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Graph Neural Networks (GNNs) have shown expressive modeling ability on graphs. An inherent 
assumption is that those connected graph nodes exhibit strong homophily, passing consistent 
label information into the associated central node representation. However, heterophilic graphs 
may hold inconsistent labels for those connected nodes, degenerating the performance of 
the typical message passing and exacerbating its over-smoothing issue. In this paper, to 
tame heterophilic graphs for GNNs, a novel label estimation-based message passing scheme is 
presented, which can further relieve the over-smoothing and lead the learned representations to 
be more distinguishable on graphs with either homophily or heterophily. Specifically, we optimize 
the edge weights of the graph by invoking the label estimation with the goal of returning a 
more effective adjacency matrix. With this matrix, a novel message passing scheme is presented, 
aggregating neighbor information with consistent labels to their central nodes. Meanwhile, a 
symmetric cross entropy is also employed to mitigate negative effects from noisy labels. With 
such guarantees in our new message passing, a uniform framework termed Label Estimation-

based GNN (LE-GNN) is finally established. Extensive experiments demonstrate the ability of 
our model to prevent over-smoothing and show its effectiveness for node classification on both 
homophilic and heterophilic graphs.

1. Introduction

Graph neural networks (GNNs) have achieved impressive performance in learning representation of social networks [1,2], molec-

ular networks [3,4] and citation networks [5,6], etc. The representations of those graph-structured data provide effective embeddings 
for associated downstream tasks such as node classification [7,5,8], graph classification [9–11] and drug discovery [12,13]. To learn 
expressive embeddings, two operations in GNN: feature transformation and neighbor aggregation, are employed to iteratively update 
node representation from neighbors, where the neighbor aggregation is typically implemented using message passing.

GNNs conduct message passing along the adjacency edges based on the assumption that networks with strong homophily, where 
linked nodes have similar features and belong to the same class. For example, friends tend to have similar hobbies. This traditional 
aggregation method is mainly achieved by operations such as sum and mean, which is equivalent to a kind of adjacency smoothing 
process, making the features of adjacent nodes more similar [14]. Thus, traditional message passing mechanism performs well in 
graph with homophily. However, the principle of “opposites attract” [15] also exists in the real world, leading to networks with 
heterophily: linked nodes tend to have inconsistent labels, as shown in Fig. 1. Different types of amino acids, for instance, are more 
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Fig. 1. In the heterophilic graphs, the neighbors of central nodes may have inconsistent labels, where colored nodes are annotated with different labels, hollow nodes 
are unannotated. (a) Traditional message passing is disastrous for capturing heterophily. It leads nodes with different labels to be mixed together, resulting in learning 
indistinguishable node representations. (b) Our proposed message passing mechanism introduces trustworthy label estimation to further clarify the classification 
boundaries.

likely to be linked in protein structure [15]. Therefore, the traditional message passing mechanism performs well in graphs with 
homophily while failing to generalize to heterophilic graphs.

The reason is that this traditional message passing mechanism delivers low-quality neighbor information, which is disastrous for 
node representation of heterophilic graphs. It causes nodes with different labels to be mixed together, making the model unable 
to learn the distinguished node representation. This low-quality information produces mistakes for downstream tasks, such as node 
classification, etc. Meanwhile, with the number of layers increases, the mistakes become more serious, then leads to the exacerbation 
of the over-smoothing, difference degeneration among nodes of different classes, and inability of node classification [16], as shown 
in Fig. 1.(a).

Thus, despite GNN and their variants [17,16,18] having achieved significant success in graphs with homophily, the heterophilic 
graph challenges existing GNNs to obtain discriminative representations. Recently, several studies have been concerned with this 
challenge, H2GNN [15] identified a key design—ego- and neighbor-embedding separations—that boosts learning from the graph 
structure under heterophily. However, it still suffers from over-smoothing issues, where learned node embeddings have quite similar 
representations [19]. Geom-GCN [20] proposes a geometric aggregation approach to exploit the structural information of nodes 
in the neighborhood and to capture an extensive range of dependencies of nodes in the heterophilic graphs. GCNII [21] captures 
heterophily by preventing the problem of over-smoothing, which suggests a relationship between over-smoothing and heterophily.

In this work, we hold that label-guide message passing can deliver reliable information for learning graph representation. The 
closer the labels are to the correct ones, the more discriminative the learned node representations are. Therefore, we face the 
following challenges: (1) How to use the incomplete labels to guide the message passing mechanism to spread reliable information? 
(2) If there are errors in label information, how to reduce the influence of noisy labels and make the model robust?

The above challenges motivate us to propose a label estimation-based message passing for node classification both on graphs 
with homophily and heterophily. We unify features, topology, and labels in the GNN model by additionally considering label space. 
Specifically, we use an effective label estimation to map the node attributes of feature space into their associated label space. Then, 
we integrate the estimated labels with given ground-truth labels of the training set. Based on these labels, we obtain a more precise 
adjacency matrix in which edges with consistent labels are given larger weights. Additionally, we employ symmetric cross entropy 
loss to enhance robustness of our model to noisy labels. Therefore, as shown in Fig. 1.(b), more information about nodes with the 
same label would be aggregated along the edges, which further clarifies the classification boundaries. With such improvements, 
the representations on graphs with either homophily or heterophily become more distinguishable, even when stacking more layers. 
Contributions are summarized as following.

• We propose a novel label estimation-based GNN framework to facilitate node classification on homophilic and heterophilic 
graphs.

• Our proposed message passing mechanism tames over-smoothing representation by introducing trustworthy label estimation, 
further clarifying the classification boundaries.

• We conduct comprehensive experiments on the node classification tasks to demonstrate the general effectiveness of our proposed 
model.

2. Related work

GNNs. Several studies have defined the concept of convolution on graphs, inspired by the tremendous success of CNNs. GNNs 
have achieved better performance for various real-world problems such as node classification and graph classification by learning 
graph representation. GCN is the first notable research on GNNs, which advances graph convolution based on spectral graph the-

ory [14]. Later, Veličković et al. [17], Li et al. [22] performed improvements, extensions and approximations of spectral-based GCNs. 
2

Specifically, GCN considers node features and graph connectivity structure together and iteratively aggregates neighbor represen-
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Table 1

Summary of the main symbols and notations.

Symbols and Notations

Symbol Description

𝑿 ∈ℝ𝑛×𝑑 Input feature matrix

𝑨 ∈ℝ𝑛×𝑛 Adjacency matrix of graph

𝑫 ∈ℝ𝑛×𝑛 Diagonal degree matrix

𝑰 ∈ℝ𝑛×𝑛 Identity matrix

𝑨̂ ∈ℝ𝑛×𝑛 Adjacency matrix with self-loop

𝑨̃ ∈ℝ𝑛×𝑛 Normalized adjacency matrix with self-loop

𝑳 ∈ℝ𝑛×𝑛 Graph laplacian matrix

𝑯 𝑙 ∈ℝ𝑛×𝑑 Embedding matrix in layer 𝑙
𝑾 𝑙 ∈ℝ𝑑𝑓 ×𝑑 Weight matrix in layer 𝑙
𝒀 ∈ℝ𝑛×𝑐 Ground-truth label matrix

𝒀̃
𝐸 ∈ℝ𝑛×𝑐 Estimated label matrix

𝑺 ∈ℝ𝑛×𝑛 Similarity matrix

𝔼 Cross entropy

𝜎 Activation function

𝛼 Parameter used to tune the trade-off between the current 
layer and the input layer

𝜆1 Trade-off parameter used to tune the importance of cross en-

tropy loss

𝜆2 Trade-off parameter used to tune the importance of symmet-

ric cross entropy loss

tations to the central node by applying both feature transformation and neighbor aggregation operations. Besides, GAT utilizes the 
attention mechanism to select the essential nodes by learning the different weights for neighbor nodes [17]. However, these mod-

els achieve their best performance with only two layers, which only consider immediate neighbors, and the performance degrades 
greatly when stacking more layers. Some studies attribute this phenomenon to the over-smoothing problem, where node represen-

tations are similar and indistinguishable after stacking multiple layers. Several models have recently been developed to address the 
over-smoothing problem such as APPNP [16], JKNet [23], DropEdge [24] and GCNII [21]. For example, APPNP alleviates over-

smoothing issue by using PageRank-style propagation. To avoid over-smoothing, GCNII obtains long-range dependences by using 
initial residual connection and identity mapping.

Heterophily Most prior work considers graphs with strong homophily. However, there are graphs with strong heterophily in 
the real world, where previous work fails to perform well. Therefore, several studies transfer their attendance to explore to address 
the problem of heterophilic graphs. For example, Geom-GCN proposes a novel geometric aggregation scheme for graph neural 
networks, in which aggregation on a graph can benefit from a continuous space underlying the graph. In this way, Geom-GCN [20]

achieves improvement over GCN by a great margin on the heterophilic graphs. H2GNN [15] proposes a set of fundamental designs, 
such as higher-order neighborhoods, ego- and neighbor-embedding separation, and a combination of intermediate representations, 
that enhance learning from graph structure under heterophily. TDGNN [25] presents a tree decomposition method for disentangling 
neighborhoods in distinct layers in order to reduce feature smoothing between them. CPGNN [26] propagates soft labels with the help 
of a compatibility matrix. This method does not change the traditional propagation mechanism, which also makes the representation 
of nodes from different categories mixed together and indistinguishable. HOG-GCN [27] constructs a homophily degree matrix using 
the label propagation technique to investigate the extent to which pair of nodes in a graph with strong heterophily belongs to the 
same class. BM-GCN [28] creates a new network topology by using block similarity matrix that is commonly used in community 
detection, allowing it to explore block-guided neighbors and conduct adaptive aggregation. However, these methods coarsely use the 
label information or other supplement information (e.g., block similarity matrix) to guide the neighbor aggregation. While doing so 
can merge effective information to some extent, it also introduces noise and irrelevant information, which harms the prediction of 
downstream tasks. Most significantly, as the number of layers increases, the noise and error become increasingly large, rendering the 
representation of nodes from different classes indistinguishable and causing the model to suffer from severe over-smoothing issue. 
Furthermore, these methods tend to face the severe performance degradation, when the labels are modified by attackers. In this 
paper, we propose a label estimation-based message passing to adaptive aggregate neighbors and employ symmetric cross-entropy 
loss to improve the reliability of estimated information and enhance the robustness to noise labels.

3. Preliminary study

In this section, we start with an introduction of notations and the GCN model. We then introduce the definition of heterophily.

3.1. Notations

We denote matrices with boldface capital letters (e.g. 𝑿), vectors with boldface lowercase letters (e.g., 𝒙) and scalars with 
lowercase alphabets (e.g., 𝑥) (Talbe 1). Let 𝐺 = ( , ) represent an undirected graph, where  = {𝑣𝑖} and  = {(𝑣𝑖, 𝑣𝑗 )} denote the 
3

node and edge sets, respectively. The node feature matrix is represented by 𝑿 ∈ℝ𝑛×𝑑 , where 𝑛 represents the number of nodes and 
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𝑑 represents the number of features per node. The graph 𝐺 is described by the adjacency matrix 𝑨 ∈ℝ𝑛×𝑛 that associates each edge 
(𝑣𝑖, 𝑣𝑗 ) with its element 𝐴𝑖𝑗 ; We let 𝑫 be the degree matrix, let 𝑨̃ ∶= 𝑨 + 𝑰 and 𝑫̃ ∶=𝑫 + 𝑰 be the adjacency and degree matrices 

of the graph augmented with self-loops. The symmetric normalized adjacency matrix is given by 𝑨̂ ∶= 𝑫̃
− 1

2 𝑨̃𝑫̃
− 1

2 , which is widely 
used for spatial neighborhood aggregation in GNN models. The main symbols and notations are summarized on Table 1.

3.2. Graph convolution networks

To learn node representations, GCNs adopt feature transformation and neighbor aggregation techniques to update the represen-

tation of nodes by considering the node features and graph connective topology. At the 𝑙-th layer, the graph convolutional layer is 
mathematically expressed as:

𝑯𝓁+1 = 𝜎
(
𝑨̂𝑯𝓁𝑾 𝓁) , (1)

where 𝑨̂ = 𝑫̃
− 1

2 𝑨̃𝑫̃
− 1

2 and 𝐃̃ is the degree matrix of 𝑨̃. 𝜎(⋅) denotes an non-linear activation function, such as ReLU. 𝑯0 =𝑿 is the 
input feature matrix for the first layer, while 𝑯𝓁+1 is the output embedding matrix from layer 𝓁. 𝑾 𝓁 is a linear transformation 
matrix.

The graph convolution layer in GCNs can be split into two steps: 𝑨̂𝑯𝓁 is the aggregation step, and 𝑯𝓁𝑾 𝓁 is the feature trans-

formation step, from the spatial point of view. The aggregation stage tends to make the local neighborhood’s node features similar. 
Then the feature transformation operation plays the role of feature extractor, easily extracting the commonality between neighboring 
nodes. Under the assumption of homophily, the above design is excellent. However, in heterogeneous graphs, aggregating without 
the guidance of label information results in the intermingling of nodes from different classes. This leads to a gradual accumulation 
of classification errors, especially as the number of layers increases.

3.3. Heterophily

Given a set of node labels, homophily captures the tendency for linked nodes to often belong to the same label, while heterophily 
is the opposite. The measure of graph homophily level can be defined as follows, which can be used to define graphs with strong 
homophily/heterophily:

Definition 1. The homophily ratio ℎ =
|||
{
(𝑣𝑖,𝑣𝑗 )∈∧𝑦𝑖=𝑦𝑗

}||||| is the proportion of edges in the graph that linked nodes with the same label.

A high homophily ratio ℎ (e.g., ℎ → 1) indicates the graph with strong homophily, a low homophily ratio h (e.g., ℎ → 0) indicates 
the graph with strong heterophily. Most previous work considers graphs with strong homophily. However, there are graphs with 
strong heterophily in the real world, where previous work fails to perform well.

4. The proposed framework

Most GNN models design the message passing mechanisms based on the assumption that linked nodes have same class. As a 
result, these models can perform well on homophilic graphs. However, heterophilic graphs also exist in the real world, and their 
linked nodes often belong to different labels. It is challenging for typical GNN models to capture heterophily. It is impossible to 
distinguish neighbors from different labels based on similar or mixed learned representations. If GNN models attempt to explore 
larger receptive fields by stacking more layers, this confused representation will continue to be passed on, leading to a more severe 
over-smoothing issue. H2GNN proposes to separate the ego-embedding from neighbor embedding, which boosts learning from the 
graph structure under heterophily. It is a simple way to prevent mixing the embeddings from neighbors results in final embeddings 
indistinguishable. In this work, we have the following research question: can the typical message passing mechanism be modified to 
aggregate neighbors based on labels to capture the heterophily and easily go deeper?

4.1. Label estimation-based GNN

To answer this question, we propose a novel Label Estimation-based Graph Neural Network named LE-GNN (Fig. 2). Mainly, 
LE-GNN focuses on aggregating neighbors with the same label by an optimal adjacency matrix, making the class boundaries clear 
and easy to learn distinguishable node representations. The key to enhancing GCN performance is to make edge weights trainable, 
allowing nodes in the same class / label to connect more strongly with each other. It is worth noticing how to get an optimal 
adjacency matrix. Specifically, we first predict the labels using a label estimator, and we use this label prediction matrix to compute 
the node label similarity matrix. We then get the optimal edge weights based on label information. To learn node representations 
and perform the final node classification, we input ideal edge weights into the GCN, aggregating neighbors with consistent labels. As 
introduced in the following, LE-GNN consists of three key components: label estimation, enhancing robustness to noisy labels, label 
estimation-based message passing. The framework is illustrated in Figure 2.

Label estimation. Nodes close to each other in the feature space will tend to share identical label in the label space [29]. In other 
4

words, nodes have same label tend to have consistent distribution. Therefore, original features have some kind of correlation with 
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Fig. 2. An illustration of our framework LE-GNN. MLP is employed to estimate unlabeled nodes. With those estimated labels and ground-truth, we obtain a new 
adjacency matrix 𝑨∗ with label information. Then, 𝑨∗ is used for message passing.

the labels, which is the key to the success of the neural network model. Even simple Multi-Layer Perceptron (MLP) can perform 
better than GCN in some cases. To obtain the preliminary estimated label, we use an effective label estimation method to map the 
node attributes of feature space into their associated label space. For this paper, MLP is used to estimate the labels of nodes 𝑖 with 𝑖’s 
features, which does not depend on graph structure. Label estimation is expressed as:

𝒚̂𝐸
𝑖
=MLP

(
𝒙𝑖
)
, (2)

where 𝒙𝑖 is the features of node 𝑖. After projection, we get the label estimation results 𝒀̂ 𝐸 ∈ ℝ𝑛×𝑐 , where each row of 𝒀̂ 𝐸 is a 
probability distribution deriving from the softmax. We train the MLP to minimize the loss function:

CE = argmin 1||train
||

∑
𝑖∈train

𝔼
(
𝒚̂𝐸
𝑖
,𝒚𝑖

)
, (3)

where train is set of nodes in the training set, 𝔼(⋅) represents cross entropy loss, 𝒚̂𝐸
𝑖

denotes estimated label of node 𝑖 and 𝒚𝑖 denotes 
the true label. The goal of optimization is to make the two distributions as similar as possible, i.e., to minimize the cross entropy.

Enhancing robustness to noise labels. In label estimation, we use Cross Entropy (CE) to improve the prediction accuracy of sample 
nodes corresponding to the correct labels during the MLP training. CE by itself is not sufficient for learning of classes, especially 
under the noisy label scenario. To reduce the effect of noisy labels, the simplest method is to use label smoothing regularization 
to mitigate the effect of over-fitting due to this noise. However, this approach did not achieve significant improvement [30]. Wang 
et al. [30] argues that DNNs learned with cross entropy tend to exhibit over-fitting to noisy labels on long-tailed classes, and it 
suffers greatly in learning some short-tailed classes. Inspired by [30], we employ a Symmetric Cross Entropy (SCE) approach to learn 
robustly under noisy labels to improve the accuracy of prediction. The Symmetric Cross Entropy (SCE) denoted by 𝑆𝐶𝐸 is defined 
as

SCE = CE +RCE = 𝔼(𝑸,𝑷 ) + 𝔼(𝑷 ,𝑸), (4)

where 𝑷 denotes the ground-truth distribution of samples, and 𝑸 denotes its fitted distribution via the model. The inherent assump-

tion of Symmetric Cross Entropy is that if 𝑷 includes noisy labels due to mistakes from annotations or attacks, 𝔼(𝑸, 𝑷 ) that observes 𝑄
from 𝑷 may be insignificant; reversing the observation direction, that is, adding the constrain of 𝔼(𝑷 , 𝑸) may enhance the modeling 
of entropy on 𝑷 and 𝑸. Specifically, RCE is defined as:

RCE = argmin 1||train
||

∑
𝑖∈train

𝔼
(
𝒚𝑖, 𝒚̂

𝐸
𝑖

)
. (5)

Recalling CE of Eq. (3), with Eq. (5), Eq. (4) is then written as

SCE = 𝜆1CE + 𝜆2RCE, (6)

where 𝜆1 and 𝜆2 are hyperparameters.

Label estimation based message passing. The typical message passing mechanism without the guide of label information, which 
mixes the neighbors with different labels, delivers low-quality neighbor information on heterophilic graph. In this part, we unify 
5

the label, feature, and graph structure of the GNN model by replacing typical aggregation with label estimation-based message 
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Fig. 3. Visualization of GCN with varying layers on Wisconsin. Node classes are drawn in different colors.

Fig. 4. Visualization of LE-GNN with varying layers on Wisconsin. Node classes are drawn in different colors.

passing. After performing label estimation, we can obtain the predicted labels of the unlabeled nodes. Combining them with the 
provided ground-truth 𝒀 𝑡𝑟𝑎𝑖𝑛, we have labels 𝒀̃ 𝐸 = 𝒀̂

𝐸 ∪𝒀 𝑡𝑟𝑎𝑖𝑛. Given these labels, we will obtain a label similarity matrix 𝑺 = 𝒀̃
𝐸
𝒀
𝐸⊤

, 
𝒀̃
𝐸 ∈ℝ𝑛×𝑐 is a set of soft labels, representing the probability that the node belongs to the corresponding label. The larger 𝑺𝑖,𝑗 is, the 

more consistent the labels of node 𝑖 and node 𝑗 are. We perform a Hadamard product of the label similarity matrix 𝑺 and adjacency 
matrix 𝑨. In this way, the elements of 𝑨 will be changed according to the 𝑺. The larger 𝑺𝒊,𝒋 is, the larger 𝑨𝒊,𝒋 is. This means that 
the more consistent the labels of the connected nodes are, the larger the corresponding edge weights will be. In other words, this 
optimal matrix will retain more information about the node’s neighbors with consistent labels. It can be expressed as:

𝑨∗ = 𝑺 ⊙𝑨, (7)

where 𝑨 is original adjacency matrix, 𝑨 is always optimized since 𝑺 is learnable. Instead of adding or removing edges to change the 
basic structure of the graph, we change the weights of the edges by learning the optimal similarity matrix. Finally, unlike traditional 
message passing, we conduct label estimation based message passing by using 𝑨∗:

𝑯 (𝓁+1) = (1 − 𝛼)𝑨∗𝑯 (𝓁) + 𝛼𝑯0, (8)

where 𝛼 is a factor hyperparameter to control the trade-off between the current convolutional layer and the input layer. Instead of 
separating the ego-embedding from neighbor embedding, we set up an initial connection. This simple operation preserves the original 
representation 𝑯0, which prevents the loss of initial node attributes due to the iterative aggregation of neighbor information. Most 
important is performing message passing based on 𝑨∗, which makes more information with the same labels flow to the central nodes.

Overall objective function Besides the above-mentioned loss function SCE for label estimation, we introduce the loss function of 
label estimation based message passing (LEMP). We denote the output of the last LEMP layer as 𝐇̂𝑜𝑢𝑡, then the classification loss is 
shown as,

LEMP = argmin 1||train
||

∑
𝑖∈train

𝔼
(
sof tmax

(
𝐇̂𝑜𝑢𝑡

)
,𝒚𝑖

)
. (9)

Therefore, the overall objective function can be defined as follows:

min = LEMP +SCE

= LEMP + 𝜆1CE + 𝜆2RCE,
(10)

where 𝜆1 and 𝜆2 are hyper-parameters to trade off the ability of prediction and noise resistance.

4.2. Towards preventing over-smoothing

Despite the great success in modeling graph data of GNNs, a key limitation of GNNs is over-smoothing. This problem occurs when 
GNNs go deeper to explore the larger receptive field. Due to the recursive neighbor aggregation by adding more GNN layers, the 
node representations become indistinguishable vectors, which significantly decreases the performance of GNNs. Recalling Eq. (1), 
𝑨̂𝑯𝓁 is the aggregation process of 𝓁-th layer in typical GNNs, which can be written as:

𝒉(𝓁)
𝑣

= AGGREGATE (𝓁) ({𝒉(𝓁−1)
𝑢

∶ 𝑢 ∈ (𝑣)
})
, (11)

where AGGREGATE(𝓁)(⋅) represents the aggregation operation in the 𝓁-th layer,  (𝑣) denotes the linked neighbors of node 𝑣. This 
traditional aggregation makes model challenging to separate the learned representations for heterophilic graphs due to ignoring the 
label information. As shown in Fig. 3, the node representations become indistinguishable when several GCN layers are deployed, 
which limits the model to explore a larger receptive field to take advantage of more useful neighbor information. To prevent over-

smoothing issue, we propose a novel label estimation-based message passing to aggregate neighbor nodes. The goal is to obtain an 
6

optimal adjacency matrix with label information. The novel aggregation process of 𝓁-th layer can be represented as:
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Table 2

Summary of datasets used in node classification. ℎ denotes the homophily ratio.

Dataset Classes Nodes Edges Features ℎ

Cora 7 2,708 5,429 1,433 0.81

Citeseer 6 3,327 4,732 3,703 0.74

Pubmed 3 19,717 44,338 500 0.8

Cornell 5 183 295 1,703 0.3

Texas 5 183 309 1,703 0.11

Wisconsin 5 251 499 1,703 0.21

Squirrel 5 5,201 19,8353 2,089 0.21

Chameleon 5 2,277 3,1371 2,325 0.21

Table 3

Accuracy (%) comparisons with SOTA on homophilic graphs. The highest performances are 
in bold.

Method Cora Citeseer Pubmed

GCN 81.5 71.1 79.0

GAT 83.1 70.8 78.5

APPNP 83.3 71.8 80.1

JKNet 81.9 69.8 78.1

JKNet(Drop) 83.3 72.6 79.2

Incep(Drop) 83.5 72.7 79.5

SGC 81.7 71.7 78.9

DAGNN 84.4±0.5 73.3±0.6 80.5±0.5

SimP-GCN 82.8±0.4 72.6±0.5 81.1±0.3

LE-GNN 85.6± 0.5 73.9± 0.6 79.9±0.2

𝒉̂
(𝓁)
𝑣

= AGGREGATE (𝓁)
({

𝒉(𝓁−1)
𝑢

∶ 𝑢 ∈ ̂ (𝑣)
})

, (12)

where ̂ (𝑣) =
{
𝑢 ∶ (𝑣, 𝑢) ∈  ∧ 𝒚̂𝐸

𝑢
= 𝒚̂𝐸

𝑣

}
is node 𝑣’s neighbors with same label as the node 𝑣. Unlike typical aggregation makes node 

representations from different clusters become mixed up, our label estimation-based message passing has the ability to adaptively 
control the contribution of each node by considering the label information. In each connected subgraph, edges consisting of connected 
nodes with same label will have larger weights, which prevents nodes from mixing across clusters. Cong et al. [31] holds that 
adding to the number of layers causes over-smoothing, which makes all node representations converge to the same point, losing 
the dissimilarity (i.e., distance) between nodes. The following Lemma demonstrates that the aggregation step minimizes the overall 
distance in the embedding space between the graph’s connected nodes:

Lemma 1. Let 𝐷(𝒙) = 1
2
∑
𝑣𝑖,𝑣𝑗

𝑎̃𝑖𝑗
‖‖‖𝒙𝑖 − 𝒙𝑗

‖‖‖
2

2
be a distance metric over node embeddings 𝐱. Then we have

𝐷
(
𝒉(𝓁)

)
≤𝐷

(
𝒙(𝓁)

)
, (13)

where 𝒉(𝓁) denotes the hidden representation in the 𝓁-th layer.

The Lemma 1 has been proofed by [32]. It indicates that the distance between nodes will become smaller after one layer of 
graph convolution because the aggregation operation will squeeze the representation space of the nodes, forcing the neighbor nodes 
to move closer to the central node. The ideal situation is that neighbors with the same label are close to the central node, while 
neighbors with different labels are far away from the central node, and in this way, the inter-class boundaries become clearer. Our 
approach achieves the goal of preserving more information of nodes with the same label precisely by controlling edge weights, 
mitigating the negative impact of noisy neighbors, which reveals that our approach has the ability to capture heterophily and can 
go deeper. To verify the effectiveness of LE-GNN, we utilize the t-SNE to provide interpretable visualizations on Wisconsin that 
is a heterophilic graph. The t-SNE is able to capture the clustering results in high-dimensional data, which is consistent with the 
classification of nodes. As shown in Fig. 4, our model with a large receptive field, such as 64-hop, still generates distinguishable node 
representations, suggesting that our LE-GNN is able to prevent over-smoothing.

5. Experiments

In this section, we conduct extensive experiments to evaluate our model and aim at answering the following questions:

• Q1: How does LE-GNN perform on homophilic graphs?

• Q2: How effective is LE-GNN compared with competitive baselines in the node classification task on the graphs with heterophily?
7

• Q3: Whether LE-GNN could tame the over-smoothing representation on heterophilic graphs?
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Table 4

The hyper-parameters for Table 6.

Dataset Method Hyper-parameters

Cora GCNII layers: 64, 𝛼𝓁 : 0.2, lr: 0.01, hidden: 64, 𝜆: 0.5, dropout: 0.5, 𝐿2: 1e-4

HOG-GCN layers: 3, lr: 0.001, hidden: 256, dropout: 0.5, 𝐿2: 5e-4

BM-GCN layers: 3, lr: 0.001, hidden: 64, dropout: 0.5, enhance: 3.0, self_loop: 1.5, 𝐿2: 5e-4

LE-GNN layers: 16, 𝛼: 0.2, lr: 0.01, hidden: 128, 𝜆1: 1e-3 , 𝜆2: 1e-2, dropout: 0.5, 𝐿2: 5e-4

Cite. GCNII layers: 64, 𝛼𝓁 : 0.5, lr: 0.01, hidden: 64, 𝜆: 0.5, dropout: 0.5, 𝐿2: 5e-6

HOG-GCN layers: 3, lr: 0.001, hidden: 256, dropout: 0.5, 𝐿2: 5e-4

BM-GCN layers: 3, lr: 0.001, hidden: 64, dropout: 0.5, enhance: 4.0, self_loop: 2.0, 𝐿2: 5e-4

LE-GNN layers: 8, 𝛼: 0.3, lr: 0.01, hidden: 64, 𝜆1: 1e-3 , 𝜆2: 1e-2, dropout: 0.5, 𝐿2: 5e-4

Pubm. GCNII layers: 64, 𝛼𝓁 : 0.1, lr: 0.01, hidden: 64, 𝜆: 0.5, dropout: 0.5, 𝐿2: 5e-6

HOG-GCN layers: 3, lr: 0.001, hidden: 256, dropout: 0.5, 𝐿2: 5e-4

BM-GCN layers: 3, lr: 0.001, hidden: 64, dropout: 0.5, enhance: 2.0, self_loop: 3.0, 𝐿2: 5e-4

LE-GNN layers: 2, 𝛼: 0.2, lr: 0.005, hidden: 256, 𝜆1: 1e-3, 𝜆2: 1e-2, dropout: 0.5, 𝐿2: 5e-5

Cham. GCNII layers: 8, 𝛼𝓁 : 0.2, lr: 0.01, hidden: 64, 𝜆: 1.5, dropout: 0.5, 𝐿2: 5e-4

HOG-GCN layers: 3, lr: 0.001, hidden: 256, dropout: 0.5, 𝐿2: 5e-4

BM-GCN layers: 3, lr: 0.001, hidden: 64, dropout: 0.5, enhance: 0.8, self_loop: 0.0, 𝐿2: 5e-4

LE-GNN layers: 1, 𝛼: 0, lr: 0.01, hidden: 64, 𝜆1: 1e-3 , 𝜆2: 1e-2, dropout: 0.2, 𝐿2: 5e-4

Corn. GCNII layers: 16, 𝛼𝓁 : 0.5, lr: 0.01, hidden: 64, 𝜆: 1, dropout: 0.5, 𝐿2: 0.001

HOG-GCN layers: 3, lr: 0.005, hidden: 256, dropout: 0.5, 𝐿2: 0.02

BM-GCN layers: 2, lr: 0.001, hidden: 64, dropout: 0.5, enhance: 1.0, self_loop: 0.0, 𝐿2: 5e-4

LE-GNN layers: 8, 𝛼: 0.9, lr: 0.01, hidden: 128, 𝜆1: 1e-3 , 𝜆2: 1e-2, dropout: 0.5, 𝐿2: 1e-5

Texa. GCNII layers: 32, 𝛼𝓁 : 0.5, lr: 0.01, hidden: 64, 𝜆: 1.5, dropout: 0.5, 𝐿2: 0.0001

HOG-GCN layers: 3, lr: 0.005, hidden: 256, dropout: 0.5, 𝐿2: 0.02

BM-GCN layers: 2, lr: 0.001, hidden: 64, dropout: 0.5, enhance: 1.0, self_loop: 0.0, 𝐿2: 5e-4

LE-GNN layers: 2, 𝛼: 0.9, lr: 0.01, hidden: 64, 𝜆1: 1e-3 , 𝜆2: 1e-2, dropout: 0.5, 𝐿2: 1e-5

Wisc. GCNII layers: 16, 𝛼𝓁 : 0.5, lr: 0.01, hidden: 64, 𝜆: 1, dropout: 0.5, 𝐿2: 0.0005

HOG-GCN layers: 3, lr: 0.005, hidden: 256, dropout: 0.5, 𝐿2: 0.02

BM-GCN layers: 2, lr: 0.001, hidden: 64, dropout: 0.5, enhance: 1.0, self_loop: 0.0, 𝐿2: 5e-4

LE-GNN layers: 2, 𝛼: 0.9, lr: 0.01, hidden: 128, 𝜆1: 1e-3 , 𝜆2: 1e-2, dropout: 0.5, 𝐿2: 1e-5

Squi. GCNII layers: 16, 𝛼𝓁 : 0.5, lr: 0.01, hidden: 64, 𝜆: 1, dropout: 0.5, 𝐿2: 0.0005

HOG-GCN layers: 3, lr: 0.005, hidden: 256, dropout: 0.5, 𝐿2: 0.02

BM-GCN layers: 3, lr: 0.001, hidden: 64, dropout: 0.5, enhance: 2.0, self_loop: 0.0, 𝐿2: 5e-4

LE-GNN layers: 2, 𝛼: 0.2, lr: 0.01, hidden: 64, 𝜆1: 1e-3 , 𝜆2: 1e-2, dropout: 0.5, 𝐿2: 1e-4

Specifically, we first verify the performance of the model on homophilic and heterophilic graphs, then conduct robustness analysis 
for LE-GNN, and finally consider the ablation experiments of the model. Code is available at https://github .com /KaiGuo20 /LE -GNN.

5.1. Datasets and experiment settings

Benchmark datasets. We now evaluate the performance of our model and existing GNNs on a variety of real-world 
datasets [33–36]. According to the homophily ratio 𝒉, the graphs can be classified into homophilic and heterophilic graphs. We 
use three homophilic graphs: Cora, Citeseer and Pubmed, and five heterophilic graphs: Cornell, Texas, Wisconsin, Squirrel and 
Chameleon to evaluate the performance. The statistics of datasets are presented in Table 2, including the information about ho-

mophily ratio.

Experimental settings. We implement LE-GNN and reproduce the baselines using Pytorch [37] and Pytorch Geometric [38]. To per-

form a rigorous and fair comparison of the different models on each dataset, we use the same dataset splits and training procedures. 
Specifically, we follow the dataset partitioning proposed by [39] for experiment on homophilic graphs, and follow the dataset par-

titioning proposed by Geom-GCN [20] for experiment on heterophilic graphs. We calculate the average test accuracy of 10 runs for 
the node classification. For experiment of deep model and adversarial robustness, we report the average performance of 5 runs. We 
adopt the Adam optimizer [40] for model training. The seeds of random numbers are set to the same value for the purpose of repro-

ducibility. We perform random hyper-parameter searches and report the case that achieves the best accuracy on the validation set of 
each benchmark. For our proposed LE-GNN, we tune the following hyper-parameters: 𝛼 ∈ {0, 0.1, 0.2, ..., 1}, 𝜆1 ∈ {5𝑒 −4, 1𝑒 −3, 1𝑒 −2}, 
𝜆2 ∈ {5𝑒 − 4, 1𝑒 − 3, 1𝑒 − 2}. The hyper-parameters have been reported on Table 4.

5.2. Baselines

We compare the proposed model with the following representative state-of-the-art methods:

GCN [14]. GCN is the first notable GNN graph embedding research. To learn graph embedding, GCN uses aggregation and feature 
8

transformation functions to encode both graph connection structure and node attributes.

https://github.com/KaiGuo20/LE-GNN
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Table 5

Testing mean accuracy (%) results with various layers on homophilic graphs.

Dataset Method
Layers

2 4 8 16 32 64

Cora

GCN 81.52±0.71 78.12±1.67 63.11±7.47 41.05±17.92 17.96±7.36 21.14±9.35

JKNet 81.87±0.75 80.59±1.13 79.50±1.29 80.21±1.36 81.12±1.41 71.54±1.27

LE-GNN 81.90±0.49 83.77±0.29 83.85±0.55 85.60±0.51 85.10±0.37 84.50±0.38

Citeseer

GCN 71.15±1.49 62.15±1.68 53.76±5.45 30.05±6.93 18.47±2.58 17.94±2.01

JKNet 70.38±1.22 70.47±0.45 70.30±1.09 69.81±1.02 68.25±0.98 63.47±1.08

LE-GNN 71.79±0.50 71.99±0.95 73.25±0.54 73.92±0.61 73.27±0.81 73.30±1.04

GAT [17]. GCN aggregates feature information of neighbors using laplacian matrix, which assigns the same weight to different 
neighbors. In order to address this issue, the Graph Attention Network (GAT) uses an attention mechanism and learns different 
scores to various nodes within the neighborhood.

APPNP [16]. APPNP combines GCN and PageRank to obtain an improved personalized PageRank-based propagation scheme that 
incorporates higher-order neighborhood information while preserving local information.

DropEdge [24]. DropEdge eliminates edges from the original graph at random during model training to mitigate problems like 
over-smoothing and over-fitting induced by stacking more GCN layers.

JKNet [23]. JKNet learns better representations by leveraging diverse neighbor ranges for each node.

DAGNN [41]. To tackle over-smoothing issue, DAGNN decouples two operations: representation transformation and propagation to 
learn graph node representations from larger receptive fields.

GCNII [21]. In order to create a deep GNN model for better performance, GCNII incorporates residual connectivity and identity 
mapping on the basis of GCN.

H2GNN [15]. H2GCN adopts three key designs for node classification on heterophilic graphs.

Geom-GCN [20]. Geom-GCN explores to capture long-range dependencies in disassortative graphs. It constructs structural neigh-

borhoods for aggregation using the geometric relationships defined in the latent space.

TDGNN [25]. The Tree Decomposed Graph Neural Network (TDGNN) is able to adaptably incorporate data from large receptive 
fields and aggregate this information with the help of multi-hop dependency.

SimP-GCN [42]. SimP-GCN adaptively integrates the graph structure and node features by using a feature similarity preserving 
aggregation. In addition, it captures pairwise node similarity via self-supervised learning.

CPGNN [26]. CPGNN propagates soft labels with the help of a compatibility matrix.

HOG-GCN [27]. HOG-GCN constructs a homophily degree matrix using the label propagation technique to investigate the extent to 
which pair of nodes in a graph with strong heterophily belongs to the same label.

BM-GCN [28]. BM-GCN creates a new network topology by using block similarity matrix that is commonly used in community 
detection.

To investigate the applicability of LE-GNN, we expand our empirical evaluation to two types of graphs: homophilic graphs and 
heterophilic graphs.

5.3. Performance comparison on homophilic graphs

To response the Q1, we conduct experiments on homophilic graphs. There are three well-known homophilic benchmark datasets: 
Cora [33], Citeseer [33] and Pubmed [33] for semi-supervised node classification.

Settings. To verify the effectiveness of LE-GNN on homophilic graphs, we conduct two experiments, namely the comparison with 
different layers and comparison with SOTA. We follow the standard experimental setting proposed by [39]. We consider the following 
baselines: GCN [14], GAT [17], APPNP [16], JKNet [23], DropEdge [43], SGC [18], DAGNN [41], SimP-GCN [42]. To ensure a fair 
comparison, we use the same training/validation/test splits as in DAGNN for each model. We compute the average test accuracy of 
10 runs.

The results of LE-GNN compared with SOTA methods are reported in Table 3. We observe that our proposed LE-GNN outperforms 
the SOTA methods on 2 out of 3 datasets, which demonstrates the effectiveness of our model on homophilic graph. Quantitatively, LE-

GNN obtains the improvement of 1.4% and 0.82% on Cora and Citeseer, respectively. Table 5 summarizes the results of comparison 
with different layers. We find that the performance of our model LE-GNN keeps improving or stabilizing as the number of layers 
increases on homophilic graphs like Cora and Citeseer.

5.4. Performance comparison on heterophilic graphs

It is challenging for graph neural networks to perform node classification on heterophilic graphs. In the following experiments, 
we evaluate the performance of LE-GNN on graphs with heterophily.

Settings. In order to provide a rigorous and fair comparison between the different models on each dataset, the dataset split and 
training procedures are set to the same. Following the common setting proposed by Geom-GCN [20], we randomly split the nodes of 
9

each class into 60%, 20% and 20% for training, validation and testing, respectively, for each dataset.
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Table 6

Accuracy (%) comparisons with SOTA over 8 datasets. The highest performances are in bold.

Method Cora Cite. Pumb. Corn. Texa. Wisc. Squi. Cham.

GCN 85.77 73.68 87.91 52.70 58.38 39.02 36.89 59.82

GAT 86.37 74.32 87.62 54.32 58.38 49.41 30.62 54.69

APPNP 87.87 76.53 89.40 73.51 65.41 69.02 30.67 43.85

JKNet 85.25 75.85 88.94 57.30 56.49 48.82 40.45 60.07

Incep(Drop) 86.86 76.83 89.18 61.62 57.84 50.20 41.78 61.71

DAGNN 87.26±1.42 76.47±1.54 87.49±0.63 80.97±6.33 81.32±4.19 85.38±3.95 36.60±1.25 50.75±3.46

GCNII* 88.27 ± 1.31 77.06±1.67 90.26±0.41 76.70±5.40 77.57±5.84 80.39±4.94 38.49±1.58 62.48±1.25

Geom-GCN* 85.35±1.57 78.02±1.15 90.05 ± 0.47 60.54±3.67 66.76±2.72 64.51±3.66 38.15±0.92 60.90±1.59

H2GCN* 87.81±1.35 77.11±1.64 89.49±0.34 82.16±4.80 84.86 ± 6.77 86.67 ± 4.69 37.90±2.02 59.39±1.98

TDGNN* 88.26±1.32 76.64±1.54 89.22±0.41 82.92±6.61 83.00±4.50 85.57±3.78 - -

SimP-GCN 85.56±1.87 74.64±1.10 89.90±0.22 84.05 ± 6.40 81.62±4.88 85.49±3.24 41.59±2.67 53.79±0.82

CPGNN-MLP 85.23±1.71 74.29±2.41 86.83±0.78 - 77.09±4.22 84.53±6.48 28.65±1.50 52.63±1.79

CPGNN-Cheby 86.82±1.11 75.42±1.85 89.08±0.67 - 77.03±5.83 81.76±6.74 30.95±1.24 54.05±4.67

HOG-GCN 86.27±1.77 76.30±1.94 88.35±0.50 77.56±6.11 81.62±4.88 81.37±3.36 37.85±1.55 53.99±1.35

BM-GCN 87.72±0.87 76.54±1.77 89.01±0.57 74.89±5.10 80.81±7.14 76.47±5.91 53.12±1.67 69.12±1.74

LE-GNN 88.39±1.58 77.47 ± 1.36 89.63±0.41 84.59±5.72 86.22±5.47 86.86±3.55 45.05 ± 1.34 65.42 ± 1.97

Table 7

Testing mean accuracy (%) results with various layers on heterophilic graphs.

Dataset Method
Layers

2 4 8 16 32 64

Chameleon

GCN 53.98±2.29 53.26±1.68 38.61±3.75 35.39±3.23 35.20±2.29 35.50±3.15

Geom-GCN* 61.25±2.21 20.55±1.42 19.58±1.73 19.58±1.73 19.58±1.73 19.58±1.73

GCNII* 61.69±2.11 61.92±2.54 62.10±1.29 62.48±1.45 57.52±1.62 55.36±1.52

H2GNN* 59.86±1.56 60.77±1.74 OOM OOM OOM OOM

BM-GCN 59.86±1.56 64.38±2.48 22.76±2.56 19.58±1.82 20.21±2.98 19.58±1.82

HOG-GCN 53.99±1.35 42.67±2.39 35.57±1.68 21.05±2.75 22.50±1.51 OOM

LE-GNN 63.05±2.51 54.41±2.55 53.07±2.73 53.64±2.67 52.59±3.05 53.20±2.75

Wisconsin

GCN 63.59±5.40 54.92±5.42 51.33±6.84 47.84±9.86 47.84±9.86 47.84±9.86

Geom-GCN* 64.51±3.66 17.86±1.26 15.22±2.67 15.22±2.67 15.22±2.67 15.22±2.67

GCNII* 78.62±0.18 77.85±1.28 75.27±1.29 73.73±5.29 70.20±5.61 70.98±7.25

H2GNN* 87.65±4.98 84.57±2.98 80.39±3.57 OOM OOM 3.92±1.02

BM-GCN 76.47±5.91 65.09±6.17 47.45±8.92 3.13±1.07 3.13±1.07 3.13±1.07

HOG-GCN 81.37±3.36 63.53±2.63 48.63±9.13 47.84±9.86 47.84±9.86 47.84±9.86

LE-GNN 86.86±3.55 84.71 ±1.18 85.10±3.60 86.64±3.67 85.49±3.24 85.15±2.14

Cornell

GCN 60.62±5.40 58.68±5.42 57.84±6.84 57.84±6.84 57.84±6.84 57.84±6.84

Geom-GCN* 61.02±3.57 21.98±2.61 12.97±2.91 12.97±2.91 12.97±2.91 12.97±2.91

GCNII* 74.05±4.58 75.14±1.28 75.14±5.29 77.59±4.67 75.36±5.10 73.15±4.36

H2GNN* 81.67±5.20 81.90±4.52 80.18±3.90 OOM OOM OOM

BM-GCN 74.89±5.10 61.08±8.46 57.30±3.52 11.89±2.41 11.89±2.41 11.89±2.41

HOG-GCN 77.56±6.11 64.32±8.63 57.83±3.08 57.83±3.08 57.83±3.08 57.83±3.08

LE-GNN 84.05±5.90 83.97±4.98 84.59±5.72 84.41±6.26 84.59±8.20 84.32±5.26

Overall results In order to verify the overall performance of our proposed model LE-GNN on graphs with homophily and heterophily, 
we compare LE-GNN with current SOTA methods. For GCN, GAT, and H2GNN*, we reuse the results already provided in [15], as well 
as the best metrics reported in [25] for Geom-GCN*, GCNII*, and TDGNN*. The results are reported in Table 6, which demonstrates 
the effectiveness of LE-GNN. We make the following conclusions:

i) The experimental results show that our proposed LE-GNN performs better than baselines on most of the datasets. In particular, 
for the Texas dataset, our model achieves a significant improvement of 1.6% compared to the second-best model.

ii) Given the results from the Table 6, we find that GCN fails to capture heterophily because it aggregates neighbors without 
considering the labels of nodes. Similarly, GAT lacks the ability to perform well on the heterophilic graph, although the attention 
mechanism is used to aggregate the important neighbors’ information.

iii) Our LE-GNN adopts a novel message passing mechanism based on label estimation that performs well both on homophilic and 
heterophilic graphs. The reason is that the scheme aggregates high-quality neighbor information and reduces the negative impact of 
inconsistently labeled neighbors. The above is the answer to Q2.

Validation of taming over-smoothing issue. To answer the Q3, we compare our model with baselines under different layers. The 
results for models with varying number of layers are summarized in Table 7. The following are our observations:

i) Geom-GCN, HOG-GCN and BM-GCN suffer from a severe over-smoothing issue, as evidenced by their dramatic performance 
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degradation after stacking multiple layers. For example, compared to a 2-layer GCN, the prediction accuracy of a 64-layer GCN on 
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Fig. 5. The model robustness to label noise of different models.

Chameleon is reduced by 34.8%, which demonstrates traditional message passing induces severe over-smoothing issue on heterophilic 
graphs.

ii)In contrast to representative baseline models, our proposed model generally achieves better performance both on homophilic 
and heterophilic graphs under various layers. For example, our LE-GNN obtains improvement of 3.0% over H2GNN* with two 
layers on Cornell dataset, while achieving remarkable gains of 15.3% over GCNII* in the case of 64 layers. For Wisconsin dataset, 
our proposed LE-GNN delivers remarkable gains of 77.9% over GCN in the case of 64 layers, which is consistent with our previous 
observation of t-SNE visualization. It demonstrates the effectiveness of our model for preventing the over-smoothing problem. Because 
our model propagates high-quality neighbor information, avoiding the generation of indistinguishable node representations.

5.5. Robustness analysis for LE-GNN

It is challenging to collect large amounts of data with clean labels for supervised neural network training. This is because the 
process of data labeling by humans in practice is difficult and expensive, especially in domains that require expert annotation. 
In addition, some studies have concluded that GNNs are vulnerable to attacks. Once the labels are modified by attackers, the 
performance of GNNs is greatly degraded [42,44,45]. Moreover, our proposed model relies on the label information for message 
passing. Therefore, in this subsection, we are interested in investigating its potential benefits in terms of adversarial label robustness. 
Specifically, we replace the correct label with another label to simulate a label attack. The number of replaced labels divided by the 
total number of labels is called the label noise ratio. We compare our proposed LE-GNN with some SOTA methods under different 
label ratios, from 0 to 40% with steps of 5%. We conduct experiments on two heterophilic graphs: Wisconsin, Texas, and two 
homophilic graphs: Cora, Citeseer.

As shown in Fig. 5, we can observe that LE-GNN consistently improves GCN’s performance under varied perturbation rates of 
adversarial attack. Even there is a high ratio of label noise, LE-GNN enhances GCN by a greater margin. For example, LE-GNN delivers 
11

an improvement of 69.6% over GCN under 30% label noise ratio on Wisconsin dataset, which demonstrates that our proposed model 
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Fig. 6. Ablation study: Depth vs. Accuracy for GCN, our model and three ablated models on Cornell and Wisconsin.

LE-GNN is robust to label noise. The reason is that our model generates soft pseudo labels based on the feature space and improves 
noise robustness via symmetric cross-entropy, so even if the dataset is attacked and the labels are changed, our model still performs 
well on node classification tasks.

5.6. Ablation study

LE-GNN consists of three components: label estimation, symmetric cross entropy loss and label estimation based message passing. 
In our framework, label estimation and label estimation based message passing are required to co-exist because the former is a 
pre-preparation of latter. Besides, in label estimation based message passing, there is a hyperparameter 𝛼 about initial connection. 
Therefore, to evaluate the contributions of our techniques, we construct the following variants of our model and define them as 
follows: 1) LE-GNN w/o SCE denotes the omission of the Symmetric Cross Entropy module from LE-GNN; 2) LE-GNN w/o LEMP 
indicates that the label estimation-based message passing in LE-GNN is ignored; 3) LE-GNN w/o Initial indicates to remove the initial 
connection from LE-GNN. To shed light on the contributions of the three perspectives, we report the node classification results of 
LE-GNN and their variants on Cornell and Wisconsin, as shown in Fig. 6. We present the following observations.

i) Compared with GCN, our proposed LE-GNN and it’s variants deliver significant improvements on heterophilic graphs, which 
demonstrates the effectiveness of our model. This shows the effectiveness of our proposed LEMP to capture heterophily. This scheme 
propagates high-quality information by aggregating neighbors with the same label, which facilitates the learning of distinguishable 
node representations on the heterophilic graphs.

ii) We observe that the GCN model has a sharp performance decrease after four layers. However, our model and its variants 
perform significantly higher performance. In particular, our model consistently performs better as the number of layers increases, 
demonstrating our model and its variants have the ability to alleviate the over-smoothing issue.

6. Conclusion

Traditional message passing mechanism is proposed under the assumption that networks with strong homophily. This method is 
unsuitable for heterophilic graphs, which mixes the neighbors of different labels, delivers low-quality neighbor information, making 
the learned node representation more indistinguishable. In this paper, we proposed Label Estimation-based GNN (LE-GNN), a deep 
model that tames over-smoothing issue by introducing extra-label information. LE-GNN includes a message-passing scheme based on 
label estimation, which aggregates high-quality neighbor information and makes inter-class boundaries clearer. The comprehensive 
experiments demonstrated that our proposed model LE-GNN could effectively capture heterophily, and further achieved significant 
improvement in the node classification tasks. Even when the graph suffering severe label attacks, our model could still perform better 
than SOTA methods, which verified its robustness.
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