better than 

hat of ERASESR. However, the performances of both ERASESR and 
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Fig. 9. Histogram for comparing average Acc when 5NN is used in (7) . ERASESR denotes primarily utilizing sample relations for feature selection. ERASEFR indicates only 

utilizing feature relations for feature selection. We conduct 20 Monte Carlo experiments for each method. The black line in each bar indicates standard deviation. 
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RASEFR on all datasets are inferior to that of ERASE. Therefore, 

ur proposed methods of utilizing sample relations and feature re- 

ations are conducive to ERASE for feature selection. 

. Conclusion 

Feature selection is an important preprocessing step in machine 

earning and pattern recognition. Recent studies have demon- 

trated that learning underlying sample and feature relations is 

eneficial for feature selection. In this study, we propose a novel 

rapper method named ERASE. To the best of our knowledge, 

RASE is the first wrapper method that can simultaneously learn 

he graph structure of sample relations and the tree structure of 

eature relations. An ablation study is also conducted to show that 

he learned sample relations and feature relations are conducive to 

RASE for feature selection. Experimental and statistical analysis 

esults on multiple datasets from various fields demonstrate that 

he proposed ERASE has apparent advantages in feature selection 

ompared with other baseline methods. 

There are still some limitations on ERASE, which deserve our 

urther investigation. In ERASE, the feature subset is selected se- 

uentially, which is disadvantageous to parallel computation. An 

mproved ERASE algorithm that is suitable for parallel computation 

eserves further exploration. Besides, although our algorithm con- 

iders the underlying relationships between samples, the relation 

earning in small samples is not considered. Our future work will 

xtend the proposed method into a new feature selection method 

y considering small sample relation learning. 
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