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Large language models (LLMs) are gaining increasing popularity in both academia and industry, owing to

their unprecedented performance in various applications. As LLMs continue to play a vital role in both re-

search and daily use, their evaluation becomes increasingly critical, not only at the task level, but also at the

society level for better understanding of their potential risks. Over the past years, significant efforts have been

made to examine LLMs from various perspectives. This paper presents a comprehensive review of these eval-

uation methods for LLMs, focusing on three key dimensions: what to evaluate, where to evaluate, and how to

evaluate. Firstly, we provide an overview from the perspective of evaluation tasks, encompassing general nat-

ural language processing tasks, reasoning, medical usage, ethics, education, natural and social sciences, agent

applications, and other areas. Secondly, we answer the ‘where’ and ‘how’ questions by diving into the eval-

uation methods and benchmarks, which serve as crucial components in assessing the performance of LLMs.

Then, we summarize the success and failure cases of LLMs in different tasks. Finally, we shed light on several

future challenges that lie ahead in LLMs evaluation. Our aim is to offer invaluable insights to researchers in

the realm of LLMs evaluation, thereby aiding the development of more proficient LLMs. Our key point is that
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evaluation should be treated as an essential discipline to better assist the development of LLMs. We consis-

tently maintain the related open-source materials at: https://github.com/MLGroupJLU/LLM-eval-survey
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1 INTRODUCTION

Understanding the essence of intelligence and establishing whether a machine embodies it poses a
compelling question for scientists. It is generally agreed upon that authentic intelligence equips us
with reasoning capabilities, enables us to test hypotheses, and prepares for future eventualities [92].
In particular,Artificial Intelligence (AI) researchers focus on the development of machine-based
intelligence, as opposed to biologically based intellect [136]. Proper measurement helps to under-
stand intelligence. For instance, measures for general intelligence in human individuals often en-
compass IQ tests [12].

Within the scope of AI, the Turing Test [193], a widely recognized test for assessing intelligence
by discerning if responses are of human or machine origin, has been a longstanding objective in AI
evolution. It is generally believed among researchers that a computing machine that successfully
passes the Turing Test can be considered as intelligent. Consequently, when viewed from a wider
lens, the chronicle of AI can be depicted as the timeline of creation and evaluation of intelligent
models and algorithms. With each emergence of a novel AI model or algorithm, researchers in-
variably scrutinize its capabilities in real-world scenarios through evaluation using specific and
challenging tasks. For instance, the Perceptron algorithm [49], touted as an Artificial General

Intelligence (AGI) approach in the 1950s, was later revealed as inadequate due to its inability
to resolve the XOR problem. The subsequent rise and application of Support Vector Machines

(SVMs) [28] and deep learning [104] have marked both progress and setbacks in the AI landscape.
A significant takeaway from previous attempts is the paramount importance of AI evaluation,
which serves as a critical tool to identify current system limitations and inform the design of more
powerful models.
Recently, large language models (LLMs) have incited substantial interest across both aca-

demic and industrial domains [11, 219, 255]. As demonstrated by existing work [15], the great
performance of LLMs has raised promise that they could be AGI in this era. LLMs possess the
capabilities to solve diverse tasks, contrasting with prior models confined to solving specific tasks.
Due to its great performance in handling different applications such as general natural language
tasks and domain-specific ones, LLMs are increasingly used by individuals with critical informa-
tion needs, such as students or patients.
Evaluation is of paramount prominence to the success of LLMs due to several reasons. First,

evaluating LLMs helps us better understand the strengths and weakness of LLMs. For instance, the
PromptBench [262] benchmark illustrates that current LLMs are sensitive to adversarial prompts,
thus a careful prompt engineering is necessary for better performance. Second, better evaluations
can provide better guidance for human-LLMs interaction, which could inspire future interaction
design and implementation. Third, the broad applicability of LLMs underscores the paramount
importance of ensuring their safety and reliability, particularly in safety-sensitive sectors such
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as financial institutions and healthcare facilities. Finally, as LLMs are becoming larger with more
emergent abilities, existing evaluation protocols may not be enough to evaluate their capabilities
and potential risks. Therefore, we aim to raise awareness in the community of the importance to
LLMs evaluations by reviewing the current evaluation protocols and most importantly, shed light
on future research about designing new LLMs evaluation protocols.
With the introduction of ChatGPT [145] and GPT-4 [146], there have been a number of research

efforts aiming at evaluating ChatGPT and other LLMs from different aspects (Figure 2), encom-
passing a range of factors such as natural language tasks, reasoning, robustness, trustworthiness,
medical applications, and ethical considerations. Despite these efforts, a comprehensive overview
capturing the entire gamut of evaluations is still lacking. Furthermore, the ongoing evolution of
LLMs has also presented novel aspects for evaluation, thereby challenging existing evaluation pro-
tocols and reinforcing the need for thorough, multifaceted evaluation techniques. While existing
research such as Bubeck et al. [15] claimed that GPT-4 can be seen as sparks of AGI, others contest
this claim due to the human-crafted nature of its evaluation approach.
This paper serves as the first comprehensive survey on the evaluation of large language mod-

els. As depicted in Figure 1, we explore existing work in three dimensions: 1) What to evalu-
ate, 2) Where to evaluate, and 3) How to evaluate. Specifically, “what to evaluate” encapsulates
existing evaluation tasks for LLMs, “where to evaluate” involves selecting appropriate datasets
and benchmarks for evaluation, while “how to evaluate” is concerned with the evaluation pro-
cess given appropriate tasks and datasets. These three dimensions are integral to the evaluation
of LLMs. We subsequently discuss potential future challenges in the realm of LLMs evaluation.
The contributions of this paper are as follows:

(1) We provide a comprehensive overview of LLMs evaluations from three aspects: what to eval-
uate, where to evaluate, and how to evaluate. Our categorization is general and encompasses
the entire life cycle of LLMs evaluation.

(2) Regarding what to evaluate, we summarize existing tasks in various areas and obtain insight-
ful conclusions on the success and failure case of LLMs (Section 6), providing experience for
future research.

(3) As for where to evaluate, we summarize evaluation metrics, datasets, and benchmarks to
provide a profound understanding of current LLMs evaluations. In terms of how to evaluate,
we explore current protocols and summarize novel evaluation approaches.

(4) We further discuss future challenges in evaluating LLMs. We open-source and maintain the
related materials of LLMs evaluation at https://github.com/MLGroupJLU/LLM-eval-survey
to foster a collaborative community for better evaluations.

The paper is organized as follows. In Section 2, we provide the basic information of LLMs and
AI model evaluation. Then, Section 3 reviews existing work from the aspects of “what to evalu-
ate”. After that, Section 4 is the “where to evaluate” part, which summarizes existing datasets and
benchmarks. Section 5 discusses how to perform the evaluation. In Section 6, we summarize the
key findings of this paper. We discuss grand future challenges in Section 7 and Section 8 concludes
the paper.

2 BACKGROUND

2.1 Large Language Models

Language models (LMs) [36, 51, 96] are computational models that have the capability to under-
stand and generate human language. LMs have the transformative ability to predict the likelihood
of word sequences or generate new text based on a given input. N-gram models [13], the most
common type of LM, estimate word probabilities based on the preceding context. However, LMs
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Fig. 1. Structure of this paper.

also face challenges, such as the issue of rare or unseen words, the problem of overfitting, and the
difficulty in capturing complex linguistic phenomena. Researchers are continuously working on
improving LM architectures and training methods to address these challenges.
Large Language Models (LLMs) [19, 91, 255] are advanced language models with massive

parameter sizes and exceptional learning capabilities. The core module behind many LLMs such as
GPT-3 [43], InstructGPT [149], and GPT-4 [146] is the self-attention module in Transformer [197]
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Fig. 2. Trend of LLMs evaluation papers over time (2020 - Jun. 2023, including Jul. 2023.)

that serves as the fundamental building block for language modeling tasks. Transformers have
revolutionized the field of NLP with their ability to handle sequential data efficiently, allowing
for parallelization and capturing long-range dependencies in text. One key feature of LLMs is
in-context learning [14], where the model is trained to generate text based on a given context
or prompt. This enables LLMs to generate more coherent and contextually relevant responses,
making them suitable for interactive and conversational applications. Reinforcement Learning

from Human Feedback (RLHF) [25, 266] is another crucial aspect of LLMs. This technique
involves fine-tuning the model using human-generated responses as rewards, allowing the model
to learn from its mistakes and improve its performance over time.
In an autoregressive language model, such as GPT-3 and PaLM [24], given a context sequenceX ,

the LM tasks aim to predict the next token y. The model is trained by maximizing the probability
of the given token sequence conditioned on the context, i.e., P(y |X ) = P(y |x1,x2, . . . ,xt−1), where
x1,x2, . . . ,xt−1 are the tokens in the context sequence, and t is the current position. By using the
chain rule, the conditional probability can be decomposed into a product of probabilities at each
position:

P(y |X ) =

T∏

t=1

P(yt |x1,x2, . . . ,xt−1),

where T is sequence length. In this way, the model predicts each token at each position in an
autoregressive manner, generating a complete text sequence.
One common approach to interacting with LLMs is prompt engineering [26, 221, 261], where

users design and provide specific prompt texts to guide LLMs in generating desired responses or
completing specific tasks. This is widely adopted in existing evaluation efforts. People can also
engage in question-and-answer interactions [83], where they pose questions to the model and
receive answers, or engage in dialogue interactions, having natural language conversations with
LLMs. In conclusion, LLMs, with their Transformer architecture, in-context learning, and RLHF
capabilities, have revolutionized NLP and hold promise in various applications. Table 1 provides a
brief comparison of traditional ML, deep learning, and LLMs.
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Table 1. Comparison of Traditional ML, Deep Learning, and LLMs

Comparison Traditional ML Deep Learning LLMs

Training Data Size Large Large Very large

Feature Engineering Manual Automatic Automatic

Model Complexity Limited Complex Very Complex

Interpretability Good Poor Poorer

Performance Moderate High Highest

Hardware Requirements Low High Very High

Fig. 3. The evaluation process of AI models.

2.2 AI Model Evaluation

AI model evaluation is an essential step in assessing the performance of a model. There are some
standard model evaluation protocols, including k-fold cross-validation, holdout validation, leave
one out cross-validation (LOOCV), bootstrap, and reduced set [8, 95]. For instance, k-fold
cross-validation divides the dataset into k parts, with one part used as a test set and the rest
as training sets, which can reduce training data loss and obtain relatively more accurate model
performance evaluation [48]; Holdout validation divides the dataset into training and test sets,
with a smaller calculation amount but potentially more significant bias; LOOCV is a unique k-
fold cross-validation method where only one data point is used as the test set [222]; Reduced
set trains the model with one dataset and tests it with the remaining data, which is computa-
tionally simple, but the applicability is limited. The appropriate evaluation method should be
chosen according to the specific problem and data characteristics for more reliable performance
indicators.
Figure 3 illustrates the evaluation process of AI models, including LLMs. Some evaluation pro-

tocols may not be feasible to evaluate deep learning models due to the extensive training size.
Thus, evaluation on a static validation set has long been the standard choice for deep learning
models. For instance, computer vision models leverage static test sets such as ImageNet [33] and
MS COCO [120] for evaluation. LLMs also use GLUE [200] or SuperGLUE [199] as the common
test sets.
As LLMs are becoming more popular with even poorer interpretability, existing evaluation pro-

tocols may not be enough to evaluate the true capabilities of LLMs thoroughly. We will introduce
recent evaluations of LLMs in Section 5.

3 WHAT TO EVALUATE

What tasks should we evaluate on LLMs to show their performance? On what tasks can we claim
the strengths and weaknesses of LLMs? In this section, we divide existing tasks into the following
categories: natural language processing, robustness, ethics, biases and trustworthiness, social sci-
ences, natural science and engineering, medical applications, agent applications (using LLMs as
agents), and other applications.1

1Note that LLMs are evaluated in various tasks and the categorization in this paper is only one possibleway for classification

of these works. There are certainly other taxonomies.
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3.1 Natural Language Processing Tasks

The initial objective behind the development of language models, particularly large language mod-
els, was to enhance performance on natural language processing tasks, encompassing both under-
standing and generation. Consequently, the majority of evaluation research has been primarily
focused on natural language tasks. Table 2 summarizes the evaluation aspects of existing research,
and we mainly highlight their conclusions in the following.2

3.1.1 Natural Language Understanding. Natural language understanding represents a wide
spectrum of tasks that aims to obtain a better understanding of the input sequence. We summarize
recent efforts in LLMs evaluation from several aspects.
Sentiment analysis is a task that analyzes and interprets the text to determine the emotional

inclination. It is typically a binary (positive and negative) or triple (positive, neutral, and negative)
class classification problem. Evaluating sentiment analysis tasks is a popular direction. Liang et al.
[114] and Zeng et al. [242] showed that the performance of the models on this task is usually
high. ChatGPT’s sentiment analysis prediction performance is superior to traditional sentiment
analysis methods [129] and comes close to that of GPT-3.5 [159]. In fine-grained sentiment and
emotion cause analysis, ChatGPT also exhibits exceptional performance [218]. In low-resource
learning environments, LLMs exhibit significant advantages over small language models [249], but
the ability of ChatGPT to understand low-resource languages is limited [6]. In conclusion, LLMs
have demonstrated commendable performance in sentiment analysis tasks. Future work should
focus on enhancing their capability to understand emotions in under-resourced languages.
Text classification and sentiment analysis are related fields; text classification not only focuses

on sentiment, but also includes the processing of all texts and tasks. The work of Liang et al.
[114] showed that GLM-130B was the best-performed model, with an overall accuracy of 85.8%
for miscellaneous text classification. Yang and Menczer [232] found that ChatGPT can produce
credibility ratings for a wide range of news outlets, and these ratings have a moderate correlation
with those from human experts. Furthermore, ChatGPT achieves acceptable accuracy in a binary
classification scenario (AUC=0.89). Peña et al. [154] discussed the problem of topic classification
for public affairs documents and showed that using an LLM backbone in combination with SVM
classifiers is a useful strategy to conduct the multi-label topic classification task in the domain of
public affairs with accuracies over 85%. Overall, LLMs perform well on text classification and can
even handle text classification tasks in unconventional problem settings as well.
Natural language inference (NLI) is the task of determining whether the given “hypothesis”

logically follows from the “premise”. Qin et al. [159] showed that ChatGPT outperformsGPT-3.5 for
NLI tasks. They also found that ChatGPT excels in handling factual input that could be attributed
to its RLHF training process in favoring human feedback. However, Lee et al. [105] observed LLMs
perform poorly in the scope of NLI and further fail in representing human disagreement, which
indicates that LLMs still have large room for improvement in this field.
Semantic understanding refers to the meaning or understanding of language and its associ-

ated concepts. It involves the interpretation and comprehension of words, phrases, sentences, and
the relationships between them. Semantic processing goes beyond the surface level and focuses on
understanding the underlying meaning and intent. Tao et al. [184] comprehensively evaluated the
event semantic processing abilities of LLMs covering understanding, reasoning, and prediction
about the event semantics. Results indicated that LLMs possess an understanding of individual
events, but their capacity to perceive the semantic similarity among events is constrained. In rea-
soning tasks, LLMs exhibit robust reasoning abilities in causal and intentional relations, yet their

2Several NLP areas have intersections and thus our categorization of these areas is only one possible way to categorize.
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Table 2. Summary of Evaluation on Natural Language Processing Tasks: NLU (Natural Language

Understanding, Including SA (Sentiment Analysis), TC (Text Classification),

NLI (Natural Language Inference) and other NLU Tasks), Reasoning,

NLG (Natural Language Generation, Including Summ

Reference
NLU

RNG.
NLG

Mul.
SA TC NLI Others Summ. Dlg. Tran. QA Others

Abdelali et al. [1] �
Ahuja et al. [2] �
Bian et al. [9] � �
Bang et al. [6] � � � � � � �
Bai et al. [5] �
Chen et al. [20] �
Choi et al. [23] �
Chia et al. [22] �
Frieder et al. [45] �
Fu et al. [47] �
Gekhman et al. [55] �
Gendron et al. [56] �
Honovich et al. [74] � � � �
Jiang et al. [86] �
Lai et al. [100] �
Laskar et al. [102] � � � � � � � �
Lopez-Lira and Tang [129] �
Liang et al. [114] � � � �
Lee et al. [105] �
Lin and Chen [121] �
Liévin et al. [117] �
Liu et al. [124] �
Lyu et al. [130] �
Manakul et al. [133] � �
Min et al. [138] �
Orrù et al. [147] �
Pan et al. [151] �
Peña et al. [154] �
Pu and Demberg [158] � �
Pezeshkpour [156] �
Qin et al. [159] � � � � � �
Riccardi and Desai [166] �
Saparov et al. [170] �
Tao et al. [184] �
Wang et al. [208] �
Wang et al. [218] �
Wang et al. [204] � �
Wu et al. [226] �
Wu et al. [225] �
Xu et al. [228] �
Yang and Menczer [232] �
Zheng et al. [257] �
Zhang et al. [249] �
Zhang et al. [248] �
Zhuang et al. [263] �
Zhang et al. [243] �

(Summarization), Dlg. (Dialogue), Tran (Translation), QA (Question Answering) and other NLG tasks), and

Multilingual tasks (ordered by the name of the first author).

performance in other relation types is comparatively weaker. In prediction tasks, LLMs exhibit
enhanced predictive capabilities for future events with increased contextual information. Riccardi
and Desai [166] explored the semantic proficiency of LLMs and showed that these models perform
poorly in evaluating basic phrases. Furthermore, GPT-3.5 and Bard cannot distinguish between
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meaningful and nonsense phrases, consistently classifying highly nonsense phrases as meaning-
ful. GPT-4 shows significant improvements, but its performance is still significantly lower than that
of humans. In summary, the performance of LLMs in semantic understanding tasks is poor. In the
future, we can start from this aspect and focus on improving its performance on this application.
In social knowledge understanding, Choi et al. [23] evaluated how well models perform

at learning and recognizing concepts of social knowledge and the results revealed that despite
being much smaller in the number of parameters, finetuning supervised models such as BERT
lead to much better performance than zero-shot models using state-of-the-art LLMs, such as GPT
[162], GPT-J-6B [202] and so on. This statement demonstrates that supervised models significantly
outperform zero-shot models in terms of performance, highlighting that an increase in parameters
does not necessarily guarantee a higher level of social knowledge in this particular scenario.

3.1.2 Reasoning. The task of reasoning poses significant challenges for an intelligent AI model.
To effectively tackle reasoning tasks, the models need to not only comprehend the provided in-
formation but also utilize reasoning and inference to deduce answers when explicit responses are
absent. Table 2 reveals that there is a growing interest in evaluating the reasoning ability of LLMs,
as evidenced by the increasing number of articles focusing on exploring this aspect. Currently, the
evaluation of reasoning tasks can be broadly categorized into mathematical reasoning, common-
sense reasoning, logical reasoning, and domain-specific reasoning.
ChatGPT exhibits a strong capability for arithmetic reasoning by outperforming GPT-3.5 in

the majority of tasks [159]. However, its proficiency in mathematical reasoning still requires im-
provement [6, 45, 263]. On symbolic reasoning tasks, ChatGPT is mostly worse than GPT-3.5,
which may be because ChatGPT is prone to uncertain responses, leading to poor performance
[6]. Through the poor performance of LLMs on task variants of counterfactual conditions, Wu
et al. [226] showed that the current LLMs have certain limitations in abstract reasoning ability. On
abstract reasoning, Gendron et al. [56] found that existing LLMs have very limited ability. In logical
reasoning, Liu et al. [124] indicated that ChatGPT and GPT-4 outperform traditional fine-tuning
methods onmost benchmarks, demonstrating their superiority in logical reasoning. However, both
models face challenges when handling new and out-of-distribution data. ChatGPT does not per-
form as well as other LLMs, including GPT-3.5 and BARD [159, 228]. This is because ChatGPT is
designed explicitly for chatting, so it does an excellent job of maintaining rationality. FLAN-T5,
LLaMA, GPT-3.5, and PaLM perform well in general deductive reasoning tasks [170]. GPT-3.5 is
not good at keeping oriented for reasoning in the inductive setting [228]. For multi-step reasoning,
Fu et al. [47] showed PaLM and Claude2 are the only two model families that achieve similar per-
formance (but still worse than the GPT model family). Moreover, LLaMA-65B is the most robust
open-source LLMs to date, which performs closely to code-davinci-002. Some papers separately
evaluate the performance of ChatGPT on some reasoning tasks: ChatGPT generally performs
poorly on commonsense reasoning tasks, but relatively better than non-text semantic reasoning
[6]. Meanwhile, ChatGPT also lacks spatial reasoning ability, but exhibits better temporal reason-
ing. Finally, while the performance of ChatGPT is acceptable on causal and analogical reasoning,
it performs poorly on multi-hop reasoning ability, which is similar to the weakness of other LLMs
on complex reasoning [148]. In professional domain reasoning tasks, zero-shot InstructGPT and
Codex are capable of complex medical reasoning tasks, but still need to be further improved [117].
In terms of language insight issues, Orrù et al. [147] demonstrated the potential of ChatGPT for
solving verbal insight problems, as ChatGPT’s performance was comparable to that of human par-
ticipants. It should be noted that most of the above conclusions are obtained for specific data sets.
In contrast, more complex tasks have become the mainstream benchmarks for assessing the capa-
bilities of LLMs. These include tasks such as mathematical reasoning [225, 236, 243] and structured
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data inference [86, 151]. Overall, LLMs show great potential in reasoning and show a continuous
improvement trend, but still face many challenges and limitations, requiring more in-depth re-
search and optimization.

3.1.3 Natural Language Generation. NLG evaluates the capabilities of LLMs in generating spe-
cific texts, which consists of several tasks, including summarization, dialogue generation, machine
translation, question answering, and other open-ended generation tasks.
Summarization is a generation task that aims to learn a concise abstract for the given sentence.

In this evaluation, Liang et al. [114] found that TNLG v2 (530B) [179] achieved the highest score
in both scenarios, followed by OPT (175B) [245] in second place. The fine-tuned Bart [106] is still
better than zero-shot ChatGPT. Specifically, ChatGPT demonstrates comparable zero-shot perfor-
mance to the text-davinci-002 [6], but performs worse than GPT-3.5 [159]. These findings indicate
that LLMs, particularly ChatGPT, have a general performance in summarization tasks.
Evaluating the performance of LLMs on dialogue tasks is crucial to the development of dia-

logue systems and improving human-computer interaction. Through such evaluation, the natural
language processing ability, context understanding ability and generation ability of the model can
be improved, so as to realize a more intelligent and more natural dialogue system. Both Claude and
ChatGPT generally achieve better performance across all dimensions when compared to GPT-3.5
[121, 159]. When comparing the Claude and ChatGPT models, both models demonstrate com-
petitive performance across different evaluation dimensions, with Claude slightly outperforming
ChatGPT in specific configurations. Research by Bang et al. [6] underscores that fully fine-tuned
models tailored for specific tasks surpass ChatGPT in both task-oriented and knowledge-based
dialogue contexts. Additionally, Zheng et al. [257] have curated a comprehensive LLMs conversa-
tion dataset, LMSYS-Chat-1M, encompassing up to one million samples. This dataset serves as a
valuable resource for evaluating and advancing dialogue systems.

While LLMs are not explicitly trained for translation tasks, they can still demonstrate strong
performance. Wang et al. [208] demonstrated that ChatGPT and GPT-4 exhibit superior per-
formance in comparison to commercial machine translation (MT) systems, as evaluated by
humans. Additionally, they outperform most document-level NMT methods in terms of sacre-
BLEU scores. During contrastive testing, ChatGPT shows lower accuracy in comparison to tra-
ditional translation models. However, GPT-4 demonstrates a robust capability in explaining
discourse knowledge, even though it may occasionally select incorrect translation candidates. The
findings from Bang et al. [6] indicated that ChatGPT performs X → Eng translation well, but it
still lacks the ability to perform Eng→ X translation. Lyu et al. [130] investigated several research
directions in MT utilizing LLMs. This study significantly contributes to the advancement of MT
research and highlights the potential of LLMs in enhancing translation capabilities. In summary,
while LLMs perform satisfactorily in several translation tasks, there is still room for improvement,
e.g., enhancing the translation capability from English to non-English languages.
Question answering is a crucial technology in the field of human-computer interaction, and

it has found wide application in scenarios like search engines, intelligent customer service, and
QA systems. The measurement of accuracy and efficiency in QA models will have significant
implications for these applications. According to Liang et al. [114], among all the evaluated models,
InstructGPT davinci v2 (175B) exhibited the highest performance in terms of accuracy, robustness,
and fairness across the 9 QA scenarios. Both GPT-3.5 and ChatGPT demonstrate significant ad-
vancements compared to GPT-3 in their ability to answer general knowledge questions. In most
domains, ChatGPT surpasses GPT-3.5 by more than 2% in terms of performance [9, 159]. However,
ChatGPT performs slightly weaker than GPT-3.5 on the CommonsenseQA and Social IQA bench-
marks. This can be attributed to ChatGPT’s cautious nature, as it tends to decline to provide an
answer when there is insufficient information available. Fine-tuned models, such as Vícuna and
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ChatGPT, exhibit exceptional performance with near-perfect scores, surpassing models that lack
supervised fine-tuning by a significant margin [5, 6]. Laskar et al. [102] evaluated the effectiveness
of ChatGPT on a range of academic datasets, including various tasks such as answering questions,
summarizing text, generating code, reasoning with commonsense, solving math problems, trans-
lating languages, detecting bias, and addressing ethical issues. Overall, LLMs showcase flawless
performance on QA tasks and hold the potential for further enhancing their proficiency in social,
event, and temporal commonsense knowledge in the future.
There are also other generation tasks to explore. In the field of sentence style transfer, Pu

and Demberg [158] demonstrated that ChatGPT surpasses the previous SOTA supervised model
through training on the same subset for few-shot learning, as evident from the higher BLEU score.
However, when it comes to controlling the formality of sentence style, ChatGPT’s performance
still differs significantly from human behavior. In writing tasks, Chia et al. [22] discovered that
LLMs exhibit consistent performance across various categories such as informative, professional,
argumentative, and creative writing. This finding implies that LLMs possess a general proficiency
in writing capabilities. In text generation quality, Chen et al. [20] revealed that ChatGPT excels
in assessing text quality from multiple angles, even in the absence of reference texts, surpassing
the performance of most existing automated metrics. Employing ChatGPT to generate numerical
scores for text quality emerged as the most reliable and effective approach among the various
testing methods studied.

3.1.4 Multilingual Tasks. While English is the predominant language, many LLMs are trained
on mixed-language training data. The combination of multilingual data indeed helps LLMs gain
the ability to process inputs and generate responses in different languages, making them widely
adopted and accepted across the globe. However, due to the relatively recent emergence of this
technology, LLMs are primarily evaluated on English data, leading to a potential oversight of
evaluating their multilingual performance. To address this, several articles have provided com-
prehensive, open, and independent evaluations of LLMs’ performance on various NLP tasks in
different non-English languages. These evaluations offer valuable insights for future research and
applications.
Abdelali et al. [1] evaluated the performance of ChatGPT in standard Arabic NLP tasks and

observed that ChatGPT exhibits lower performance compared to SOTA models in the zero-shot
setting for most tasks. Ahuja et al. [2], Bang et al. [6], Lai et al. [100], Zhang et al. [248] utilized a
greater number of languages across multiple datasets, encompassing a wider range of tasks, and
conducted a more comprehensive evaluation of LLMs, including BLOOM, Vicuna, Claude, Chat-
GPT, and GPT-4. The results indicated that these LLMs perform poorly when it came to non-Latin
languages and languages with limited resources. Despite translating the input to English and us-
ing it as the query, generative LLMs still displays subpar performance across tasks and languages
compared to SOTA models [2]. Furthermore, Bang et al. [6] highlighted that ChatGPT still faces a
limitation in translating sentences written in non-Latin script languages with rich linguistic re-
sources. The aforementioned demonstrates that there are numerous challenges and ample opportu-
nities for enhancement in multilingual tasks for LLMs. Future research should prioritize achieving
multilingual balance and addressing the challenges faced by non-Latin languages and low-resource
languages, with the aim of better supporting users worldwide. At the same time, attention should
be paid to the impartiality and neutrality of the language in order to mitigate any potential biases,
including English bias or other biases, that could impact multilingual applications.

3.1.5 Factuality. Factuality in the context of LLMs refers to the extent to which the information
or answers provided by the model align with real-world truths and verifiable facts. Factuality in
LLMs significantly impacts a variety of tasks and downstream applications, such as QA systems,
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information extraction, text summarization, dialogue systems, and automated fact-checking,
where incorrect or inconsistent information could lead to substantial misunderstandings and mis-
interpretations. Evaluating factuality is of great importance in order to trust and efficiently use
these models. This includes the ability of these models to maintain consistency with known facts,
avoid generating misleading or false information (known as “factual hallucination”), and effec-
tively learn and recall factual knowledge. A range of methodologies have been proposed to mea-
sure and improve the factuality of LLMs.
Wang et al. [204] assessed the internal knowledge capabilities of several large models, namely

InstructGPT, ChatGPT-3.5, GPT-4, and BingChat [137], by examining their ability to answer open
questions based on the Natural Questions [98] and TriviaQA [88] datasets. The evaluation process
involved human assessment. The results of the study indicated that while GPT-4 and BingChat
can provide correct answers for more than 80% of the questions, there is still a remaining gap
of over 15% to achieve complete accuracy. In the work of Honovich et al. [74], they conducted a
review of current factual consistency evaluation methods and highlighted the absence of a uni-
fied comparison framework and the limited reference value of related scores compared to binary
labels. To address this, they transformed existing fact consistency tasks into binary labels, specif-
ically considering only whether there is a factual conflict with the input text, without factoring
in external knowledge. The research discovered that fact evaluation methods founded on natural
language inference and question generation answering exhibit superior performance and can com-
plement each other. Pezeshkpour [156] proposed a novel metric, based on information theory, to
assess the inclusion of specific knowledge in LLMs. The metric utilized the concept of uncertainty
in knowledge to measure factualness, calculated by LLMs filling in prompts and examining the
probability distribution of the answer. The paper discussed two methods for injecting knowledge
into LLMs: explicit inclusion of knowledge in the prompts and implicit fine-tuning of the LLMs
using knowledge-related data. The study demonstrated that this approach surpasses traditional
ranking methods by achieving an accuracy improvement of over 30%. Gekhman et al. [55] im-
proved the method for evaluating fact consistency in summarization tasks. It proposed a novel
approach that involved training student NLI models using summaries generated by multiple mod-
els and annotated by LLMs to ensure fact consistency. The trained student model was then used
for summarization fact consistency evaluation. Manakul et al. [133] operated on two hypotheses
regarding how LLMs generate factual or hallucinated responses. It proposed the use of three for-
mulas (BERTScore [247], MQAG [134] and n-gram) to evaluate factuality and employed alternative
LLMs to gather token probabilities for black-box language models. The study discovered that sim-
ply computing sentence likelihood or entropy helped validate the factuality of the responses. Min
et al. [138] broke down text generated by LLMs into individual “atomic” facts, which were then
evaluated for their correctness. The FActScore is used to measure the performance of estimators
through the calculation of F1 scores. The paper tested various estimators and revealed that current
estimators still have some way to go in effectively addressing the task. Lin et al. [119] introduced
the TruthfulQA dataset, designed to cause models to make mistakes. Multiple language models
were tested by providing factual answers. The findings from these experiments suggest that sim-
ply scaling up model sizes may not necessarily improve their truthfulness, and recommendations
are provided for the training approach. This dataset has become widely used for evaluating the
factuality of LLMs [89, 146, 192, 219].

3.2 Robustness, Ethics, Bias, and Trustworthiness

The evaluation encompasses crucial aspects of robustness, ethics, biases, and trustworthiness.
These factors have gained increasing importance in assessing the performance of LLMs compre-
hensively. Table 3 shows a summary of the research.
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Table 3. Summary of LLMs Evaluation on Robustness, Ethics, Biases,

and Trustworthiness (Ordered by the Name of the First Author)

Reference Robustness Ethics and biases Trustworthiness

Cao et al. [16] �
Dhamala et al. [37] �
Deshpande et al. [35] �
Ferrara [42] �
Gehman et al. [53] �
Hartmann et al. [65] �
Hendrycks et al. [69] �
Hagendorff and Fabi [62] �
Li et al. [111] �
Liu et al. [123] �
Liu et al. [123] �
Li et al. [113] �
Parrish et al. [153] �
Rutinowski et al. [167] �
Rawte et al. [163] �
Sheng et al. [175] �
Simmons [176] �
Wang et al. [207] �
Wang et al. [206] �
Wang et al. [201] � � �
Wang et al. [209] �
Xie et al. [227] �
Yang et al. [233] �
Zhao et al. [256] �
Zhuo et al. [265] �
Zhu et al. [262] �
Zhuo et al. [264] �
Zhang et al. [251] �

3.2.1 Robustness. Robustness studies the stability of a system when facing unexpected inputs.
Specifically, out-of-distribution (OOD) [207] and adversarial robustness are two popular re-
search topics for robustness. Wang et al. [206] is an early work that evaluated ChatGPT and other
LLMs from both the adversarial and OOD perspectives using existing benchmarks such as Ad-
vGLUE [203], ANLI [140], and DDXPlus [41] datasets. Zhuo et al. [265] evaluated the robustness
of semantic parsing. Yang et al. [233] evaluated OOD robustness by extending the GLUE [200]
dataset. The results of this study emphasize the potential risks to the overall system security when
manipulating visual input. For vision-language models, Zhao et al. [256] evaluated LLMs on visual
input and transferred them to other visual-linguistic models, revealing the vulnerability of visual
input. Li et al. [111] provided an overview of OOD evaluation for language models: adversarial ro-
bustness, domain generalization, and dataset biases. Bridging these lines of research, the authors
conducted a comparative analysis, unifying the three approaches. They succinctly outlined the
data-generation processes and evaluation protocols for each line of study, all while emphasizing
the prevailing challenges and future research prospects. Additionally, Liu et al. [123] introduced a
large-scale robust visual instruction dataset to enhance the performance of large-scalemulti-modal
models in handling relevant images and human instructions.
For adversarial robustness, Zhu et al. [262] evaluated the robustness of LLMs to prompts by

proposing a unified benchmark called PromptBench. They comprehensively evaluated adversar-
ial text attacks at multiple levels (character, word, sentence, and semantics). The results showed
that contemporary LLMs are vulnerable to adversarial prompts, highlighting the importance of
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the models’ robustness when facing adversarial inputs. As for new adversarial datasets, Wang
et al. [201] introduced AdvGLUE++ benchmark data for assessing adversarial robustness and im-
plemented a new evaluation protocol to scrutinize machine ethics via jailbreaking system prompts.

3.2.2 Ethics and Bias. LLMs have been found to internalize, spread, and potentially magnify
harmful information existing in the crawled training corpora, usually, toxic languages, like of-
fensiveness, hate speech, and insults [53], as well as social biases like stereotypes towards people
with a particular demographic identity (e.g., gender, race, religion, occupation, and ideology) [175].
More recently, Zhuo et al. [264] used conventional testing sets and metrics [37, 53, 153] to perform
a systematic evaluation of ChatGPT’s toxicity and social bias, finding that it still exhibits noxious
content to some extend. Taking a further step, Deshpande et al. [35] introduced role-playing into
the model and observed an increase in generated toxicity up to 6x. Furthermore, such role-playing
also caused biased toxicity towards specific entities. Different from simply measuring social biases,
Ferrara [42] investigated the sources, underlying mechanisms, and corresponding ethical conse-
quences of these biases potentially produced by ChatGPT. Beyond social biases, LLMs have also
been assessed by political tendency and personality traits [65, 167] based questionnaires like the
Political Compass Test and MBTI test, demonstrating a propensity for progressive views and an
ENFJ personality type. In addition, LLMs like GPT-3 were found to have moral biases [176] in
terms of the Moral Foundation theory [58]; The study conducted by [69] reveals that existing LMs
have potential in ethical judgment, but still need improvement. [254] proposes a Chinese conver-
sational bias evaluation dataset CHBias, discovers bias risks in pre-trained models, and explores
debiasing methods. Moreover, in the assessment of GPT-4 alignment, [209] discovered a system-
atic bias. ChatGPT is also observed to exhibit somewhat bias on cultural values [16]. Wang et al.
[201] also incorporated an evaluation dataset specifically aimed at gauging stereotype bias, using
both targeted and untargeted system prompts. All these ethical issues might elicit serious risks,
impeding the deployment of LLMs and having a profound negative impact on society.

3.2.3 Trustworthiness. Some work focuses on other trustworthiness problems in addition to ro-
bustness and ethics.3 In their 2023 study, DecodingTrust, Wang et al. [201] offered a multifaceted
exploration of trustworthiness vulnerabilities in the GPT models, especially GPT-3.5 and GPT-4.
Their evaluation expanded beyond the typical trustworthiness concerns to include eight critical
aspects: toxicity, stereotype bias, adversarial and out-of-distribution robustness, robustness to ad-
versarial demonstrations, privacy, machine ethics, and fairness. DecodingTrust’s investigation em-
ploys an array of newly constructed scenarios, tasks, and metrics. They revealed that while GPT-4
often showcases improved trustworthiness over GPT-3.5 in standard evaluations, it is simultane-
ously more susceptible to attacks.
In another study by Hagendorff and Fabi [62], LLMs with enhanced cognitive abilities were eval-

uated. They found that these models can avoid common human intuitions and cognitive errors,
demonstrating super-rational performance. By utilizing cognitive reflection tests and semantic il-
lusion experiments, the researchers gained insights into the psychological aspects of LLMs. This
method offers new perspectives for evaluating model biases and ethical issues that may not have
been previously identified. Furthermore, a study by [227] brings attention to a significant con-
cern: the consistency of judgment in LLMs diminishes notably when faced with disruptions such
as questioning, negation, or misleading cues, even if their initial judgments were accurate. The
research delves into various prompting methods designed to mitigate this issue and successfully
demonstrates their efficacy.

3The term ‘trustworthiness’ in this section refers to other work that contains more than robustness and ethics.
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LLMs are capable of generating coherent and seemingly factual text. However, the information
generated can include factual inaccuracies or statements ungrounded in reality, a phenomenon
known as hallucination [163, 251]. Evaluating these issues helps improve the training methods
of LLMs to reduce the occurrence of hallucinations. For the evaluation of illusions in large-scale
visual models, Liu et al. [123] introduced a comprehensive and robust large-scale visual instruc-
tion dataset: LRV-Instruction. Through the GAVIE method, they fine-tuned the evaluation visual
instructions, and experimental results demonstrated that LRV-Instruction effectively alleviates il-
lusions in LLMs. In addition, Li et al. [113] conducted an assessment of illusions in large-scale
visual language models, revealing through experiments that the distribution of objects in visual
instructions significantly impacts object illusions in LVLMs. To enhance the assessment of object
illusions in LVLMs, they introduced a polling-based query method, known as POPE. This method
provides an improved evaluation of object illusions in LVLMs.

3.3 Social Science

Social science involves the study of human society and individual behavior, including economics,
sociology, political science, law, and other disciplines. Evaluating the performance of LLMs in
social science is important for academic research, policy formulation, and social problem-solving.
Such evaluations can help improve the applicability and quality of models in the social sciences,
increasing understanding of human societies and promoting social progress.
Wu et al. [223] evaluated the potential use of LLMs in addressing scaling and measurement

issues in social science and found that LLMs can generate meaningful responses regarding political
ideology and significantly improve text-as-data methods in social science.
In computational social science (CSS) tasks, Ziems et al. [267] presented a comprehensive

evaluation of LLMs on several CSS tasks. During classification tasks, LLMs exhibit the lowest
absolute performance on event argument extraction, character tropes, implicit hate, and empathy
classification, achieving accuracy below 40%. These tasks either involve complex structures (event
arguments) or subjective expert taxonomies with semantics that differ from those learned during
LLM pretraining. Conversely, LLMs achieve the best performance on misinformation, stance, and
emotion classification. When it comes to generation tasks, LLMs often produce explanations that
surpass the quality of gold references provided by crowd workers. In summary, while LLMs can
greatly enhance the traditional CSS research pipeline, they cannot completely replace it.
Some articles also evaluate LLMs on legal tasks. The zero-shot performance of LLMs is mediocre

in legal case judgment summarization. LLMs have several problems, including incomplete sen-
tences and words, meaningless sentences merge, and more serious errors such as inconsistent
and hallucinated information [34]. The results showed that further improvement is necessary for
LLMs to be useful for case judgment summarization by legal experts. Nay et al. [139] indicated
that LLMs, particularly when combined with prompting enhancements and the correct legal texts,
could perform better but not yet at expert tax lawyer levels.
Lastly, within the realm of psychology, Frank [44] adopted an interdisciplinary approach and

drew insights from developmental psychology and comparative psychology to explore alternative
methods for evaluating the capabilities of LLMs. By integrating different perspectives, researchers
can deepen their understanding of the essence of cognition and effectively leverage the potential
of advanced technologies such as large language models, while mitigating potential risks.
In conclusion, the utilization of LLMs has significantly benefited individuals in addressing social

science-related tasks, leading to improved work efficiency. The outputs produced by LLMs serve as
valuable resources for enhancing productivity. However, it is crucial to acknowledge that existing
LLMs cannot completely replace human professionals in this domain.
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Table 4. Summary of Evaluations on Natural Science and Engineering Tasks

Based on Three Aspects: Mathematics, General Science and Engineering (Ordered

by the Name of the First Author)

Reference Mathematics General science Engineering

Arora et al. [3] � �
Bubeck et al. [15] � �
Castro Nascimento and Pimentel [18] �
Collins et al. [27] �
Dao and Le [31] �
Guo et al. [61] �
Liu et al. [125] �
Pallagani et al. [150] �
Sridhara et al. [181] �
Valmeekam et al. [194] �
Valmeekam et al. [195] �
Wei et al. [220] �
Wu et al. [224] �
Yuan et al. [240] �
Yu et al. [236] �
Zhuang et al. [263] �

3.4 Natural Science and Engineering

Evaluating the performance of LLMs in natural science and engineering can help guide applica-
tions and development in scientific research, technology development, and engineering studies.
Table 4 shows a summary of the natural science and engineering tasks.

3.4.1 Mathematics. For fundamental mathematical problems, most large language models
(LLMs) demonstrate proficiency in addition and subtraction, and possess some capability in multi-
plication. However, they face challenges when it comes to division, exponentiation, trigonometry
functions, and logarithm functions. On the other hand, LLMs exhibit competence in handling deci-
mal numbers, negative numbers, and irrational numbers [240]. In terms of performance, ChatGPT
and GPT-4 outperform other models significantly, showcasing their superiority in solving math-
ematical tasks [220]. These two models have a distinct advantage in dealing with large numbers
(greater than 1e12) and complex, lengthy mathematical queries. GPT-4 outperforms ChatGPT by
achieving a significant increase in accuracy of 10 percentage points and a reduction in relative error
by 50%, due to its superior division and trigonometry abilities, proper understanding of irrational
numbers, and consistent step-by-step calculation of long expressions.
When confronted with complex and challenging mathematical problems, LLMs exhibit subpar

performance. Specifically, GPT-3 demonstrates nearly random performance, while GPT-3.5 shows
improvement, and GPT-4 performs the best [3]. Despite the advancementsmade in the newmodels,
it is important to note that the peak performance remains relatively low compared to that of experts
and these models lack the capability to engage in mathematical research [15]. The specific tasks of
algebraic manipulation and calculation continue to pose challenges for GPTs [15, 27]. The primary
reasons behind GPT-4’s low performance in these tasks are errors in algebraic manipulation and
difficulties in retrieving pertinent domain-specific concepts. Wu et al. [224] evaluated the use of
GPT-4 on difficult high school competition problems and GPT-4 reached 60% accuracy on half of
the categories. Intermediate algebra and precalculus can only be solved with a low accuracy rate
of around 20%. ChatGPT is not good at answering questions on topics including derivatives and
applications, Oxyz spatial calculus, and spatial geometry [31]. Dao and Le [31], Wei et al. [220]
showed that ChatGPT’s performance worsens as task difficulty increases: it correctly answered
83% of the questions at the recognition level, 62% at the comprehension level, 27% at the application
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level, and only 10% at the highest cognitive complexity level. Given those problems at higher
knowledge levels tend to be more complex, requiring in-depth understanding and problem-solving
skills, such results are to be expected.
These results indicate that the effectiveness of LLMs is highly influenced by the complexity of

problems they encounter. This finding holds significant implications for the design and develop-
ment of optimized artificial intelligence systems capable of successfully handling these challenging
tasks.

3.4.2 General Science. Further improvements are needed in the application of LLMs in the field
of chemistry. Castro Nascimento and Pimentel [18] presented five straightforward tasks from vari-
ous subareas of chemistry to assess ChatGPT’s comprehension of the subject, with accuracy rang-
ing from 25% to 100%. Guo et al. [61] created a comprehensive benchmark that encompasses eight
practical chemistry tasks, which is designed to assess the performance of LLMs (including GPT-4,
GPT-3.5, and Davinci-003) for each chemistry task. Based on the experiment results, GPT-4 demon-
strates superior performance compared to the other two models. [3] showed that LLMs perform
worse on physics problems than chemistry problems, probably because chemistry problems have
lower inference complexity than physics problems in this setting. There are limited evaluation
studies on LLMs in the field of general science, and the current findings indicate that further im-
provement is needed in the performance of LLMs within this domain.

3.4.3 Engineering. Within engineering, the tasks can be organized in ascending order of diffi-
culty, including code generation, software engineering, and commonsense planning.
In code generation tasks, the smaller LLMs trained for the tasks are competitive in performance,

andCodeGen-16B [141] is comparable in performance to ChatGPT using a larger parameter setting,
reaching about a 78% match [125]. Despite facing challenges in mastering and comprehending cer-
tain fundamental concepts in programming languages, ChatGPT showcases a commendable level
of coding level [263]. Specifically, ChatGPT has developed superior skills in dynamic program-
ming, greedy algorithm, and search, surpassing highly capable college students, but it struggles
in data structure, tree, and graph theory. GPT-4 demonstrates an advanced ability to generate
code based on given instructions, comprehend existing code, reason about code execution, simu-
late the impact of instructions, articulate outcomes in natural language, and execute pseudocode
effectively [15].

In software engineering tasks, ChatGPT generally performs well and provides detailed re-
sponses, often surpassing both human expert output and SOTA output. However, for certain tasks
such as code vulnerability detection and information retrieval-based test prioritization, the current
version of ChatGPT fails to provide accurate answers, rendering it unsuitable for these specific
tasks [181].
In commonsense planning tasks, LLMs may not perform well, even in simple planning tasks

where humans excel [194, 195]. Pallagani et al. [150] demonstrated that the fine-tuned CodeT5
[214] performs the best across all considered domains, with the shortest inference time. Moreover,
it explored the capability of LLMs for plan generalization and found that their generalization capa-
bilities appear to be limited. It turns out that LLMs can handle simple engineering tasks, but they
perform poorly on complex engineering tasks.

3.5 Medical Applications

The application of LLMs in the medical field has recently received significant attention. As a result,
this section aims to provide a comprehensive review of the ongoing efforts dedicated to imple-
menting LLMs in medical applications. We have categorized these applications into three aspects
as shown in Table 5: medical query, medical examination, and medical assistants. A detailed
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Table 5. Summary of Evaluations onMedical Applications based on the Three Aspects:

Medical Queries, Medical Assistants, and Medical Examination (Ordered by the Name of

the First Author)

Reference Medical queries Medical examination Medical assistants

Cascella et al. [17] �
Chervenak et al. [21] �
Duong and Solomon [39] �
Gilson et al. [57] �
Hamidi and Roberts [63] �
Holmes et al. [73] �
Jahan et al. [81] �
Johnson et al. [87] �
Khan et al. [93] �
Kung et al. [97] �
Lahat et al. [99] �
Lyu et al. [131] �
Oh et al. [143] �
Samaan et al. [169] �
Thirunavukarasu et al. [186] �
Wang et al. [217] �

examination of these categories will enhance our understanding of the potential impact and ad-
vantages that LLMs can bring to the medical domain.

3.5.1 Medical Queries. The significance of evaluating LLMs on medical queries lies in provid-
ing accurate and reliable medical answers to meet the needs of healthcare professionals and pa-
tients for high-quality medical information. As shown in Table 5, the majority of LLMs evalua-
tions in the medical field concentrate on medical queries. ChatGPT generated relatively accurate
information for various medical queries, including genetics [39], radiation oncology physics [73],
biomedicine [81], and many other medical disciplines [63, 87, 169], demonstrating its effectiveness
in the field of medical queries to a certain extent. As for the limitations, Thirunavukarasu et al.
[186] assessed ChatGPT’s performance in primary care and found that its average score in the
student comprehensive assessment falls below the passing score, indicating room for improve-
ment. Chervenak et al. [21] highlighted that while ChatGPT can generate responses similar to
existing sources in fertility-related clinical prompts, its limitations in reliably citing sources and
potential for fabricating information restrict its clinical utility.

3.5.2 Medical Examination. The studies by Gilson et al. [57], Kung et al. [97] have evaluated
the performance of LLMs in medical examination assessment through theUnited States Medical

Licensing Examination (USMLE).4 In the study of [57], ChatGPT’s performance in answering
USMLE Step 1 and Step 2 exam questions was assessed using novel multiple-choice question sets.
The results indicated that ChatGPT achieves varying accuracies across different datasets. However,
the presence of out-of-context information was found to be lower compared to the correct answer
in the NBME-Free-Step1 and NBME-Free-Step2 datasets. Kung et al. [97] showed that ChatGPT
achieves or approaches the passing threshold in these exams with no tailored training. The model
demonstrates high consistency and insight, indicating its potential to assist in medical education
and clinical decision-making. ChatGPT can be used as a tool to answer medical questions, pro-
vide explanations, and support decision-making processes. This offers additional resources and
support for medical students and clinicians in their educational and clinical practices. Moreover,

4https://www.usmle.org/
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Sharma et al. [173] found that answers generated by ChatGPT are more context-aware with better
deductive reasoning abilities compared to Google search results.

3.5.3 Medical Assistants. In the field of medical assistance, LLMs demonstrate potential
applications, including research on identifying gastrointestinal diseases [99], dementia diagnosis
[217], accelerating the evaluation of COVID-19 literature [93], and their overall potential in health-
care [17]. However, there are also limitations and challenges, such as lack of originality, high input
requirements, resource constraints, uncertainty in answers, and potential risks related to misdiag-
nosis and patient privacy issues.
Moreover, several studies have evaluated the performance and feasibility of ChatGPT in themed-

ical education field. In the study by Oh et al. [143], ChatGPT, specifically GPT-3.5 and GPT-4 mod-
els, were evaluated in terms of their understanding of surgical clinical information and their po-
tential impact on surgical education and training. The results indicate an overall accuracy of 46.8%
for GPT-3.5 and 76.4% for GPT-4, demonstrating a significant performance difference between the
two models. Notably, GPT-4 consistently performs well across different subspecialties, suggesting
its capability to comprehend complex clinical information and enhance surgical education and
training. Another study by Lyu et al. [131] explores the feasibility of utilizing ChatGPT in clin-
ical education, particularly in translating radiology reports into easily understandable language.
The findings demonstrate that ChatGPT effectively translates radiology reports into accessible lan-
guage and provides general recommendations. Furthermore, the quality of ChatGPT has shown im-
provement compared to GPT-4. These findings suggest that employing LLMs in clinical education
is feasible, although further efforts are needed to address limitations and unlock their full potential.

3.6 Agent Applications

Instead of focusing solely on general language tasks, LLMs can be utilized as powerful tools in
various domains. Equipping LLMs with external tools can greatly expand the capabilities of the
model [160]. ToolLLM [161] provides a comprehensive framework to equip open-source large lan-
guage models with tool use capabilities. Huang et al. [77] introduced KOSMOS-1, which is ca-
pable of understanding general patterns, following instructions, and learning based on context.
The studyof MRKL by Karpas et al. [90] emphasized the importance of understanding when and
how to utilize external symbolic tools, as this knowledge is dependent on the capabilities of LLMs,
particularly when these tools can reliably perform functions. Additionally, two other studies, Tool-
former [172] and TALM [152], explored the utilization of tools to enhance language models. Tool-
former employs a training approach to determine the optimal usage of specific APIs and integrates
the obtained results into subsequent token predictions. On the other hand, TALM combines indis-
tinguishable tools with text-based methods to augment language models and employs an iterative
technique known as “self-play”, guided by minimal tool demonstrations. Furthermore, Shen et al.
[174] proposed the HuggingGPT framework, which leverages LLMs to connect various AI models
within the machine learning community (such as Hugging Face), aiming to address AI tasks.

3.7 Other Applications

In addition to above areas, there have been evaluations in various other domains, including edu-
cation, search and recommendation, personality testing, and specific applications. Table 6 shows
a sumary of these applications.

3.7.1 Education. LLMs have shown promise in revolutionizing the field of education. They have
the potential to make significant contributions in several areas, such as assisting students in im-
proving their writing skills, facilitating better comprehension of complex concepts, expediting
the delivery of information, and providing personalized feedback to enhance student engagement.
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Table 6. Summary of Evaluations on other Applications based on the Four Aspects:

Education, Search and Recommendation, Personality Testing and Specific Applications

(Ordered by the Name of the First Author)

Reference Education Search and recommendation Personality testing Specific applications

Bodroza et al. [10] �
Dai et al. [30] �
de Winter [32] �
Dai et al. [29] �
Fan et al. [40] �
Hellas et al. [67] �
Jentzsch and Kersting [84] �
Lanzi and Loiacono [101] �
Le and Zhang [103] �
Li et al. [110] �
Liang et al. [115] �
Sun et al. [183] �
Song et al. [180] �
Safdari et al. [168] �
Thakur et al. [185] �
Wang and Demszky [210] �
Wang et al. [212] �
Wang et al. [216] �
Xu et al. [231] �
Yuan et al. [239] �
Zhang et al. [244] �

These applications aim to create more efficient and interactive learning experiences, offering stu-
dents a broader range of educational opportunities. However, to fully harness the potential of LLMs
in education, extensive research and ongoing refinement are necessary.
The evaluation of LLMs for educational assistance aims to investigate and assess their po-

tential contributions to the field of education. Such evaluations can be conducted from various
perspectives. According to Dai et al. [30], ChatGPT demonstrates the ability to generate detailed,
fluent, and coherent feedback that surpasses that of human teachers. It can accurately assess stu-
dent assignments and provide feedback on task completion, thereby assisting in the development
of student skills. However, ChatGPT’s responses may lack novelty or insightful perspectives re-
garding teaching improvement [210]. Additionally, the study conducted by Hellas et al. [67] re-
vealed that LLMs can successfully identify at least one actual problem in student code, although
instances of misjudgment are also observed. In conclusion, the utilization of LLMs shows promise
in addressing program logic issues, although challenges remain in achieving proficiency in output
formatting. It is important to note that while these models can provide valuable insights, they may
still generate errors similar to those made by students.
In educational exams, researchers aim to evaluate the application effectiveness of LLMs, in-

cluding automatic scoring, question generation, and learning guidance. de Winter [32] showed
that ChatGPT achieves an average of 71.8% correctness, which is comparable to the average score
of all participating students. Subsequently, the evaluation was conducted using GPT-4, and it
achieved a score of 8.33. Furthermore, this evaluation showed the effectiveness of leveraging boot-
strapping that combines randomness via the “temperature” parameter in diagnosing incorrect an-
swers. Zhang et al. [246] claimed that GPT-3.5 can solve MIT math and EECS exams with GPT-4
achieving better performance. However, it turned out to be not fair since they accidentally included
the correct answers into the prompts.

3.7.2 Search and Recommendation. The assessment of LLMs in search and recommendation
can be broadly categorized into two areas. Firstly, in the realm of information retrieval, Sun
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et al. [183] investigated the effectiveness of generative ranking algorithms, such as ChatGPT and
GPT-4, for information retrieval tasks. Experimental results demonstrate that guided ChatGPT and
GPT-4 exhibit competitive performance on popular benchmark tests, even outperforming super-
vised methods. Additionally, the extraction of ChatGPT’s ranking functionality into a specialized
model shows superior performance when trained on 10K ChatGPT-generated data compared to
training on 400K annotated MS MARCO data in the BEIR dataset [185]. Furthermore, Xu et al.
[231] conducted a randomized online experiment to investigate the behavioral differences of users
when performing information retrieval tasks using search engines and chatbot tools. Participants
were divided into two groups: one using tools similar to ChatGPT and the other using tools similar
to Google Search. The results show that the ChatGPT group spent less time on all tasks and the
difference between these two groups is not significant.
Secondly, moving to the domain of recommendation systems, LLMs have emerged as es-

sential components that leverage their natural language processing capabilities to comprehend
user preferences, item descriptions, and contextual information [40]. By incorporating LLMs into
recommendation pipelines, these systems can offer more accurate and personalized recommen-
dations, thereby improving user experience and overall recommendation quality. However, it is
crucial to address the potential risks associated with using LLMs for recommendations. Recent
research by Zhang et al. [244] has highlighted the issue of unfair recommendations generated
by ChatGPT. This emphasizes the importance of evaluating fairness when employing LLMs in
recommendation scenarios. Dai et al. [29] suggest that ChatGPT exhibits strong performance in
recommender systems. The use of listwise ranking is found to strike the best balance between cost
and performance. Furthermore, ChatGPT shows promise in addressing the cold-start problem and
providing interpretable recommendations. Moreover, the research by Yuan et al. [239] and Li et al.
[110] demonstrated the promising potential of the modality-based recommendation model

(MoRec) and text-based collaborative filtering (TCF) in recommendation systems.

3.7.3 Personality Testing. Personality testing aims to measure individuals’ personality traits
and behavioral tendencies, and LLMs as powerful natural language processing models have been
widely applied in such tasks.

Research conducted by Bodroza et al. [10] investigated the personality features of using Davinci-
003 as a chatbot and found variations in the consistency of its answers, despite exhibiting prosocial
characteristics. However, there remains uncertainty regarding whether the chatbot’s responses are
driven by conscious self-reflection or algorithmic processes. Song et al. [180] examined the mani-
festation of personality in language models and discovered that many models perform unreliably
in self-assessment tests and exhibit inherent biases. Therefore, it is necessary to develop specific
machine personality measurement tools to enhance reliability. These studies offer vital insights to
better understand LLMs in personality testing. Safdari et al. [168] proposed a comprehensive ap-
proach to conduct effective psychometric testing for the personality traits in the text generated by
LLMs. In order to evaluate the emotional intelligence of LLMs, Wang et al. [212] developed a new
psychometric assessment method. By referencing a framework constructed from over 500 adults,
the authors tested various mainstream LLMs. The results showed that most LLMs achieve above-
average scores in emotional quotient (EQ), with GPT-4 scoring 117, surpassing 89% of human
participants. However, a multivariate pattern analysis indicated that certain LLMs achieve human-
level performance without relying on mechanisms resembling those found in humans. This is
evident from the distinct differences in the quality of their representational patterns, as compared
to humans. Liang et al. [115] employed the word guessing game to evaluate LLMs’ language and
theory of mind intelligences, a more engaging and interactive assessment method. Jentzsch and
Kersting [84] discussed the challenges of incorporating humor into LLMs, particularly ChatGPT.
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They found that while ChatGPT demonstrates impressive capabilities in NLP tasks, it falls short in
generating humorous responses. This study emphasizes the importance of humor in human com-
munication and the difficulties that LLMs face in capturing the subtleties and context-dependent
nature of humor. It discusses the limitations of current approaches and highlights the need for fur-
ther research on more sophisticated models that can effectively understand and generate humor.

3.7.4 Specific Applications. Moreover, various research endeavors have been conducted to ex-
plore the application and evaluation of LLMs across a wide spectrum of tasks, such as game de-

sign [101], model performance assessment [216], and log parsing [103]. Collectively, these
findings enhance our comprehension of the practical implications associated with the utilization
of LLMs across diverse tasks. They shed light on the potential and limitations of these models
while providing valuable insights for performance improvement.

4 WHERE TO EVALUATE: DATASETS AND BENCHMARKS

LLMs evaluation datasets are used to test and compare the performance of different language
models on various tasks, as depicted in Section 3. These datasets, such as GLUE [200] and Super-
GLUE [199], aim to simulate real-world language processing scenarios and cover diverse tasks
such as text classification, machine translation, reading comprehension, and dialogue generation.
This section will not discuss any single dataset for language models but benchmarks for LLMs.

A variety of benchmarks have emerged to evaluate their performance. In this study, we compile
a selection of 46 popular benchmarks, as shown in Table 7.5 Each benchmark focuses on different
aspects and evaluation criteria, providing valuable contributions to their respective domains. For a
better summarization, we divide these benchmarks into three categories: benchmarks for general
language tasks, benchmarks for specific downstream tasks, and benchmarks for multi-modal tasks.

4.1 Benchmarks for General Tasks

LLMs are designed to solve a vast majority of tasks. To this end, existing benchmarks tend to
evaluate the performance in different tasks.
Chatbot Arena [128] and MT-Bench [258] are two significant benchmarks that contribute to

the evaluation and advancement of chatbot models and LLMs in different contexts. Chatbot Arena
provides a platform to assess and compare diverse chatbot models through user engagement and
voting. Users can engage with anonymous models and express their preferences via voting. The
platform gathers a significant volume of votes, facilitating the evaluation of models’ performance
in realistic scenarios. Chatbot Arena provides valuable insights into the strengths and limitations
of chatbot models, thereby contributing to the progress of chatbot research and advancement.
Meanwhile, MT-Bench evaluates LLMs on multi-turn dialogues using comprehensive questions

tailored to handling conversations. It provides a comprehensive set of questions specifically de-
signed for assessing the capabilities of models in handling multi-turn dialogues. MT-Bench pos-
sesses several distinguishing features that differentiate it from conventional evaluation method-
ologies. Notably, it excels in simulating dialogue scenarios representative of real-world settings,
thereby facilitating a more precise evaluation of a model’s practical performance. Moreover, MT-
Bench effectively overcomes the limitations in traditional evaluation approaches, particularly in
gauging a model’s competence in handling intricate multi-turn dialogue inquiries.
Instead of focusing on specific tasks and evaluation metrics, HELM [114] provides a comprehen-

sive assessment of LLMs. It evaluates language models across various aspects such as language

5Note that as the evaluation of LLMs is a hot research area, it is very likely that we cannot cover all benchmarks. We

welcome suggestions and comments to make this list perfect.
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Table 7. Summary of Existing LLMs Evaluation Benchmarks (Ordered by the Name of the First Author)

Benchmark Focus Domain Evaluation Criteria

SOCKET [23] Social knowledge Specific downstream task Social language understanding

MME [46] Multimodal LLMs Multi-modal task Ability of perception and cognition

Xiezhi [59] Comprehensive domain knowledge General language task Overall performance across multiple benchmarks

Choice-75 [75] Script learning Specific downstream task Overall performance of LLMs

CUAD [71] Legal contract review Specific downstream task Legal contract understanding

TRUSTGPT [79] Ethics Specific downstream task Toxicity, bias, and value-alignment

MMLU [70] Text models General language task Multitask accuracy

MATH [72] Mathematical problem Specific downstream task Mathematical ability

APPS [68] Coding challenge competence Specific downstream task Code generation ability

CELLO [66] Complex instructions Specific downstream task Four designated evaluation criteria

C-Eval [78] Chinese evaluation General language task 52 Exams in a Chinese context

EmotionBench [76] Empathy ability Specific downstream task Emotional changes

OpenLLM [80] Chatbots General language task Leaderboard rankings

DynaBench [94] Dynamic evaluation General language task NLI, QA, sentiment, and hate speech

Chatbot Arena [128] Chat assistants General language task Crowdsourcing and Elo rating system

AlpacaEval [112] Automated evaluation General language task Metrics, robustness, and diversity

CMMLU [108] Chinese multi-tasking Specific downstream task Multi-task language understanding capabilities

HELM [114] Holistic evaluation General language task Multi-metric

API-Bank [109] Tool utilization Specific downstream task API call, retrieval, and planning

M3KE [122] Multi-task Specific downstream task Multi-task accuracy

MMBench [126] Large vision-language models (LVLMs) Multi-modal task Multifaceted capabilities of VLMs

SEED-Bench [107] Multimodal Large Language Models Multi-modal task Generative understanding of MLLMs

UHGEval [116] Hallucination of Chinese LLMs Specific downstream task Form, metric and granularity

ARB [171] Advanced reasoning ability Specific downstream task Multidomain advanced reasoning ability

BIG-bench [182] Capabilities and limitations of LMs General language task Model performance and calibration

MultiMedQA [177] Medical QA Specific downstream task Accuracy and human evaluation

CVALUES [229] Safety and responsibility Specific downstream task Alignment ability of LLMs

LVLM-eHub [230] LVLMs Multi-modal task Multimodal capabilities of LVLMs

ToolBench [191] Software tools Specific downstream task Execution success rate

FRESHQA [198] Dynamic QA Specific downstream task Correctness and hallucination

CMB [211] Chinese comprehensive medicine Specific downstream task Expert evaluation and automatic evaluation

PandaLM [216] Instruction tuning General language task Winrate judged by PandaLM

MINT [213] Multi-turn interaction Specific downstream task Success rate with k-turn budget SRk
Dialogue CoT [205] In-depth dialogue Specific downstream task Helpfulness and acceptness of LLMs

BOSS [238] OOD robustness in NLP General language task OOD robustness

MM-Vet [237] Complicated multi-modal tasks Multi-modal task Integrated vision-language capabilities

LAMM [234] Multi-modal point clouds Multi-modal task Task-specific metrics

GLUE-X [233] OOD robustness for NLP tasks General language task OOD robustness

KoLA [235] Knowledge-oriented evaluation General language task Self-contrast metrics

AGIEval [260] Human-centered foundational models General language task General

PromptBench [262] Adversarial prompt resilience General language task Adversarial robustness

MT-Bench [258] Multi-turn conversation General language task Winrate judged by GPT-4

M3Exam [248] Multilingual, multimodal and multilevel Specific downstream task Task-specific metrics

GAOKAO-Bench [243] Chinese Gaokao examination Specific downstream task Accuracy and scoring rate

SafetyBench [252] Safety Specific downstream task Safety abilities of LLMs

LLMEval2 [250] LLM Evaluator General language task Acc, macro-f1 and kappa correlation coefficient

understanding, generation, coherence, context sensitivity, common-sense reasoning, and domain-
specific knowledge. HELM aims to holistically evaluate the performance of languagemodels across
different tasks and domains. For LLMs Evaluator, Zhang et al. [250] introduces LLMEval2, which
encompasses a wide range of capability evaluations. In addition, Xiezhi [59] presents a compre-
hensive suite for assessing the knowledge level of large-scale language models in different subject
areas. The evaluation conducted through Xiezhi enables researchers to comprehend the notable
limitations inherent in these models and facilitates a deeper comprehension of their capabilities in
diverse fields. For evaluating language models beyond their existing capacities, BIG-bench [182]
introduces a diverse collection of 204 challenging tasks contributed by 450 authors from 132 in-
stitutions. These tasks cover various domains such as math, childhood development, linguistics,
biology, common-sense reasoning, social bias, physics, software development, and so on.
Recent work has led to the development of benchmarks for evaluating language models’

knowledge and reasoning abilities. The Knowledge-Oriented Language Model Evaluation

KoLA [235] focuses on assessing language models’ comprehension and utilization of semantic
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knowledge for inference. As such, KoLA serves as an important benchmark for evaluating the
depth of language understanding and reasoning in language models, thereby driving progress in
language comprehension. To enable crowd-sourced evaluations of language tasks, DynaBench [94]
supports dynamic benchmark testing. DynaBench explores new research directions including the
effects of closed-loop integration, distributional shift characteristics, annotator efficiency, influ-
ence of expert annotators, and model robustness to adversarial attacks in interactive settings. Fur-
thermore, to evaluate language models’ ability to learn and apply multidisciplinary knowledge
across educational levels, the Multidisciplinary Knowledge Evaluation M3KE [122] was re-
cently introduced. M3KE assesses knowledge application within the Chinese education system.
The development of standardized benchmarks for evaluating LLMs on diverse tasks has been an

important research focus. MMLU [70] provides a comprehensive suite of tests for assessing text
models in multi-task contexts. AlpacaEval [112] stands as an automated evaluation benchmark,
which places its focus on assessing the performance of LLMs across various natural language pro-
cessing tasks. It provides a range of metrics, robustness measures, and diversity evaluations to
gauge the capabilities of LLMs. AlpacaEval has significantly contributed to advancing LLMs in di-
verse domains and promoting a deeper understanding of their performance. Furthermore, AGIEval
[260], serves as a dedicated evaluation framework for assessing the performance of foundation
models in the domain of human-centric standardized exams. Moreover, OpenLLM [80] functions
as an evaluation benchmark by offering a public competition platform for comparing and assess-
ing different LLMmodels’ performance on various tasks. It encourages researchers to submit their
models and compete on different tasks, driving progress and competition in LLM research.
As for tasks beyond standard performance, there are benchmarks designed for OOD, adversar-

ial robustness, and fine-tuning. GLUE-X [233] is a novel attempt to create a unified benchmark
aimed at evaluating the robustness of NLP models in OOD scenarios. This benchmark emphasizes
the significance of robustness in NLP and provides insights into measuring and enhancing the
robustness of models. In addition, Yuan et al. [238] presents BOSS, a benchmark collection for as-
sessing out-of-distribution robustness in natural language processing tasks. PromptBench [262]
centers on the importance of prompt engineering in fine-tuning LLMs. It provides a standard-
ized evaluation framework to compare different prompt engineering techniques and assess their
impact on model performance. PromptBench facilitates the enhancement and optimization of fine-
tuning methods for LLMs. To ensure impartial and equitable evaluation, PandaLM [216] is intro-
duced as a discriminative large-scale language model specifically designed to differentiate among
multiple high-proficiency LLMs through training. In contrast to conventional evaluation datasets
that predominantly emphasize objective correctness, PandaLM incorporates crucial subjective el-
ements, including relative conciseness, clarity, adherence to instructions, comprehensiveness, and
formality.

4.2 Benchmarks for Specific Downstream Tasks

Other than benchmarks for general tasks, there exist benchmarks specifically designed for certain
downstream tasks.
Question-answering benchmarks have become a fundamental component in the assessment of

LLMs and their overall performance. MultiMedQA [177] is a medical QA benchmark that focuses
onmedical examinations, medical research, and consumer healthcare questions. It consists of seven
datasets related to medical QA, including six existing datasets and one new dataset. The goal of
this benchmark is to evaluate the performance of LLMs in terms of clinical knowledge and QA
abilities. To assess the ability of LLMs in dynamic QA about current world knowledge, Vu et al.
[198] introduced FRESHQA. By incorporating relevant and current information retrieved from
search engines into prompts, there is a significant enhancement in the performance of LLMs on
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FRESHQA. To effectively assess in-depth dialogue, Wang et al. [205] introduced the Dialogue CoT,
incorporating two efficient dialogue strategies: Explicit CoT and CoT.
The assessment of LLMs in diverse and demanding tasks has garnered substantial attention in

recent research. To this end, a range of specialized benchmarks have been introduced to evalu-
ate LLMs’ capabilities in specific domains and applications. Among these, ARB, as presented by
Sawada et al. [171], focuses on probing the performance of LLMs in advanced reasoning tasks
spanning multiple domains. Additionally, ethical considerations in LLMs have become an area of
paramount importance. TRUSTGPT, as tailored by Huang et al. [79], addresses critical ethical di-
mensions, including toxicity, bias, and value alignment, within the context of LLMs. Furthermore,
the simulation of human emotional reactions by LLMs remains an area with significant potential
for improvement, as highlighted by the EmotionBench benchmark by Huang et al. [76]. In terms
of security evaluation, Zhang et al. [252] have introduced SafetyBench, a benchmark specifically
designed to test the security performance of a range of popular Chinese and English LLMs. The
results of this evaluation reveal substantial security flaws in current LLMs. To evaluate the daily
decision-making capabilities of intelligent systems, Hou et al. [75] introduced Choice-75. Addi-
tionally, to assess LLMs’ aptitude in understanding complex instructions, He et al. [66] introduced
CELLO. This benchmark encompasses the design of eight distinctive features, the development of
a comprehensive evaluation dataset, and the establishment of four evaluation criteria alongside
their respective measurement standards.
There are other specific benchmarks such as C-Eval [78], which is the first extensive benchmark

to assess the advanced knowledge and reasoning capabilities of foundation models in Chinese. Ad-
ditionally, Li et al. [108] introduces CMMLU as a comprehensive Chinese proficiency standard and
evaluates the performance of 18 LLMs across various academic disciplines. The findings reveal that
the majority of LLMs demonstrate suboptimal performance in Chinese language environments,
highlighting areas for improvement. M3Exam [248] provides a unique and comprehensive evalu-
ation framework that incorporates multiple languages, modalities, and levels to test the general
capabilities of LLMs in diverse contexts. Additionally, GAOKAO-Bench [243] provides a compre-
hensive evaluation benchmark for gauging the proficiency of large language models in intricate
and context-specific tasks, utilizing questions sourced from the Chinese Gaokao examination. On
the other hand, SOCKET [23] serves as an NLP benchmark designed to evaluate the performance
of LLMs in learning and recognizing social knowledge concepts. It consists of several tasks and
case studies to assess the limitations of LLMs in social capabilities. MATH [72] concentrates on
assessing reasoning and problem-solving proficiencies of AI models within the domain of math-
ematics. APPS [68] is a more comprehensive and rigorous benchmark for evaluating code gen-
eration, measuring the ability of language models to generate Python code according to natural
language specifications. CUAD [71] is an expert-annotated, domain-specific legal contract review
dataset that presents a challenging research benchmark and potential for enhancing deep learning
models’ performance in contract understanding tasks. CVALUES [229] introduces a humanistic
evaluation benchmark to assess the alignment of LLMs with safety and responsibility standards.
In the realm of comprehensive Chinese medicine, Wang et al. [211] introduced CMB, a medical
evaluation benchmark rooted in the Chinese language and culture. It addresses the potential in-
consistency in the local context that may arise from relying solely on English-based medical as-
sessments. In the realm of hallucination assessment, [116] has developed UHGEval, a benchmark
specifically designed to evaluate the performance of Chinese LLMs in text generation without
being constrained by hallucination-related limitations.
In addition to existing evaluation benchmarks, there is a research gap in assessing the effective-

ness of utilizing tools for LLMs. To address this gap, the API-Bank benchmark [109] is introduced
as the first benchmark explicitly designed for tool-augmented LLMs. It comprises a comprehensive
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Table 8. Summary of New LLMs Evaluation Protocols

Method References

Human-in-the-loop AdaVision [50], AdaTest [164]

Crowd-sourcing testing DynaBench [94], DynaBoard [132], DynamicTempLAMA [135], DynaTask [188]

More challenging tests HELM [114], AdaFilter [157], CheckList [165], Big-Bench [182], DeepTest [190]

Tool-Augmented LLM workflow, encompassing 53 commonly used API tools and 264 annotated
dialogues, encompassing a total of 568 API calls. Furthermore, the ToolBench project [191] aims
to empower the development of large language models that effectively leverage the capabilities
of general-purpose tools. By providing a platform for creating optimized instruction datasets, the
ToolBench project seeks to drive progress in language models and enhance their practical appli-
cations. To evaluate LLMs in multi-turn interactions, Wang et al. [213] proposed MINT, which
utilizes tools and natural language feedback.

4.3 Benchmarks for Multi-modal Task

For the evaluation of Multimodal Large LanguageModels (MLLMs), MME [46] serves as an ex-
tensive evaluative benchmark, aiming to assess their perceptual and cognitive aptitudes. It employs
meticulously crafted instruction-answer pairs alongside succinct instruction design, thereby guar-
anteeing equitable evaluation conditions. To robustly evaluate large-scale vision-language models,
Liu et al. [126] introduced MMBench, which comprises a comprehensive dataset and employs a
CircularEval assessment method. Additionally, MMICL [253] enhances visual language models for
multimodal inputs and excels in tasks such as MME and MMBench. Furthermore, LAMM [234] ex-
tends its research to encompass multimodal point clouds. LVLM-eHub [230] undertakes an exhaus-
tive evaluation of LVLMs using an online competitive platform and quantitative capacity assess-
ments. To comprehensively assess the generative and understanding capabilities of Multi-modal
Large Language Models (MLLMs), Li et al. [107] introduced a novel benchmark named SEED-
Bench. This benchmark consists of 19,000 multiple-choice questions that have been annotated
by human assessors. Additionally, the evaluation covers 12 different aspects, including the mod-
els’ proficiency in understanding patterns within images and videos. In summary, recent works
have developed robust benchmarks and improved models that advance the study of multimodal
languages.

5 HOW TO EVALUATE

In this section, we introduce two common evaluation methods: automatic evaluation and human
evaluation. Our categorization is based on whether or not the evaluation criterion can be automat-
ically computed. If it can be automatically calculated, we categorize it into automatic evaluation;
otherwise, it falls into human evaluation.

5.1 Automatic Evaluation

Automated evaluation is a common, and perhaps the most popular, evaluation method that typi-
cally uses standard metrics and evaluation tools to evaluate model performance. Compared with
human evaluation, automatic evaluation does not require intensive human participation, which
not only saves time, but also reduces the impact of human subjective factors and makes the eval-
uation process more standardized. For example, both Qin et al. [159] and Bang et al. [6] use au-
tomated evaluation methods to evaluate a large number of tasks. Recently, with the development
of LLMs, some advanced automatic evaluation techniques are also designed to help evaluate. Lin
and Chen [121] proposed LLM-EVAL, a unified multidimensional automatic evaluation method for
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Table 9. Key Metrics of Automatic Evaluation

General metrics Metrics

Accuracy Exact match, Quasi-exact match, F1 score, ROUGE score [118]

Calibrations Expected calibration error [60], Area under the curve [54]

Fairness Demographic parity difference [241], Equalized odds difference [64]

Robustness Attack success rate [203], Performance drop rate [262]

open-domain conversations with LLMs. PandaLM [216] can achieve reproducible and automated
language model assessment by training an LLM that serves as the “judge” to evaluate different
models. Proposing a self-supervised evaluation framework, Jain et al. [82] enabled a more efficient
form of evaluating models in real-world deployment by eliminating the need for laborious labeling
of new data. In addition, many benchmarks also apply automatic evaluation, such as MMLU [70],
HELM [114], C-Eval [78], AGIEval [260], AlpacaFarm [38], Chatbot Arena [128], and the like.
Based on the literature that adopted automatic evaluation, we summarized the main metrics in

automatic evaluation in Table 9. The key metrics include the following four aspects:

(1) Accuracy is a measure of how correct a model is on a given task. The concept of accuracy
may vary in different scenarios and is dependent on the specific task and problem definition.
It can be measured using various metrics such as Exact Match, F1 score, and ROUGE score.
— Exact Match (EM) is a metric used to evaluate whether the model’s output in text gen-

eration tasks precisely matches the reference answer. In question answering tasks, if the
model’s generated answer is an exact match with the manually provided answer, the EM is
1; otherwise, it is 0.

— The F1 score is a metric for evaluating the performance of binary classification models,
combining the model’s precision and recall. The formula for calculation is as follows: F1 =
2×Precision×Recall
Precision+Recall

.
— ROUGE is primarily employed to assess the performance of tasks such as text summariza-

tion and machine translation, involving considerations of overlap and matching between
texts.

(2) Calibrations pertains to the degree of agreement between the confidence level of the model
output and the actual prediction accuracy.
— ExpectedCalibrationError (ECE) is one of the commonly usedmetrics to evaluatemodel

calibration performance [60]. Tian et al. [189] utilized ECE to study the calibration of RLHF-
LMs, including ChatGPT, GPT-4, Claude 1, Claude 2 and Llama2. For the calculation of ECE,
they categorize model predictions based on confidence and measure the average accuracy
of the predictions within each confidence interval.

— Area Under the Curve of selective accuracy and coverage (AUC) [54] is another com-
monly used metric.

(3) Fairness refers to whether the model treats different groups consistently, that is, whether
the model’s performance is equal across different groups. This can include attributes such
as gender, race, age, and more. DecodingTrust [201] employs the following two metrics for
measuring fairness:
— Demographic Parity Pifference (DPD) measures whether the model’s predictions are

distributed equally across different population groups. If predictions differ significantly be-
tween groups, the DPD is high, indicating that the model may be unfairly biased against
different groups. The calculation of DPD involves the prediction of the model and the true
label, and the following formula can be used: DPD = P(ŷ |Z = 1) − P(ŷ |Z = 0), where
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ŷ is the binary classification prediction of the model, Z is the identifier of the population
group (usually binary, indicating two different groups, such asmen andwomen), P(ŷ |Z = 1)
and P(ŷ |Z = 0) respectively represent the probabilities of predicting the positive class in
population Z = 1 and Z = 0.

— Equalized Odds Difference (EOD) aims to ensure that the model provides equal error
rates across different populations, that is, the model’s prediction error probability distribu-
tion is similar for different populations. The calculation of EOD involves probabilities re-
lated to true positive (TP), true negative (TN), false positive (FP), and false negative

(FN) predictions. The formula for EOD is as follows:max{P(ŷ = 1|Y = 1,Z = 1) − P(ŷ =
1|Y = 1,Z = 0), P(ŷ = 1|Y = 0,Z = 1) − P(ŷ = 1|Y = 0,Z = 0)} where ŷ is the binary clas-
sification prediction of the model, Y is the true label, Z is the demographic group identifier
(typically binary, representing two different groups), and P(ŷ = 1|Y = 1,Z = 1) denotes
the probability of the model predicting a positive class when the true label is positive and
belongs to group Z = 1.

(4) Robustness evaluates the performance of a model in the face of various challenging inputs,
including adversarial attacks, changes in data distribution, noise, and so o.
— Attack Success Rate (ASR) serves as a metric for evaluating the adversarial robustness of

LLMs [206]. Specifically, consider a datasetD = {(xi ,yi )}
N
i=1 containing N pairs of samples

xi and ground truth yi . For an adversarial attack method A, given an input x , this method
can produce adversarial examples A(x) to attack surrogate model f , with the success rate

is calculated as: ASR =
∑

(x,y∈D)
I[f (A(x ))�y]
I[f (x )=y]

, where I is the indicator function [203].

— Performance Drop Rate (PDR), a new unified metric, effectively assesses the robust-
ness of prompt in LLMs [262]. PDR quantifies the relative performance degradation after a

prompt attack, and the formula is as follows: PDR = 1−
∑

(x,y)∈D M[f ([A(P ),x ]),y]∑
(x,y)∈D M[f ([P,x ]),y] , whereA rep-

resents the adversarial attack applied to prompt P , and M denotes the evaluation function,
which varies across different tasks [262].

5.2 Human Evaluation

The increasingly strengthened capabilities of LLMs have certainly gone beyond standard evalua-
tion metrics on general natural language tasks. Therefore, human evaluation becomes a natural
choice in some non-standard cases where automatic evaluation is not suitable. For instance, in
open-generation tasks where embedded similarity metrics (such as BERTScore) are not enough,
human evaluation is more reliable [142]. While some generation tasks can adopt certain auto-
matic evaluation protocols, human evaluation in these tasks is more favorable as generation can
always go better than standard answers.
Human evaluation is a way to evaluate the quality and accuracy of model-generated results

through human participation. Compared with automatic evaluation, manual evaluation is closer
to the actual application scenario and can provide more comprehensive and accurate feedback. In
the manual evaluation of LLMs, evaluators (such as experts, researchers, or ordinary users) are
usually invited to evaluate the results generated by the model. For example, Ziems et al. [267]
used the annotations from experts for generation. By human evaluation, Liang et al. [114] as-
sessed on summarization and disinformation scenarios on six models and Bang et al. [6] evaluated
analogical reasoning tasks. Bubeck et al. [15] did a series of human-crafted tests using GPT-4
and they found that GPT-4 performs close to or even exceeds human performance on multiple
tasks. This evaluation requires human evaluators to actually test and compare the performance of
the models, not just evaluate the models through automated evaluation metrics. Note that even
human evaluations can have high variance and instability, which could be due to cultural and
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Table 10. Summary of Key Factors in Human Evaluation

Evaluation Criteria Key Factor

Number of evaluators Adequate representation [7], Statistical significance

Evaluation rubrics
Accuracy [178], Relevance [259], Fluency [196], Transparency, Safety [85],
Human alignment

Evaluator’s expertise level Relevant domain expertise [144], Task familiarity, Methodological training

individual differences [155]. In practical applications, these two evaluation methods are consid-
ered and weighed in combination with the actual situation.
Exploring the human evaluation methods of LLMs requires thoughtful attention to various cru-

cial factors to guarantee the dependability and precision of assessments [178]. Table 10 provides a
concise overview of the essential aspects of human evaluation, including the number of evaluators,
evaluation criteria, and evaluator’s expertise level. Primarily, the number of evaluators emerges
as a crucial factor intricately intertwined with adequate representation and statistical significance.
A judiciously chosen number of evaluators contributes to a more nuanced and comprehensive un-
derstanding of the LLMs under scrutiny, enabling a more reliable extrapolation of the results to a
broader context.
Furthermore, evaluation criteria are fundamental components of the human assessment process.

Expanding upon the principles of the 3H rule (Helpfulness, Honesty, and Harmlessness) [4],
we have elaborated them into the following six human assessment criteria. These criteria include
accuracy, relevance, fluency, transparency, safety, and human alignment. Through the application
of these standards, a thorough analysis of LLMs’ performance in syntax, semantics, and context is
achieved, allowing for a more comprehensive evaluation of the quality of generated text.

(1) Accuracy [178] stands out as a pivotal criterion that assesses the precision and correctness
of the generated text. It involves scrutinizing the extent to which the language model pro-
duces information that aligns with factual knowledge, avoiding errors and inaccuracies.

(2) Relevance [259] focuses on the appropriateness and significance of the generated content.
This criterion examines how well the text addresses the given context or query, ensuring
that the information provided is pertinent and directly applicable.

(3) Fluency [196] assesses the language model’s ability to produce content that flows smoothly,
maintaining a consistent tone and style. A fluent text is not only grammatically correct but
also ensures readability and a seamless user experience. Analysts evaluate how well the
model avoids awkward expressions and abrupt shifts in language or topic, contributing to
effective communication with users.

(4) Transparency delves into the clarity and openness of the language model’s decision-
making process. It involves assessing how well the model communicates its thought pro-
cesses, enabling users to understand how and why certain responses are generated. A trans-
parent model provides insights into its inner workings.

(5) Safety [85] emerges as a critical criterion concerned with the potential harm or unintended
consequences arising from the generated text. It examines the language model’s ability to
avoid producing content that may be inappropriate, offensive, or harmful, ensuring the well-
being of users and avoiding misinformation.

(6) Human alignment assesses the degree to which the language model’s output aligns with
human values, preferences, and expectations. It considers the ethical implications of the
generated content, ensuring that the language model produces text that respects societal
norms and user expectations, promoting a positive interaction with human users.
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Lastly, the expertise level of evaluators is a critical consideration, encompassing relevant do-
main knowledge, task familiarity, and methodological training. Delineating the requisite expertise
level for evaluators ensures that they possess the necessary background knowledge to accurately
comprehend and assess the domain-specific text generated by LLMs. This strategy adds a layer of
rigor to the evaluation process, reinforcing the credibility and validity of the findings.

6 SUMMARY

In this section, we summarize the key findings based on our review in Sections 3, 4, and 5.
First of all, we would like to highlight that despite all the efforts spent on summarizing existing

works on evaluation, there is no evidence to explicitly show that one certain evaluation protocol
or benchmark is the most useful and successful, but with different characteristics and focuses.
This also demonstrates that not a single model can perform best in all kinds of tasks. The purpose
of this survey is to go beyond simply determining the “best” benchmark or evaluation protocol. By
summarizing and analyzing existing efforts on LLMs evaluation, we may identify the current suc-
cess and failure cases of LLMs, derive new trends for evaluation protocols, and most importantly,
propose new challenges and opportunities for future research.

6.1 Task: Success and Failure Cases of LLMs

We now summarize the success and failure cases of LLMs in different tasks. Note that all the follow-
ing conclusions are made based on existing evaluation efforts and the results are only dependent
on specific datasets.

6.1.1 What Can LLMs do Well?

— LLMs demonstrate proficiency in generating text [11, 14, 24] by producing fluent and precise
linguistic expressions.

— LLMs obtain impressive performance in tasks involving language understanding, including
sentiment analysis [52, 129, 159], text classification [114, 154, 232], as well as the handling
of factual input [159].

— LLMs demonstrate robust arithmetic reasoning capabilities [159] and excel in logical rea-
soning [124]. Moreover, they exhibit noteworthy proficiency in temporal reasoning [6]. Fur-
thermore, more intricate tasks such as mathematical reasoning [225, 236, 243] and structured
data inference [86, 151] have emerged as the prevailing benchmarks for evaluation.

— LLMs exhibit robust contextual comprehension, enabling them to generate coherent re-
sponses that align with the given input [187].

— LLMs also achieve satisfying performance across several natural language processing tasks,
including machine translation [6, 130, 208], text generation [20], and question answering
[102, 114].

6.1.2 When Can LLMs Fail?

— Within the realm of NLI, LLMs exhibit subpar performance and encounter challenges in
accurately representing human disagreements [105].

— LLMs exhibit restricted proficiency in discerning semantic similarity between events [184]
and demonstrate substandard performance in evaluating fundamental phrases [166].

— LLMs have limited abilities on abstract reasoning [56], and are prone to confusion or errors
in complex contexts [148].

— In linguistic contexts featuring non-Latin scripts and limited resources, LLMs manifest sub-
optimal performance [2, 6, 100, 248]. Furthermore, generative LLMs consistently display pro-
ficiency levels below the expected standards across various tasks and languages [2].
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— LLMs demonstrate susceptibility when processing visual modal information [256]. Further-
more, they have the capacity to assimilate, disseminate, and potentially magnify detrimental
content found within the acquired training datasets, frequently encompassing toxic linguis-
tic elements, including offensive, hostile, and derogatory language [53].

— LLMs may exhibit social biases and toxicity [37, 53, 153] during the generation process, re-
sulting in the production of biased outputs.

— LLMsmaymanifest credibility deficits [201], potentially giving rise to fabricated information
or erroneous facts within dialogues [163, 251].

— LLMs have limitations in incorporating real-time or dynamic information [127], making
them less suitable for tasks that require up-to-date knowledge or rapid adaptation to chang-
ing contexts.

— LLMs are sensitive to prompts, especially adversarial prompts [262], which trigger new eval-
uations and algorithms to improve its robustness.

6.2 Benchmark and Evaluation Protocol

With the rapid development and widespread use of LLMs, the importance of evaluating them in
practical applications and research has become crucial. This evaluation process should include
not only task-level evaluation but also a deep understanding of the potential risks they pose
from a societal perspective. In this section, we summarize existing benchmarks and protocols
in Table 8.
First, a shift from objective calculation to human-in-the-loop testing, allowing for greater human

feedback during the evaluation process. AdaVision [50], an interactive process for testing vision
models, enables users to label a small amount of data for model correctness, which helps users
identify and fix coherent failure modes. In AdaTest [164], the user filters test samples by only
selecting high-quality tests and organizing them into semantically related topics.
Second, a move from static to crowd-sourcing test sets is becoming more common. Tools like

DynaBench [94], DynaBoard [132], and DynaTask [188] rely on crowdworkers to create and test
hard samples. Additionally, DynamicTempLAMA [135] allows for dynamically constructed time-
related tests.
Third, a shift from a unified to a challenging setting in evaluating machine learning models.

While unified settings involve a test set with no preference for any specific task, challenging set-
tings create test sets for specific tasks. Tools like DeepTest [190] use seeds to generate input trans-
formations for testing, CheckList [165] builds test sets based on templates, and AdaFilter [157]
adversarially constructs tests. However, it is worth noting that AdaFilter may not be entirely fair
as it relies on adversarial examples. HELM [114] evaluates LLMs from different aspects, while
the Big-Bench [182] platform is used to design hard tasks for machine learning models to tackle.
PromptBench [262] aims to evaluate the adversarial robustness of LLMs by creating adversarial
prompts, which is more challenging and the results demonstrated that current LLMs are not robust
to adversarial prompts.

7 GRAND CHALLENGES AND OPPORTUNITIES FOR FUTURE RESEARCH

Evaluation as a new discipline: Our summarization inspires us to redesign a wide spectrum of
aspects related to evaluation in the era of LLMs. In this section, we present several grand challenges.
Our key point is that evaluation should be treated as an essential discipline to drive the

success of LLMs and other AImodels. Existing protocols are not enough to thoroughly evaluate
the true capabilities of LLMs, which poses grand challenges and triggers new opportunities for
future research on LLMs evaluation.
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7.1 Designing AGI Benchmarks

As we discussed earlier, while all tasks can potentially serve as evaluation tools for LLMs, the ques-
tion remains as to which can truly measure AGI capabilities. As we expect LLMs to demonstrate
AGI abilities, a comprehensive understanding of the differences between human andAGI capacities
becomes crucial in the creation of AGI benchmarks. The prevailing trend seems to conceptualize
AGI as a superhuman entity, thereby utilizing cross-disciplinary knowledge from fields such as
education, psychology, and social sciences to design innovative benchmarks. Nonetheless, there
remains a plethora of unresolved issues. For instance, does it make sense to use human values as a
starting point for test construction, or should alternative perspectives be considered? Developing
suitable AGI benchmarks presents many open questions demanding further exploration.

7.2 Complete Behavioral Evaluation

An ideal AGI evaluation should contain not only standard benchmarks on common tasks, but also
evaluations on open tasks such as complete behavioral tests. By behavioral test, we mean that
AGI models should also be evaluated in an open environment. For instance, by treating LLMs
as the central controller, we can construct evaluations on a robot manipulated by LLMs to test
its behaviors in real situations. By treating LLMs as a completely intelligent machine, the evalua-
tions of its multi-modal dimensions should also be considered. In fact, complete behavioral evalu-
ations are complementary to standard AGI benchmarks and they should work together for better
testing.

7.3 Robustness Evaluation

Beyond general tasks, it is crucial for LLMs to maintain robustness against a wide variety of in-
puts in order to perform optimally for end-users, given their extensive integration into daily life.
For instance, the same prompts but with different grammars and expressions could lead ChatGPT
and other LLMs to generate diverse results, indicating that current LLMs are not robust to the
inputs. While there are some prior works on robustness evaluation [206, 262], there is much room
for advancement, such as including more diverse evaluation sets, examining more evaluation as-
pects, and developing more efficient evaluations to generate robustness tasks. Concurrently, the
concept and definition of robustness are constantly evolving. It is thus vital to consider updating
the evaluation system to better align with emerging requirements related to ethics and bias.

7.4 Dynamic and Evolving Evaluation

Existing evaluation protocols for most AI tasks rely on static and public benchmarks, i.e., the evalu-
ation datasets and protocols are often publicly available.While this facilitates rapid and convenient
evaluation within the community, it is unable to accurately assess the evolving abilities of LLMs,
given their rapid rate of development. The capabilities of LLMs may enhance over time which
cannot be consistently evaluated by existing static benchmarks. On the other hand, as LLMs grow
increasingly powerful with larger model sizes and training set sizes, static and public benchmarks
are likely to be memorized by LLMs, resulting in potential training data contamination. Therefore,
developing dynamic and evolving evaluation systems is the key to providing a fair evaluation of
LLMs.

7.5 Principled and Trustworthy Evaluation

When introducing an evaluation system, it is crucial to ascertain its integrity and trustworthi-
ness. Therefore, the necessity for trustworthy computing extends to the requirement for reli-
able evaluation systems as well. This poses a challenging research question that intertwines with
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measurement theory, probability, and numerous other domains. For instance, how can we ensure
that dynamic testing truly generates out-of-distribution examples? There is a scarcity of research
in this domain, and it is hoped that future work will aim to scrutinize not only the algorithms but
the evaluation system itself.

7.6 Unified Evaluation that Supports All LLMs Tasks

There are many other research areas of LLMs and we need to develop evaluation systems that can
support all kinds of tasks such as value alignment, safety, verification, interdisciplinary research,
fine-tuning, and others. For instance, PandaLM [216] is an evaluation system that assists LLMs
fine-tuning by providing an open-source evaluation model, which can automatically assess the
performance of fine-tuning. We expect that more evaluation systems are becoming more general
and can be used as assistance in certain LLMs tasks.

7.7 Beyond Evaluation: LLMs Enhancement

Ultimately, evaluation is not the end goal but rather the starting point. Following the evaluation,
there are undoubtedly conclusions to be drawn regarding performance, robustness, stability, and
other factors. A proficient evaluation system should not only offer benchmark results but should
also deliver an insightful analysis, recommendations, and guidance for future research and de-
velopment. For instance, PromptBench [262] provides not only robustness evaluation results on
adversarial prompts but also a comprehensive analysis through attention visualization, elucidat-
ing how adversarial texts can result in erroneous responses. The system further offers a word
frequency analysis to identify robust and non-robust words in the test sets, thus providing prompt
engineering guidance for end users. Subsequent research can leverage these findings to enhance
LLMs. Another example is that Wang et al. [215] first explored the performance of large vision-
language models on imbalanced (long-tailed) tasks, which demonstrates the limitation of current
large models. Then, they explored different methodologies to enhance the performance on these
tasks. In summary, enhancement after evaluation helps to build better LLMs andmuch can be done
in the future.

8 CONCLUSION

Evaluation carries profound significance, becoming imperative in the advancement of AI models,
especially within the context of large language models. This paper presents the first survey to give
a comprehensive overview of the evaluation on LLMs from three aspects: what to evaluate, how
to evaluate, and where to evaluate. By encapsulating evaluation tasks, protocols, and benchmarks,
our aim is to augment understanding of the current status of LLMs, elucidate their strengths and
limitations, and furnish insights for future LLMs progression.
Our survey reveals that current LLMs exhibit certain limitations in numerous tasks, notably

reasoning and robustness tasks. Concurrently, the need for contemporary evaluation systems to
adapt and evolve remains evident, ensuring the accurate assessment of LLMs’ inherent capabilities
and limitations. We identify several grand challenges that future research should address, with the
aspiration that LLMs can progressively enhance their service to humanity.

DISCLAIMER

The goal of this paper is mainly to summarize and discuss existing evaluation efforts on large
language models. Results and conclusions in each paper are original contributions of their corre-
sponding authors, particularly for potential issues in ethics and biases. This paper may discuss
some side effects of LLMs and the only intention is to foster a better understanding.
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Due to the evolution of LLMs especially online services such as Claude and ChatGPT, it is very
likely that they become stronger and some of the limitations described in this paper are mitigated
(and new limitations may arise). We encourage interested readers to take this survey as a reference
for future research and conduct real experiments in current systems when performing evaluations.
Finally, the evaluation of LLMs is continuously developing, thus we may miss some new papers

or benchmarks. We welcome all constructive feedback and suggestions.
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