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Abstract—Along with the vast application of Internet of Things
(IoT) and the ever-growing concerns about data protection, a
novel type of learning, named incremental federated learning
(IFL), is rising to further elevate the intelligence and quality of
various IoT systems and services by consistently learning and
updating their models, e.g., deep neural networks, in dynamic
contexts, where clients and data can increase and accumulate
gradually. Since IFL is still in its infancy, to overcome its
emerging challenges as represented in 1) periodic learning about
how to initialize the model update rationally to avoid catastrophic
performance dropping, and 2) iterative learning about how to
update the model cost-efficiently to remedy overlearning on
duplicated information, this article proposes a stage-based and
layerwise mechanism for IFL, called SLMFed, in which, the peri-
odic learning is managed by a stage transition and client selection
strategy to trigger model update according to the quantitative and
qualitative changes on clients, data, and user experience, and the
iterative learning is enhanced by an adaptive layer uploading and
aggregation strategy to update the global model by measuring
representational consistencies and information richness of local
model layers. As shown by the evaluation results, SLMFed can
not only stabilize the learning across various learning stages
but also boost the performance in terms of learning accuracy,
communication cost, and stage contribution by about 32.09%,
105.94%, and 22.02%, respectively.

Index Terms—Federated learning (FL), incremental federated
learning (IFL), incremental learning (IL), layer uploading and
aggregation, layerwise iterative learning, stage transition and
client selection, stage-based periodic learning.
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I. INTRODUCTION

W ITH the vast deployment and utilization of
interconnected smart objects, which contain rich

and independent computing, storage, and communication
capabilities, the fusion of ubiquitous Internet of Things
(IoT) and versatile artificial intelligence (AI) is being
explored to renovate modern service profiles in facilitating
our daily lives [1], e.g., autonomous vehicle-enabled on-
demand mobility [2], assistive robotic-driven personalized
rehabilitation [3], etc. Along with this trend, diverse objects
are deployed even closer to the users as digital companions
that can consistently monitor the status of individuals and
their surroundings, and then, timely react to meet emerging
needs with high-user experience, e.g., the obstacle avoidance
of unmanned vehicles while riding passengers to their
destinations [4], the falling protection of assistive robotics
during the movement of patients [5], etc.

To achieve such a promising vision, collective intelligence
that integrates and intercepts knowledge retrieved from each
object becomes essential to continuously elevate the level
of automation and intelligence of pervasive IoT systems
and services [6], [7], [8]. However, the ever-growing con-
cern about data security and user privacy may overturn
widely used centralized approaches in fusing interknowl-
edge [9], [10], [11], and the gradually accumulated clients
and newly sensed data may also complicate the procedure
to train efficient and effective AI models, e.g., deep neural
networks (DNNs), that can consolidate both old and new
knowledge to avoid catastrophic performance dropping [12].
Hence, as a novel solution, incremental federated learning
(IFL), also known as continuous federated learning (FL),
is attracting more attention by applying FL and incremen-
tal learning (IL) jointly to learn a shareable and informed
model in a privacy-preserving and change-adapting man-
ner [13], [14], [15]. Currently, IFL solutions to tackle samples
with new classes [16] are under discussion, and also utilized
to support several application scenarios, e.g., person reiden-
tification [17], computer-aided diagnosis [18], and intrusion
detection in unmanned aerial vehicle networks [19].

In general, to assist real-world applications, IFL needs
to run periodically, called periodic learning, and then,
update the global model iteratively, called iterative learning,
e.g., in rehabilitation, as the motor ability of paralytics will
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recover gradually, related observations shall be processed
timely for an adaptive model that can be deployed in assistive
robotics to better advise and serve the patients [20]; and in
mobility, as the regularity of road networks may change over
time and places, the model deployed at the control center to
coordinate autonomous vehicles needs to be updated consis-
tently to resolve intertwined user demand and system supply
with high-user experience and low-operation cost [21]. Even
though periodic learning can adaptively optimize IoT services,
and iterative learning can assist in knowledge integration of
devices, it still needs to overcome challenges emerging in
1) periodic learning to start IFL rationally with a set of
qualified clients (QCs) selected as learning participants, and
2) iterative learning to execute IFL cost-efficiently for an
updated global model [22], [23], [24].

Since IFL is still in its infancy, current solutions focus
more on static scenarios (i.e., with a fixed number of
clients and data) to resolve client selection, communication
optimization, and aggregation enhancement issues caused by
non-independent and identically distributed (non-IID) data,
heterogeneous computing capabilities, the discrepancy in local
models, etc. [25], [26], [27]. While considering real-world
situations, the dynamics of IFL, i.e., the gradually increased
clients and local data, are rarely discussed to train AI models
with balanced performance on old and new data. It is critical
as time-varying contexts commonly exist that may unsettle the
one-time basis of current solutions, making them less efficient
or even invalidated. Therefore, a novel solution is required to
support IFL under such a dynamic context cost-efficiently.

To fill the gap, this article proposes SLMFed, a stage-based
and layerwise mechanism to support IFL for ubiquitous IoT
systems and services. In general, the main contributions of this
study can be summarized as the following.

1) Stage-Based Periodic Learning Is Managed: It proposes
dedicated indicators measuring the changes in active
users and sensed local data as well as user experience
to determine the stage transition in IoT tasks rationally.
Moreover, as the premise to start a new stage, a
client selection probability is designed based on a self-
information change indicator to activate a set of qualified
IoT devices that can maintain a balance between the old
and new data to avoid catastrophic forgetting and over-
learning issues.

2) Layerwise Iterative Learning Is Designed: It optimizes
the local model uploading process to be adaptive in each
client, which calculates representational consistencies
(RCs) of model layers after the local training to adjust
their uploading frequency with communication costs
(CCs) reduced in IoT networks, and also, enhances the
global model aggregation function to be layerwise in
the server that measures the information richness (IR)
of received local parameters to update the global model
with learning performance improved for IoT services.

3) Significant Improvement Is Achieved: Through SLMFed,
IFL in dynamic and ubiquitous IoT contexts can run
efficiently and effectively as shown by the evalua-
tion results to learn DNNs for four standard data
sets (i.e., Modified National Institute of Standards

Fig. 1. Overall workflow of IFL. (a) Data are accumulated gradually while
related services are in use. (b) Models are updated incrementally according to
the FL paradigm, i.e., 1) Local training to learn local models at QCs, 2) Client-
server interaction to exchange learning parameters and 3) Global update to
aggregate received local models for the global model and then devolve the
updated global model to the clients.

and Technology (MNIST), Fashion-MNIST (FMNIST),
CIFAR-10, and German Traffic Sign Recognition
Benchmark (GTSRB)) in two client and data incremental
scenarios. Specifically, compared to other methods in all
testing cases (in total 8), it can significantly improve
model performance, reduce CCs and increase stage
contribution by about 32.09%, 105.94%, and 22.02%,
respectively.

The remainder of this article is organized as follows.
Section II introduces IFL and then, summarizes related chal-
lenges and solutions to disclose the current research gap. Next,
SLMFed is presented and evaluated in Sections III and IV,
respectively. Finally, Section V concludes the work and
sketches the future research directions.

II. CHALLENGES AND SOLUTIONS ABOUT IFL

To establish a common research foundation, in this section,
first, the overall workflow of IFL is discussed to illustrate how
up-to-date AI models can be trained and deployed in a col-
laborative and privacy-preserving way to support various IoT
systems and services. Then, several challenges encountered in
IFL are identified, and related solutions are summarized to
disclose the current research gap.

A. Introduction of IFL

In general, with the penetration of various IoT systems
and services, massive data can be gleaned with a mixture of
old and new content that reflects diversified and changeable
user behaviors. Hence, to avoid the downgrade in the level
of automation and intelligence for these systems and services,
their employed AI models shall be updated incrementally to
handle novel service contexts in time [12]. Moreover, under the
ever-growing concerns of data security and user privacy, FL is
rising to complement centralized approaches by training global
models, e.g., DNNs, that can be shared and customized among
clients in a collaborative and privacy-preserving manner [25].

As shown in Fig. 1, IFL is discussed to address the two
emerging requirements jointly in two phases.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on January 24,2025 at 08:20:46 UTC from IEEE Xplore.  Restrictions apply. 



16366 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 9, 1 MAY 2024

1) Phase 1 (Data to be Accumulated Gradually): As
shown in Fig. 1(a), it represents a standby period for
the number of clients and the size of data to grow.
Specifically, similar to how smartphone applications are
utilized, clients can choose to join or leave a service
freely according to their actual needs. Hence, the cluster
of clients may vary over time and places, especially
for personalized services, e.g., shared mobility, on-
demand healthcare, etc. Moreover, while services are
in use, related objects, e.g., users, unmanned vehicles,
assistive robotics, etc., are monitored to sense themself
and their surroundings for essential data representing
their running statuses. Accordingly, by cooperating with
heterogeneous clients as well as their local data, deci-
sive knowledge, e.g., encoded in AI models, can be
learned to continuously improve service quality and user
experience.

2) Phase 2 (Model to be Updated Incrementally): As shown
in Fig. 1(b), it stands for an activation period for clients
to train a global model collaboratively based on data
accumulated in the first phase. According to the general
workflow of FL, clients with sufficient samples are
qualified and activated to start the local training, in
which, each client will use its own data to train a local
model. After that, local models are uploaded to the
server through the network and aggregated in the server
to update the global model. Finally, the global model
will be distributed to the clients to start a new learning
iteration or end the learning by deploying the model.
It is worth noting that within the activation period,
the learning is iterative, which ends when predefined
conditions are met, e.g., maximum learning interactions
or target model accuracy.

In summary, the incrementality of IFL can be viewed in two
aspects.

1) Periodic Learning: It is illustrated by the switch between
the standby and activation periods when the stale model
needs to be updated to address previously unknown or
insignificant information.

2) Iterative Learning: It is represented by the interaction
between the clients and the server within the activation
period to train a sharable and customizable global model.

To implement the two kinds of learning in IFL efficiently
and effectively, several challenges are emerging.

B. Emerging Challenges

First, most of the existing research is commonly studied in
an ideal environment with a fixed number of clients and size
of data, and in turn, lacks the consideration of the dynamics in
real-world scenarios [28], [29], [30], [31], [32]. Along with the
service penetration that more active clients and representable
information are attracted and sensed, respectively, two critical
challenges are encountered in periodic learning.
C.1 Initialization of Model Update: Compared to conven-

tional scenarios that aim to learn high-performance
models in a fixed context, IFL needs to make a pru-
dent decision on when and whether to update the

staling models affected by the time-varying proper-
ties, e.g., recently recruited users, newly sensed data,
etc. [33], [34].

C.2 Selection of QCs: User behavior may drift over time, and
in turn, previously unseen or insignificant information
may surge in a part of active users. Therefore, IFL needs
to measure these variations, and accordingly, select
appropriate clients to learn a collective model that can
serve all the clients without a catastrophic dropping in
user experience [9], [35].

Once IFL is initialized, related clients shall be orchestrated
cost-efficiently to update the model for balanced performance
in handling both old and new content. In general, within
iterative learning, two essential issues are emerging.
C.3 Optimization of Client-Server Communication:

Resources are commonly shared among IoT systems
and services at the edge, especially the scarce or
rated communication capabilities. Even though IFL
transmits model parameters instead of raw data,
iterative learning may still affect user experience
(e.g., lagging for required contents). Hence, the client-
server interaction shall be optimized to make IFL less
burdensome [24], [36], [37].

C.4 Aggregation of Local Updates: To expedite the learning
(i.e., reduce the number of iterations between the clients
and the server) for an updated model reaching certain
targets, i.e., predefined model accuracy, the heterogene-
ity hidden in local updates shall be properly addressed to
not only accelerate the learning process but also improve
model performance [26], [27], [38].

To overcome the emerging challenges in the periodic and
iterative learning of IFL, several solutions are proposed.

C. Related Solutions

IL refers to the process of learning new knowledge con-
tinuously while tackling the forgetting of old knowledge. To
achieve that, several methods to avert catastrophic forgetting in
AI models are studied, e.g., weighted processing strategy [39],
knowledge distillation [51], confrontation mechanism [52],
etc. However, the dynamics of IFL, e.g., gradually increased
non-IID data and diversified clients, may make them ineffi-
cient or even inoperative to assist various IoT systems and
services. Such that, several solutions have been proposed by
either utilizing a set of pertaining data that can preserve
beneficial information for the later update [53] or controlling
the forgetting paces of old classes locally at the client and
globally at the server to incorporate the knowledge in emerging
classes [16], [54], [55].

Even though current solutions can efficiently and effectively
support structured IFL scenarios, e.g., to train AI models with
sets of predefined incremental tasks, the time-varying and
individual-dependent properties in real-world applications are
yet discussed, especially for the joint optimization of periodic
learning to determine when and how to start IFL with a
proper set of clients selected, and iterative learning to save the
client-server interaction cost and improve the overall training
performance for an unbiased model.
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1) Solutions for Periodic Learning: Instead of studying
and assisting IFL in a periodic manner, current research
tends to run incremental tasks either with a predefined
data schema or in a continuous learning environment.
Specifically, tasks are configured and executed by the
learning participants with non-IID data settings to train
a balanced and unbiased model through several local
and global rounds [26], [30], [31], [32]. Moreover,
the increase in data and clients are commonly tackled
in one continuous learning task, lacking the thorough
consideration of their impacts on related services to
update their AI models rationally for a balance between
invisible consumption of learning resources (e.g., local
data, computation power, etc.) and visible Quality of
Services (QoS) (e.g., service lagging, unexpected results,
etc.) [16], [53], [54], [55].
Since ubiquitous IoT consists of plentiful edge devices
with redundant data and heterogeneous computing capa-
bilities, before IFL starts periodically, a set of clients
is selected to ensure that the learning can be cost-
efficient. In general, there are two kinds of strategies
for client selection, i.e., to be fixed or dynamic. As for
the first kind, the server will cooperate with a set of
clients consistently [40], [41], [42], [43]. Even though it
can simplify the learning procedure, its strict restriction
may lead to deficiencies, e.g., stragglers, overlearning,
etc. Thus, dynamic approaches are discussed to either
stochastically activating clients [26], [28], or filtering
clients according to specific metrics, e.g., cumulative
effectiveness during the learning [44], [45], time budget
in local training [45], performance of local model
[46], [47] and quality of local data [25], [47], [48].

2) Solution for Iterative Learning: During the interac-
tions between the clients and the server, the main
objective is to shorten the model training time (TT)
with less CC. First, without hammering the overall
model performance, intuitively, the optimization of
client-server interaction can be made by reducing the
uploading frequency of shared parameters [27], [43],
as well as compressing the data packages to be
exchanged [41], [45], [50]. More advanced, the over-
all communication efficiency can be further improved
by adjusting the parallelism among clients to reduce
the overall learning rounds [28], managing a hierar-
chical topology, e.g., with multiple servers to reduce
network burden [40], and decreasing uploading ratios of
model layers that make few contributions to the global
model [25], [43], [56].
Moreover, the heterogeneity among clients, e.g., non-
IID data, asynchronous local training speed, etc., may
retard the overall TT. Accordingly, as the step to alleviate
the differences among clients, the model aggregation
(to build the global model according to received local
updates) is enhanced according to, e.g., a sample selec-
tion strategy to prioritize more informative data [49],
a deadline-based mechanism to prevent the intolerable
waiting for updates of particular clients [44], a proximal
term measuring the contribution of each client to ensure

the overall learning stability [26], and a weight factor to
adjust the temporal and informative differences among
local updates for fast convergence [25], [57].

In summary, as shown in Table I, first, current studies
are mostly conducted under fixed scenarios without consid-
ering the dynamics of IoT systems and services. Second,
different methods and mechanisms are proposed to address a
specific topic in either client selection (C.2), communication
optimization (C.3), or aggregation enhancement (C.4). Even
though certain improvements can be achieved, the continuous
changes in ubiquitous IoT systems and services, i.e., the
gradually increased clients and their local data, are not well
considered, which may make current solutions less efficient or
even invalidated to address related challenges (C.1 to C.4). To
fill the gap by addressing the four challenges in time-varying
learning contexts, this article proposes SLMFed, which can
accommodate the dynamics of IFL to not only remedy the
impact of service growth but also maintain a model with a
balanced performance on fresh and stale data.

III. PROPOSED SLMFED

To tackle the challenges encountered in IFL, a stage-based
and layerwise mechanism, called SLMFed, is proposed. As
shown in Fig. 2, it consists of two kinds of learning processes.

1) Periodic Learning to Start the Stage Transition: It
determines the start of stage transition to alleviate the
influences of the dynamics of IoT systems/services.

2) Iterative Learning to Update the Global Model: It
updates the global model collaboratively with CCs
reduced and model performance improved.

The two kinds of learning work jointly for a shareable
and reusable model that can keep a balanced performance to
support both old and new content.

A. Stage Transition in Periodic Learning

It is designed to support the dynamics in real-world appli-
cations through various learning stages. Specifically, in this
study, the stage transition is defined as the following.

Definition of “Stage Transition”: A stage represents a
steady-state of an IoT system/service for a certain period of
time. Within a stage, along with the growth of the service, the
number of active users and the size of private data will increase
gradually and simultaneously. However, on the contrary, the
ability of pretrained AI models and the experience received
by the users will decline either significantly (when the service
is initially launched) or slightly (when the service becomes
stable). Such a change is inevitable as the model encoded with
already-seen knowledge may not properly handle situations
unobserved, e.g., new classes in classification, new choices in
recommendations, etc. As a result, an intolerable decrease in
model performance and user experience will trigger the model
update, and thus, lead the system/service to enter a new stage.

To determine a stage transition from the current stage Si to
a new stage Si+1, the periodic learning is implemented to first
monitor the service status, and then select QCs as the premise
to start the iterative learning for the model update.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on January 24,2025 at 08:20:46 UTC from IEEE Xplore.  Restrictions apply. 



16368 IEEE INTERNET OF THINGS JOURNAL, VOL. 11, NO. 9, 1 MAY 2024

TABLE I
OVERVIEW OF RELATED WORKS ( NOT SUPPORTED AND SUPPORTED)

1) Service Status Monitoring: As shown in Fig. 2(a.1),
under the assumption that the IoT service will expand its
market share with a growth rate to continuously attract
clients and gather data, current-in-use AI models may become
decayed gradually, and need to be updated periodically. Such
that, related indicators shall be defined and used to determine
the start of stage transition. Given that in two adjacent stages,
i.e., Si and Si+1, their accumulated data are Di and Di+1, which
are the sum of private data owned by all the clients in Si and
Si+1, respectively. It is worth noting that Ci the number of
clients in Si is different from Ci+1, as IoT devices may join
or leave the service freely. Then, the incremental data D̂i : i+1

can be calculated according to

D̂i : i+1 = Di+1 − (Di+1 ∩ Di). (1)

According to D̂i : i+1, the percentage of clients with new
data can be calculated according to (2), where Ĉi+1 stands for
the clients with new data, which is the output of a distinct
function f (∗) to count the appearance of a client

P̂i : i+1 = Ĉi+1

Ci+1
=

f
(

D̂i:i+1

)

Ci+1
. (2)

Since the new sensed data may not contain new knowledge,
e.g., replicas of historical choices, P̂i : i+1 cannot be used
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Fig. 2. Overall workflow of SLMFed. (a) Stage transition in periodic learning, which bridges stages to start the learning periodically. (b) Model update in
iterative learning, which implements a layerwise process to update the global model.

directly as the only indicator to start the stage transition.
Besides the changes in clients and data, a supplementary
indicator to measure the changes in user experience shall be
defined. Therefore, the average loss of wi (which is the model
generated in Si) to process the data of Ĉi+1 shall be considered,
which is defined by

Ĵi : i+1,k = L
(
di : i+1,k; wi

)
, k ∈ Ĉi+1 (3)

where Ĵi : i+1,k is the loss of wi for a client k, di : i+1,k

is the local data of client k, and L(∗) is a user-specified
loss function, which is task-oriented, e.g., cross-entropy loss
for classification, and mean squared error for regression.
Note that even though non-IID data owned by each client is
harmful for training a unbiased model in FL, it can lessen
the changes in Ĵi : i+1,k, and in turn, alleviate the impact
of information changes (i.e., catastrophic forgetting of old
knowledge) to rapidly alter users’ usual flavors by updating
the model concerning more on new or special cases.

Furthermore, by comparing Ĵi : i+1,k with the model
performance on the data set di,k before the change happens in
Si, the general influence of changes on user experience Êi : i+1
in IoT systems can be measured according to

Êi : i+1 =
⎛
⎝

Ĉi+1∑
k

Ek

⎞
⎠/Ĉi+1

s.t. Ek =
{

1, Ĵi : i+1,k ≤ L
(
di,k; wi

)
0, otherwise.

(4)

Finally, by considering P̂i : i+1 and Êi : i+1 jointly, a ratio-
nal decision can be made to trigger the stage transition.
Because P̂i : i+1 can highlight the proportion of changes in
clients and data, and Êi : i+1 can measure the actual impact
of changes on model performance and user experience.

2) Qualified Client Selection: Before the stage transition
actually starts to update AI models, QCs shall be selected from
a pool of candidates that can participate in the learning, as it
will be inoperable and costly to have all candidates activated
for the model update. Moreover, it is also impactful with

all candidates activated, as the model will be overleant on
abundant and biased data samples. To tackle that, as shown in
Fig. 2(a.2), the client is selected based on an activation prob-
ability that represents the level of self-information changes.

Specifically, based on relative entropy or Kullback–Leibler
Divergence, a self-information change indicator (SIC) for each
candidate, denoted as SICi : i+1,k, can be calculated according
to (5), where DV(∗) is the divergence function; di,k and di+1,k

are the two data sets of a client k in Si and Si+1, respectively;
ln is the total number of labels; and c is a constant used to
avoid the generation of infinite value

SICi : i+1,k = DV
(
di+1,k||di,k

)

=
ln∑

l=1

(
pl,i+1 × log2(pl,i+1 + c)

log2(pl,i + c)

)
. (5)

In general, a client with a higher SIC indicates that its newly
sensed data is more different from the old one. Since the
performance dropping of the current model is caused by the
new information, clients with higher values of SIC shall have a
higher chance to be selected. Hence, the selection probability
SPi : i+1,k can be calculated by using a Softmax function with
SICi : i+1,k and the data size of the client Ni+1,k as the input

SPi : i+1,k = Softmax
(
SICi : i+1,k, Ni+1,k

)
. (6)

Finally, a set of QCs can be activated through a random
selection function as defined in (7), where SPi : i+1 is the set
of SPi : i+1,k, and α as a hyperparameter controls the number
of clients to be selected. Note that X the total number of clients
in the pool is equal to Ci+1

QC = Random(SPi : i+1 | α)

s.t. SPi : i+1 = {SPi : i+1,1, SPi : i+1,2, . . . , SPi : i+1,2,X}.
(7)

In summary, such a client selection process is beneficial, as
the randomness can keep a balance between the old and new
data to avoid the overleaning issue for a less biased model. Its
efficiency is tested in Section IV-A5.
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Fig. 3. Overall workflow of layerwise model update for IFL. Note that the flow ends when predefined termination conditions are met, i.e., target loss,
maximum iterations, etc.

B. Model Update in Iterative Learning

As shown in Fig. 2(b), after a stage transition is triggered,
the iterative learning starts to update the AI model. Since IFL
can be intrusive for the edges running multiple applications
simultaneously, it is critical to orchestrating QCs in learning
a shareable global model from wi in Si to wi+1 in Si+1 cost-
effectively.

Hence, a layerwise model uploading and aggregation pro-
cess is designed and implemented in SLMFed, which consists
of five consecutive phases as shown in Fig. 3.

1) Phase 1 Local Training: After the selection of QCs, the
local training in each client can be started. Since the learning
in Si+1 is iterative (until the model gets converged or the
maximum number of iterations is reached), within a learning
iteration t, a client k will train a local model wloc

t,k according

to (8), where wglo
t−1 is the current global model in use, which

is generated and updated in the previous iteration t − 1; di+1,k

is the local data of client k in stage i + 1; η is the learning
rate; and J′

k(·) is the local gradient

wloc
t,k = wglo

t−1 − ηJ′
k

(
di+1,k; wglo

t−1

)
. (8)

2) Phase 2 Layer Filtering: Conventionally, once the local
model is trained, it will be updated to the server directly.
However, since AI models, i.e., DNNs, consist of multiple
layers as defined in (9) (where θj is the parameter of the
jth layer, and J is the total number of model layers), and
the importance of layers may vary from each other, e.g., the
difference between shallow and deep layers, it is rational to
upload layers adaptively to save CC. Hence, a layer filter is
applied to select layers to be uploaded according to their RCs

wloc
t,k =

{
θ loc

j,k , j ∈ J
}
. (9)

Moreover, as for the calculation of RC, a representational
dissimilarity vector (RDV) is sampled from the conventional
representational dissimilarity matrix to store the results of
a layer j before and after the local training, noted as θ

glo
j

and θ loc
j , in processing pairs of common stimuli. Accordingly,

the rcj of the jth layer can be calculated according to (10),
where RDVglo

j and RDVloc
j are elements in related RDVs,

respectively, and ρ is the Pearson correlation coefficient

rcj = ρ
(

RDVglo
j , RDVloc

j

)2
. (10)

Finally, based on the RCs of local layers, correspond-
ing uploading possibilities UPs can be calculated according
to (11). Then, an adaptive decision can be made based on
UPk,j. Note that if the value of UP is higher, the corresponding
layer will have a higher chance to be uploaded, and other-
wise not

UPk = Softmax(rck)

s.t. rck = {rck,1, rck,2, . . . , rck,J}. (11)

3) Phase 3 Layer Uploading: When the local layers are
filtered, they will be grouped and uploaded to the server
through a private or public network (i.e., Intranet or Internet).
Nevertheless, since the network is vulnerable to sniffing and
poisoning attacks, compression and encryption techniques can
be applied to ensure the stability, reliability, and security of
data transfers.

4) Phase 4 Global Aggregation: Instead of aggregating
local models directly, the server needs to update the global
model according to the local layers received from QCs. To
achieve that, first, a received layer matrix (RLM) is defined
in (12). Note that RLM has some θj,k with NULL values, as
layers are selectively uploaded

RLMJ,K =

⎡
⎢⎢⎢⎣

θ loc
1,1 θ loc

1,2 · · · θ loc
1,K

θ loc
2,1 θ loc

2,2 · · · θ loc
2,K

...
...

. . .
...

θ loc
J,1 θ loc

J,2 · · · θ loc
J,K

⎤
⎥⎥⎥⎦. (12)

Furthermore, since the local layers are trained based on
non-IID data, to steer the learning direction and avoid the
overlearning issue, a weight vector measuring the IR of local
data can be created according to (13), where WV ∈ R

K , Nk
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Algorithm 1 SLMFed for Each Client in Parallel
PART 1: Running Status Monitoring in each client

1: Report to the server if new data are sensed
2: Report to the server if performance dropping is observed
3: Wait for the stage transition decision from the server
4: if Stage transition is “TRUE” then
5: Transmit its SIC (defined in Formula (5)) to the server
6: Wait for the signal of client selection
7: end if

PART 2: Iterative Learning in the Selected Client
8: if The client is “SELECTED” then
9: Train its local model wloc according to Formula (8)

10: Select layers according to UP (Formula (11))
11: Calculate its IR (Formula (13))
12: Transmit wloc and IR to the server
13: Receive the training command from the server
14: if Termination signal “STOP” is received then
15: Stop the learning and deploy the global model
16: end if
17: end if

is the size of data used in client k, and irk is the information
entropy or label number of local data of client k

WV = {w1, w2, . . . , wK}
s.t. wk = Softmax(irk, Nk). (13)

Finally, by applying WV on RLM in the learning iteration t,
the global model wglo

t can be updated according to a layerwise
model aggregation function as defined in

wglo
t = RLMt × WVT

t . (14)

5) Phase 5 Model Distribution: Through the downstream
of the connection between the server and clients, the updated
global model (i.e., wglo

t ) is distributed to the clients to either
start a new learning iteration or stop the learning with the
global model deployed on all the clients.

In summary, the above procedure can not only significantly
reduce the CC but also dramatically improve the model
performance, which is evaluated in Section IV-B.

C. Algorithm of SLMFed

As SLMFed involves interactions between the clients and
the server, it needs to be deployed on both sides.

1) SLMFed for Each Client: As shown in Algorithm 1, it
consists of two parts, namely, running status monitoring
in each client and iterative learning in the selected client.
Specifically, in the first part, the client will send its
heartbeats to the server when changes in sensed data
and service performance are detected. While the state
transition decision is made by the server and QCs are
identified, in the second part, the selected client enters
the iterative learning for local training, layers selection,
and local parameters uploading. Through the interaction
with the server, the global model will be updated in a
collaborative and privacy-preserving manner.

Algorithm 2 SLMFed for the Server
PART 1: Stage Transition Determination

1: Receive heartbeat signals from clients
2: Calculate stage transition indicators
3: if Stage transition is required then
4: Return “TRUE” to clients
5: end if
6: if Stage transition is “TRUE” then
7: Receive SIC and make client selection (Formula (7))
8: Send “SELECTED” to qualified clients (QCs)
9: end if

PART 2: Iterative Learning for Global Model Update
10: Receive local updates from QCs
11: Cacluate WV (Formula (13))
12: Update global model (Formula (14))
13: if termination condition is met then
14: Send “STOP” and updated global model to the clients
15: else
16: Send “CONTINUE” and updated global model to QCs
17: end if

2) SLMFed for the Server: As shown in Algorithm 2,
it also consists of two parts, namely, stage transition
determination and iterative learning for the global model
update. Specifically, in the first part, according to the
status report from the clients, the server will calculate
related indicators and make the decision to start the stage
transition with QCs selected. Moreover, in the second
part, the server will orchestrate QCs and aggregate
local layers received from them for the global model.
After that, the server will check if the stop condition
(i.e., maximum iterations) is met and return the checking
result together with the updated global model to the
client.

In summary, SLMFed consists of periodic and iterative
learnings to implement a cost-efficient and performance-
stabilized IFL. In particular, by measuring changes in
client number, sensed data, model performance, and user
experience, it can make rational decisions on when to
trigger stage transition and how to select QCs. Moreover,
within iterative learning, a layerwise model uploading and
aggregation process is implemented to update the global
model with balanced performance on both stale and fresh
data.

IV. PERFORMANCE EVALUATION

In this section, the performance of SLMFed is evaluated
and discussed. First, common settings are introduced. Next,
SLMFed is compared with state-of-the-art baselines to demon-
strate its supremacy in supporting IFL.

A. Common Settings

For fairness, common settings for evaluation tasks, scenar-
ios, methods, metrics, and stages are given.

1) Evaluation Tasks: Four common tasks based on
four standard data sets are defined to learn corresponding
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convolution neural networks (CNNs), respectively.
Specifically, the configuration for each task is described below.

1) Task 1 With MNIST1 Data Set: It contains 60 thousand
training samples and 10 thousand testing samples in
10 labels, and its image size is 28 × 28 × 1. Within
this task, each client possesses 200-600 training samples
with 1-6 classes, and the CNN model is designed with
2 convolutional layers and 2 fully connected layers.

2) Task 2 With FMNIST2 Data Set: Similar to MNIST, it
contains 60 thousand training samples and 10 thousand
testing samples in 10 labels, and its image size is 28 ×
28 × 1. Within this task, each client possesses 200-600
training samples with 1-6 classes, and the CNN model
to be learned shares the same structure of MNIST.

3) Task 3 With CIFAR-103 Data Set: It contains 50 thou-
sand training samples and 10 thousand testing samples
in 10 labels, and its image size is 32 × 32 × 3. Within
this task, each client possesses 165-500 training samples
with 1-6 classes, and the CNN model is designed with
3 convolutional layers and 2 fully connected layers.
Specifically, due to the complexity of CIFAR-10, batch
normalization modules are used to improve training
efficiency.

4) Task 4 With GTSRB4 Data Set: It contains 34 799
training samples and 12 630 testing samples with 43
labels, and its image size is 32 × 32 × 3. Within this
task, each client possesses 116-348 training samples
with 1-22 classes, and the CNN model is designed with
4 convolutional layers and 2 fully connected layers.
Similar to CIFAR-10, batch normalization modules are
also used in this task.

Notably, considering the difficulties in learning correspond-
ing CNNs, the abovementioned tasks can be divided into two
groups, namely, simple tasks, including MNIST and FMNIST,
and complicated tasks including CIFAR-10 and GTSRB. In
general, such a setting can better evaluate the generalizability
of SLMFed to support IFL in various IoT systems and services.

2) Evaluation Scenarios: To mimic real-world situations,
where IFL is applied, an IoT system is simulated with the
following.

1) IoT Devices: In each task, 200 devices are visualized
with non-IID data generated from the corresponding
standard data set. They act as clients in IFL to con-
tinuously sense data, update models, and exchange
parameters.

2) IoT Network: It links the server and clients in IFL. Note
that a random delay of 10s to 100s is configured while
clients are communicating with the server to imitate the
communication latency.

Based on the system, two incremental settings are designed.
1) Client Growth: For each task, initially, 100 clients (out

of 200) are activated, and the number of available clients
will increase by 1% to 1.5% per learning round until the

1http://yann.lecun.com/exdb/mnist
2https://github.com/zalandoresearch/fashion-mnist
3https://www.cs.toronto.edu/~kriz/cifar.html
4https://bitbucket.org/jadslim/german-traffic-signs

total number (i.e., 200) is reached. It reflects the system
gradually penetrates the market to attract more users.

2) Data Growth: For each client, its data will grow grad-
ually to simulate the data accumulation process during
the usage of the system. Specifically, a client will
have a 50% chance to increase its local data with two
predefined data incremental ranges, i.e., 1) 0% to 1%,
and 2) 0% to 10%. Note that new or duplicated samples
may be assigned to clients, and such a setting is used,
as, in reality, the data increase timing and rate for each
user can be different.

Note that as two data incremental ranges are used for each
task, there are, in total, 8 evaluation cases to test the robustness
of SLMFed in supporting IFL in various dynamic IoT contexts.

3) Evaluation Methods: Thirteen methods are used.
1) FedAvg [28]: It is the classic synchronous FL algorithm

using an average function for model aggregation.
2) FedProx [26]: It addresses the heterogeneity among

devices and data by using tolerating partial work and
proximal terms, whose hyperparameter μ is set to 1.

3) SoteriaFL [41]: It optimizes client-server commu-
nication by transmitting encrypted and compressed
parameters. The encryption factor ξ conforms to normal
distribution.

4) FedNTD [42]: It enhances the local training process of
clients to tackle knowledge forgetting. Its hyperparame-
ters τ and β are set to 3 and 1, respectively.

5) FedLAMA [43]: It adjusts the aggregation interval in
a layerwise manner. The interval increase factor φ

is 1.2.
6) E3CS [44]: It randomly selects clients based on an

exponential-weight algorithm.
7) NOMA [45]: It selects clients based on a fairness index.

Its hyperparameters σ 2, τ , and pk are set to −174, 1,
and 0.1, respectively.

8) Oort [47]: It selects clients by the training utility and
the quality of local data.

9) FedProf [48]: It selects clients by considering a repre-
sentation profile dissimilarity.

10) FedBalancer [49]: It adopts a sample selection strategy
to speed up global training.

11) FedSI [50]: It implements federated continual learning
by adapting the synaptic intelligence. Its hyperparameter
ξ is set to 1.

12) CFedSI [50]: It improves FedSI with the bidirectional
compression and error compensation algorithm to ensure
communication efficiency and training convergence.

13) SLMFed: It is the proposed method with dedicated
strategies to support both periodic and iterative learning
of IFL.

4) Evaluation Metrics: To comprehensively reveal the
performance, two kinds of metrics, i.e., to be general or stage-
specific, are defined. First, the general metrics include model
accuracy, TT, and CC.

1) Accuracy (AC): It is calculated by (15),
where TP, TN, FP, and FN represent true positives,
true negatives, false positives, and false negatives,
respectively.
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2) TT: It is calculated by (16), where Nr is the round
number, and Ts,r and Tk,r are the TT of the server and
client k in round r, respectively. Since all the clients in
IFL run in parallel, the maximum Tk,r is summed up
with Ts,r to measure the time of client spent in each
learning round.

3) CC: As defined in (17), it consists of CCup and CCdown
generated when the clients upload local parameters to
the server, and the server distributes updated global
parameters to the clients, respectively. According to [25],
the cost is measured by the size of parameters transmit-
ted over the network.

AC = TP + TN

TP + FP + FN + TN
(15)

TT =
Nr∑

r=1

(
Ts,r + Max(Tk,r)

)
. (16)

CC =
Nr∑

r=1

(
CCup + CCdown

)
. (17)

Furthermore, three stage-specific metrics are defined to
analyze the performance across stages.

1) Maximum AC (MAC): As defined in (18), MACi is the
MAC achieved in Stage i.

2) Stability of AC (SAC): It is calculated by (19), where μi

and σi represent the mean and standard deviation of AC
in Stage i, respectively. Note that a higher SAC indicates
the learning fluctuates less with a similar AC around the
mean value per learning round.

3) Stage Contribution in AC (SCAC): Based on the nor-
malized variation of AC at the beginning and end of
a single stage, SCAC calculates the contribution of a
method within a specified stage via (20), where ς is a
constant (by default 1.22) to avoid negative values.

MACi = Max(ACi). (18)

SACi = μi

eσi
. (19)

SCACi = tan
ACi,end − ACi,begin

100
+ ς. (20)

In general, the method with higher MAC, SAC, and SCAC
is superior, as it can learn a more competitive model that can
not only achieve high accuracy but also maintain balanced
performance on both old and new data.

5) Evaluation Stages: To study IFL in a dynamic environ-
ment, where clients and data are growing gradually, the first
five stages in periodic learning are studied in the evaluation.
To control the stage transition, as described in Section III-A,
two indicators, i.e., P the percentage of clients with new
data, and E user received experience (directly related to
model performance, how correct the model is to make the
image classification), are used. Accordingly, how to choose an
appropriate value as the threshold to trigger the stage transition
efficiently and effectively needs to be addressed.

To resolve that, by adopting the idea of the Monte Carlo
method, the impact of P and E on the model performance
is pretested. As shown in Fig. 4, in Step 1, the relationships
among AC, P and E are analyzed, and then, in Step 2, the

Fig. 4. Steps to determine stage transition indicators, i.e., P and E.

changes of AC, noted as ACCs, are calculated to measure AC
differences between two adjacent learning rounds. After that,
in Step 3, based on ACCs, the turning points (with higher
ACC values) can be identified, and finally, in Step 4, the
distributions of P and E bringing impacts on model learning
can be drawn. Following the above steps, the pretest can be
executed several times to find a stable and fine distribution of
P and E, based on which, the P and E binging more significant
impacts to train the models for the four tasks (i.e., MNIST,
FMNIST, CIFAR-10, and GTSRB) can be defined, namely,
41%, 39.8%, 40%, and 40% for P, and 75%, 65%, 55%, and
70% for E. Note that the transition condition is bigger than P
and smaller than E, as new data and user experience in each
client will increase and decrease, respectively.

Moreover, before the iterative learning starts in a stage,
QCs need to be selected for the global model update. As
described in Section III-A, a random client selection process
with SP selection probability (which is calculated based on the
self-information change indicator) is used. Accordingly, the
performance of three mechanisms, namely, random selection
without SP (in which, each client has the same probability
to be selected), ranked selection with SP (in which, clients
with higher values of SP are selected), and random selection
with SP (in which, clients are randomly selected based on
SP), are pretested. As shown in Fig. 5 (where ACCs between
stages are presented), random selection with SP achieves better
performance than others for 4 training tasks in 2 incremen-
tal scenarios, as the randomness guided by the information
changes can be beneficial for IFL to learn a model with
knowledge from both old and new data. Therefore, it is used by
default in the evaluation. Note that to simplify the pretesting,
FedAvg is used as the default method to train the model for
each task.

In summary, during the experiment, five learning stages
are defined. Specifically, between stages, the transition is
controlled by the predefined P and E, and within a stage, the
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Fig. 5. Boxplot of ACCs between stages for three client selection
mechanisms.

random client selection with SP is used to activate 25% of
the available clients for the model training. In general, while
running the learning according to the above settings, each
task can be treated as a set of five subtasks, each of which
is equivalent to a stage. Hence, in each sub-task/stage, when
a predefined stop condition, e.g., the maximum number of
rounds or minimum loss, is reached, the subtask ends, and
it waits for the stage transition to start the next. During the
waiting, the data and clients will increase incrementally, in
which, the maximum waiting time defined for the learning
round is used as the timer to trigger the increase of data and
clients, and also the checking of stage transition condition. It
is worth noting that to reduce the complexity of the learning,
the number of QCs and the amount of local data used in a
stage will remain unchanged, and their newly accumulated
data during the learning will be used in the following stage.

B. Evaluation Results

Based on the above settings, the evaluation is conducted
to reveal the performance of compared methods within and
across stages.

1) Performance Within Stages: First, as listed in Tables II
and III, compared to the twelve baselines, SLMFed can
achieve the highest accuracy and stabilize the learning as
indicated by the values of MAC and SAC, respectively,
in almost all the stages that are specified by the tasks
(i.e., MNIST, FMNIST, CIFAR-10, and GTSRB). Specifically,
while comparing MAC of SLMFed with the ones of the base-
lines in the final stage of each task, the average performance
boost in the two incremental scenarios is about 8.97%,
17.69%, 35.65%, and 66.05% for MNIST, FMNIST, CIFAR-
10, and GTSRB, respectively. It shows that the accumulated

information, regardless it is new or old, can be better handled
by SLMFed to learn high-performance and stable models.

Moreover, while diving into each task, as illustrated by AC
curves of the five consecutive stages in Fig. 6(a) and (b), it can
be observed that for simple tasks (i.e., MNIST and FMNIST),
SLMFed can consistently outperform other baselines with less
TT to get the models converge. It shows that through the
corporation of the layerwise model aggregation, the adaptive
local model uploading strategy, which reduces the uploading
frequency of local model layers with similar RCs, will not
affect the overall model performance but, surprisingly, can
be beneficial to avoid the overlearning on common or biased
knowledge extracted from non-IID data preserved by the
clients.

Finally, even though SLMFed can overcome the twelve
baselines in simple tasks at the early stage, it is tied with them
for the complex tasks (i.e., CIFAR-10, and GTSRB) in the first
two stages, as illustrated in Fig. 6(c) and (d). It is because,
during the evaluation, the amount of data and the number
of clients are gradually increasing, and a scarcity of training
samples is experienced, making the method underperformed.
Once local data becomes plentiful, as illustrated by the curves
at the last three stages in Fig. 6(c) and (d), the merit of
SLMFed is disclosed, since it can gain the potential to further
elevate model performance when other baselines become
incapable of avoiding the forgetting on old knowledge as well
as absorbing the new one.

2) Performance Across Stages: The stage-based learning in
the evaluation can be treated as an entire learning process to
reveal the overall performance of SLMFed. First, as shown in
Fig. 7, regardless of the complexity of the learning tasks, a
significant improvement can be achieved by SLMFed under a
specified CC for each task (i.e., 6G, 17G, 35G, and 50G for
MNIST, FMNIST, CIFAR-10, and GTSRB, respectively) to
maintain the highest AC. Compared to other methods in each
task, it can improve AC by about 150.73%, 142.87%, 34.02%,
and 96.15%, respectively, and then in each scenario, it can
improve AC by about 146.80% and 65.08%, respectively.

Moreover, by analyzing the results in Tables II and III, and
Fig. 8 (which shows the accumulated SCAC across stages)
jointly, it can be seen that SLMFed can achieve a high-AC
growth at the first stage in almost all the cases (i.e., totally
8 = 2 scenarios × 4 tasks), and then remain a stable growth
throughout the rest of the stages in each case. Numerically,
about 17.96% increase in SCAC can be observed in all cases
for SLMFed. Such a result shows the supremacy of SLMFed
in periodic learning and iterative learning.

1) Avoiding Catastrophic Forgetting in Periodic Learning:
In the first stage, AC of all the compared methods can
climb up rapidly, and then grow gradually in the fol-
lowing stages along with the increase of the clients and
local data. Moreover, all the methods do not experience
a significant dropping in overall model performance,
while new data are consistently accumulated and used to
update the global model. It shows that a proper learning
context for IFL can be controlled and prepared by the
proposed stage transition and client selection strategies
in SLMFed.
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TABLE II
VALUES OF MAC AND SAC AT EACH STAGE IN DIFFERENT SCENARIOS FOR SIMPLE TASKS (INCLUDING MNIST AND FMNIST)

2) Boosting Model Performance in Iterative Learning:
Compared to the baselines, except that SLMFed
is less competitive at the first two stages in the

second incremental scenario of CIFAR-10 (according
to Tables II and III), it can achieve a higher AC
across the stages in rest cases. Moreover, as illustrated
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Fig. 6. AC curves of the proposed SLMFed, along with mean distribution and overall range of other twelve compared baselines within each stage for four
data sets in two client and data incremental scenarios. (a) MNIST. (b)FMNIST. (c) CIFAR-10. (d) GTSRB.

by the gradually increased SCAC across stages for
SLMFed in Fig. 8 (except the case in scenario 2 of
GTSRB that SCAC drops in the fourth stage), such
an improvement is also more consistent and robust
than the twelve baselines. It shows that the layerwise
optimization implemented by SLMFed can better steer
the learning direction of IFL in the dynamic context
by adaptively extracting and aggregating the informative
parameters learned from QCs.

In summary, compared to the baselines, SLMFed can
better support IFL in dynamic IoT contexts simulated by
the two incremental scenarios for the four tasks. In gen-
eral, the stage-based periodic learning and layerwise iterative
learning of SLMFed can tackle the issue of performance
dropping in handling old and new data, and resolve the
issue of overlearning on redundant information, respectively.

Therefore, it can not only maintain outstanding performance
but also significantly reduce the learning time and cost in each
IFL stage.

C. Discussions

Through the above evaluation, the following observations
about SLMFed can be found.

1) It is robust to support IFL in a dynamic IoT context.
With the growth of clients and data in IoT systems
and services, it is troublesome to initialize IFL and
keep an up-to-date and modest model by handling both
fresh and stale content. By implementing the stage
transition and client selection strategies, the periodic
learning in IFL can be triggered rationally with a
set of QCs preserving both old and new information
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TABLE III
VALUES OF MAC AND SAC AT EACH STAGE IN DIFFERENT SCENARIOS FOR COMPLICATED TASKS (INCLUDING CIFAR-10 AND GTSRB)

that is beneficial for the learning to avoid catastrophic
performance dropping, and in turn, deliver a high-user
experience.

2) It is efficient to improve IFL learning performance.
To build high-performance models, in general, there
is a dilemma among model performance, TT, and
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Fig. 7. AC reached under specified CCs, i.e., 6G for MNIST, 17G for FMNIST, 35G for CIFAR-10, and 50G for GTSRB, respectively.

Fig. 8. Nightingale rose chart of SCAC in each task and scenario for all methods. Note that the values are decreasing in the direction of the central white
arrow, and the optimal methods are marked with underlines.

learning cost (i.e., in general, higher performance
needs more time and cost). Through the layerwise
optimization of local model uploading and global model

aggregation, which can avoid the overlearning of redun-
dant information and also remedy the impact of non-IID
data, the iterative learning in IFL can 1) reduce the
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client-server CCs, 2) accelerate the learning process for
a model to converge, and 3) improve the overall model
performance simultaneously.

3) It is scalable to assist IFL with different complexities.
Along with the penetration of IoT systems and services,
the learning tasks of IFL will be diversified. Hence, it
is essential to assist IFL in these tasks with simplified
configurations and procedures, as well as consistent and
stable performance. Based on SLMFed, IFL can be
implemented and deployed without additional effort, as
the decisive parameters used in SLMFed can be auto-
configured and self-adjustable to learn high-performance
models for tasks with different complexities.

Even though SLMFed can significantly improve the effi-
ciency and effectiveness of IFL, there are still open points to
be further explored.

1) Optimization of Client-Server Collaboration: The cur-
rent collaboration mode between the clients and the
server may suffer the issue of stragglers, who have
relatively limited computational and communicational
resources, and in turn, become the performance bottle-
neck of the whole learning process. Therefore, SLMFed
can be enhanced to support an unblocking client-server
interaction.

2) Deployment of Global Model: The model personaliza-
tion or localization is not addressed in SLMFed to
further elevate the model performance for each client.
Hence, by integrating with meta-learning, SLMFed can
be applied to learn a global meta-model, based on which,
an on-demand update of the local model in each client
can be implemented to not only save the learning costs
by reducing the number of stages required in IFL but
also provide more personalized user experience.

3) Incentivization of Learning Participants: The contribu-
tion of each client made to the model is not measured
and rewarded to maintain an active community for IFL.
Accordingly, an incentive mechanism can be investi-
gated and deployed on the client side to acquire and on
the server side to assign related rewards rationally and
fairly.

V. CONCLUSION AND FUTURE WORK

The dynamics of ubiquitous IoT and the ever-growing
concerns about data protection drive the integration of IFL to
update AI models required in various systems and services
along with the growth of clients and data periodically and
iteratively. Such that, this article proposes a stage-based and
layerwise mechanism for IFL, called SLMFed. Specifically,
in periodic learning of IFL, it can rationally determine the
stage transition by measuring the quantitative and qualitative
impacts of gradually increased clients and accumulated data,
and also, heuristically prepare a set of QCs with sufficient old
and new data before a new learning stage starts to remedy
catastrophic forgetting. Moreover, to elevate the performance
of iterative learning in IFL, it can automatically adjust the
uploading frequency of model layers in each client according
to their RCs before and after the local training, and then,

adaptively aggregate received local updates in the server based
on their IR to avoid the overleaning issue.

As shown by the evaluation results, SLMFed can achieve
high robustness, scalability, and efficiency to support IFL
in dynamic IoT contexts. First, it can stabilize the learning
to avoid catastrophic performance dropping by using the
mechanism of stage transition and client selection, as all the
compared methods present converged accuracy curves in all
evaluation cases (in total 8). Moreover, it can significantly
improve the performance of IFL in terms of model accu-
racy, CC, and TT. Specifically, compared to the baselines,
SLMFed can elevate model accuracy for MNIST, FMNIST,
CIFAR-10, and GTSRB by about 8.97%, 17.69%, 35.65%,
and 66.05%, respectively, as well as saving CCs by about
150.73%, 142.87%, 34.02%, and 96.15%, and improving stage
contribution by about 14.05%, 21.38%, 19.34%, and 33.30%.

In the future, as IoT systems and services, in general, man-
age vast interconnected things with heterogeneous software
and hardware configurations, a flexible mechanism to support
an asynchronous client-server collaboration in SLMFed will
be studied to remove potential performance bottlenecks caused
by the stragglers. Moreover, to cost-efficiently optimize user
experience along with the growth of their local data, a model
personalization procedure will be investigated to, first, train
a general global model, and then, adopt it rapidly to better
support diversified users. Finally, it is essential for actual
applications of SLMFed to attract more users, who are willing
to join the learning and share their knowledge, and hence,
incentive mechanisms will be studied to distinguish and reward
trustworthy and reputable participants correctly and fairly for
the sustainability of IFL.
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