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Abstract
Named entity recognition (NER) is a fundamen-
tal task in the natural language processing (NLP)
area. Recently, representation learning methods
(e.g., character embedding and word embedding)
have achieved promising recognition results. How-
ever, existing models only consider partial fea-
tures derived from words or characters while fail-
ing to integrate semantic and syntactic informa-
tion (e.g., capitalization, inter-word relations, key-
words, lexical phrases, etc.) from multi-level
perspectives. Intuitively, multi-level features can
be helpful when recognizing named entities from
complex sentences. In this study, we propose a
novel framework called attention-based multi-level
feature fusion (AMFF), which is used to capture
the multi-level features from different perspectives
to improve NER. Our model consists of four com-
ponents to respectively capture the local character-
level, global character-level, local word-level, and
global word-level features, which are then fed into
a BiLSTM-CRF network for the final sequence
labeling. Extensive experimental results on four
benchmark datasets show that our proposed model
outperforms a set of state-of-the-art baselines.

1 Introduction
Named entity recognition aims to identify entities that have
similar characteristics from raw text and assign them iden-
tical tags such as PER (Person), ORG (Organization), LOC
(Location), etc. As a fundamental task of information extrac-
tion, NER has been studied for various tasks, including part-
of-speech (POS) tagging, chunking, and semantic role label-
ing (SRL) [Collobert et al., 2011]. Considering the diversity
and complexity of natural language, named entities generally
have multi-features from different perspectives: character-
level and word-level features from local and global perspec-
tives, as illustrated in Figure 1. We can see that the named en-
tity associated with polysemous words (Washington) should
∗Corresponding author: chenhc@jlu.edu.cn

Washington   University  ,   which  is   located   in   Missouri , 

is  named  after  George  Washington   . 
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Figure 1: A brief illustration of the multi-level features. There
are four kinds of character-level and word-level features from lo-
cal and global perspectives: Char Local, Char Global, Word Local,
Word Global, such as the capitalization (orange), the polysemous
word ‘Washington’ (red), the keyword ‘in’ (green), and the lexical
phrase (blue) which frequently occur together. The output named
entities are shown in black.

take the capitalization ‘W’, keyword ‘in’, and lexical phrase
into consideration.

Previous knowledge-based approaches for NER merely
depend on handcrafted rules and domain-specific dictionar-
ies to recognize named entities [Rahem and Omar, 2014;
Quimbaya et al., 2016]. However, such an endeavor is man-
ual and is thus prone to poor coverage. Traditional ap-
proaches use supervised machine learning algorithms that
incorporate a wide variety of hand-crafted features. To al-
leviate the heavy manual effort associated with these ap-
proaches, neural models are proposed to learn the implicit
features by utilizing word-level embedding [Huang et al.,
2015], character-level embedding [Kuru et al., 2016] or both
[Akbik et al., 2018]. However, these methods largely ignore
or oversimplify the correlations among the features learned
from different perspectives such as word-level and character-
level. Although existing NER approaches based on the com-
bination of word-level embeddings and character-level em-
beddings have achieved competitive results [Xin et al., 2018;
Akbik et al., 2018; Beltagy et al., 2019], they pay little atten-
tion to fusing multi-features, which may lead to information
omission. Taking the sentence in Figure 1 as an example, the
polysemous word ‘Washington’ of ‘Washington University’
(ORG) might be mislabelled as B-PER without Char Global
features by merely taking adjacent words or character features
in context into consideration, which may result in ‘Washing-
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ton University’ being classified as PER by mistake.
To this end, we propose an attention-based multi-level fea-

ture fusion framework for NER, where the multi-level seman-
tic and syntactic features of a given input sequence can be
simultaneously captured from different views, as shown in
Figure 1. Inspired by the transformer network[Vaswani et al.,
2017], we explicitly employ four components for different
purposes, namely the local character-level component, global
character-level component, local word-level component, and
global word-level component to process the input sequences.
Then the fusion representation from the multi-level features
is fed into the BiLSTM-CRF network for the final prediction.

The main contributions of this work are summarized as fol-
lows:

• An attention-based multi-level feature fusion (AMFF)
framework is proposed for NER, which enables
the multi-level features from diverse word-level and
character-level perspectives to be integrated. To the best
of our knowledge, this is the first effort in the literature
that uses attention mechanisms to capture multi-level
features of text from different perspectives.

• In this framework, local character-level, global
character-level, local word-level, and global word-level
components are designed to capture the features from
the perspectives of capitalization, inter-word relations,
keywords, and lexical phrases, respectively. It simplifies
the problem and improves interpretability.

• Extensive validations on real-world benchmark datasets
compared with the state-of-the-art models demonstrate
the superiority of our proposed AMFF. Systematic anal-
yses show an in-depth understanding of each component
and the robustness of the AMFF framework.

2 Related Work
Existing NER studies are primarily based on word embed-
dings, character embeddings, and other embedding combina-
tions, which are summarized as follows.

The first word embedding-based NER approach [Collobert
et al., 2011] adopted convolution neural networks (CNNs) to
produce local features, and a conditional random field (CRF)
layer to predict entity attributes, which achieved better perfor-
mance than previous studies. In order to address the problem
of long-distance dependency, the CNN layer was replaced by
the bi-directional long short-term memory (BiLSTM) layer
for the better selection of the global features [Huang et al.,
2015]. Furthermore, the combination of both CNN and BiL-
STM highlights the performance improvement for linguistic
sequence labeling [Liu et al., 2018]. However, these methods
ignore the effect at the character level, which may lead to the
omission of important information.

Word representations can be obtained from character-level
embeddings as each sentence can be regarded as a charac-
ter sequence. A character-level convolutional neural network
(CharCNN) [Kim et al., 2016] is proposed to extract local
sub-word information, relying on LSTM to deal with con-
text features and the softmax function for the final prediction,
which highlights the character embeddings for NER. More-
over, character-level recurrent neural networks (CharRNN)

[Kuru et al., 2016] choose global features from the context
and boost the performance of NER by using CRF. In addition,
it achieves better performance in handling multiple languages
[Dong et al., 2016]. However, methods based on character
embeddings do not attach importance to word-level features,
which may be biased as well.

Recent advances in NER demonstrate its great advantage
in recognizing named entities based on the combination of
embeddings [Akbik et al., 2018; Yoon et al., 2019]. In order
to capture both global and local features, existing methods
rely on more types of embeddings, for example, BERT-based
methods [Beltagy et al., 2019] taking token embeddings, seg-
ment embeddings, and position embeddings into account for
NER. Moreover, other additional information such as affix
embeddings can also be used to augment the NER architec-
ture [Yadav et al., 2018]. In addition, the multitask learn-
ing strategy [Zheng et al., 2019] that divides the original task
into multiple subtasks offers a new approach for nested NER.
Although these methods achieve competitive results, few of
them explore the attention mechanism for multi-level feature
selection in NER, which does not make full use of the com-
plete information.

Therefore, different from the existing models that mine
information from merely one aspect, our model focuses on
leveraging multi-level features from different perspectives,
which can obtain more types of information and make a com-
prehensive final prediction.

3 The Proposed Framework
In this section, we introduce a novel method called AMFF,
which can obtain multi-level features by parallel components
and fuse them for sequence labeling.

Given an input sentence S composed of a sequence
of words F1F2 · · ·F=, where = is the total number of
words, we assign each word F8 with one label H8 that
takes one possible class from the named entity label set:
y = {B-ORG, I-ORG,E-ORG,O, S-LOC,B-PER, . . . }, where
B-, I-, E-, S-, and O tags respectively indicate the beginning,
intermediate, ending position of the entities, entity with a sin-
gle word, and other types. ORG, LOC, and PER are categor-
ical abbreviations of organization, location, and person, re-
spectively. Therefore, we formulate it modeled as a sequence
labeling problem, that is, 5 : F1F2 · · ·F= → H1H2 · · · H=.
Figure 2 gives an overview of our proposed work, which is
depicted in detail in the following subsections.

3.1 Embedding Layer
For a given input word sequence w, we represent each token
in the sentence by adopting both word embedding and charac-
ter embedding [Lample et al., 2016]. From a word sequence,
we obtain the word embedding of the 8-th word as follows:

xF8 = 4F (F8) (1)
where 4F denotes a pretrained word embedding lookup table.
In addition, the embedding of each character within the 8-th
word is denoted as follows:

x28 9 = 4
2 (2 9 ) (2)

where 42 denotes the character embedding lookup which is
randomly initialized.
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Figure 2: The attention-based multi-level feature fusion framework. Character embeddings and word embeddings of the sentence are taken
as input for the feature selection layer. From this layer, we simultaneously distill character-level local feature (Char Local), character-level
global feature (Char Global), word-level local feature (Word Local), and word-level global feature (Word Global). For convenience, we
leave out the words labelled with $. Dashed arrows indicate a dropout operation is applied.

3.2 Multi-level Feature Selection
Global Character-level Feature Selection
As demonstrated by the BiLSTM-CRF model [Huang et al.,
2015], long-distance dependencies are important for NER,
e.g., ‘Washington’ is relevant to both the past and future con-
texts, e.g., ‘University’ and ‘George’ in Figure 1. As the
attention mechanism can relieve the limitation of encoding
all information equally [Bahdanau et al., 2014], we combine
the BiLSTM network with the attention mechanism to facili-
tate NER in extracting global character-level features. Taking
character embeddings x2C as input at time step C, the contextual
hidden state of BiLSTM can be expressed as follows:

h2ℎ0AC = [−→h 2ℎ0AC ;
←−h 2ℎ0AC ] (3)

where
−→h 2ℎ0AC and

←−h 2ℎ0AC denote the forward and backward
ouputs of BiLSTM at time step C. Besides, we adopt the
self-attention mechanism to effectively capture the relations
between any two representations regardless of their distance
[Vaswani et al., 2017], e.g., ‘Washington/B-ORG’ is rele-
vant but different from ‘Washington/E-PER’ in Figure 1.
Concretely, we take h2ℎ0AC as the input to obtain the global
character-level representation h��C as follows:

h��C = tanh(W2 [cC ; h2ℎ0AC ]) (4)

cC =
∑
B

UCBh2ℎ0AB (5)

UCB = softmax(-)0 tanh(W1h2ℎ0AB +W2h2ℎ0AC )) (6)

Where cC is the context vector, and let h2ℎ0AB = h2ℎ0AC to ob-
tain the additive attention weight UCB . W1, W2, and W2 are
weight matrices, and -0 is a vector of parameters, which are
randomly initialized.

Local Character-level Feature Selection
As demonstrated by BiLSTM-CNN [Ma and Hovy, 2016],
convolutional neural networks (CNNs) have been proved to
be useful in capturing character-level information, such as
capitalization. Due to their sparse connectivity and param-
eter sharing, CNNs are able to effectively process the se-
quences in the current receptive field akin to the attention
mechanism. Furthermore, the max pooling operation can be
a great boost to capture the most significant feature [Kim et
al., 2016], which is why they are adopted together to capture
local character-level features.

We employ CNN with a redundant position of input se-
quences masked to extract the character-level features, which
can be expressed as follows:

Conv(x2C ) = Mask(x2C ) ∗ U (7)

where U is the filter with filter width : set as 3. The convo-
lution operation is typically denoted with an asterisk, and the
masking function, Mask, simply sets the padded position of
input sequences as zero.

Additionally, the max pooling operation, Max, is applied to
capture the significant local features assigned with the highest
value for a given filter [Kim et al., 2016], such as the capital-
ization of ‘M’ for ‘Missouri’. At time step C, the character-
level representation from local view is obtained as follows:

h�!C = Max(Conv(x2C )) (8)

Global Word-level Feature Selection
As shown in previous works [Akbik et al., 2018; Yijin Liu and
Zhou, 2019], word embeddings, especially pretrained word
embeddings, play an important role in capturing word simi-
larity and relations with other words. Therefore, global word-
level features, such as lexical phrases where words frequently
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co-occur, can be obtained by only using self-attention, which
has the advantage of modeling dependencies between words
without regard to their distance [Vaswani et al., 2017], e.g.,
Label LOC frequently occurs after ‘in’. Thus, we simply use
basic dot-product attention as follows:

�CC (Q,K,V) = softmax(QK) )V (9)

where query vectors Q ∈ ℝ=×3F , key vectors K ∈ ℝ=×3F

and value vectors V ∈ ℝ=×3F . 3F denotes the dimension of
each word embedding. It is noted that attention was computed
without scaling to keep the scale in line with other represen-
tations. By setting Q = K = V = xFC at time step C, the word
representation based on self-attention is obtained as follows:

h,�
C = Att(xFC , xFC , xFC ) (10)

In addition, we also tried to incorporate the BiLSTM net-
work, however, this makes the result worse (e.g., AMFF* in
Table 2). Therefore, we simply take h,�

C as a shortcut for
improving the gradient’s backpropagation inspired by resid-
ual networks [He et al., 2016].

Local Word-level Feature Selection
Inspired by the language model [Kim et al., 2016], the max
pooling operation facilitates the selection of prominent fea-
tures, for example, we can distill local word-level features
from inter-word relations based on the attention mechanism,
such as the relevant keyword ‘in’ from the input sequence in
Figure 1. Based on Equation (10), the final representation of
local word embeddings h,!

C is obtained as follows:

h,!
C = Max(FFN(h,�

C )) (11)

where Max indicates the max pooling, and FFN is a feed-
forward network.

3.3 Multi-level Feature Fusion
Multi-level feature fusion for the NER task is a robust and
efficient strategy, which can take advantage of the most sig-
nificant features to achieve better results. Feature fusion for
NER aims to combine multiple relevant features into a global
informative representation of original input sequences. Dur-
ing the fusing phase, we employ a concatenation strategy to
fuse the multi-level features with an automatic adjustment.
For conciseness, the final fusion representation of the multi-
level features is obtained as follows:

Z = _1h��C + _2h�!C + _3h,�
C + _4h,!

C (12)

where h��C , h�!C , h,�
C , and h,!

C represent the features ex-
tracted from the above components. _8 (8 ∈ {1, 2, 3, 4}) con-
trols the degree of the importance for each component, which
is randomly initialized. Moreover, this equation can be easily
extended to other cases by adding more features.

3.4 Sequence Labeling for Final Prediction
The fusion representation with multi-level features is fed into
a BiLSTM network to make full use of all the semantic and
syntactic information at a higher level. In addition, CRF
boosts the performance of NER by taking the neighbor la-
bels into consideration to avoid mislabeling. For example,

I-ORG can not follow E-ORG in the NER task with BIOES
annotation. Therefore, we incorporate a CRF in the BiLSTM
network to jointly decode the best chain of labels.

Formally, we suppose the fusion representation output
from BiLSTM is r = (r1, r2, . . . , rn), with the correspond-
ing generic label sequence ŷ = ( Ĥ1, Ĥ2, . . . , Ĥ=). Given the
input sequence r, the conditional probability [Ma and Hovy,
2016] is defined as ?(y|r; W, b) in CRF models as follows:

?(ŷ|r; W, b) =
∏=
8=1 k8 ( Ĥ8−1, Ĥ8 , r)∑

H′∈S(r)∏=
8=1 k8 (H′8−1 ,H

′
8
,r)

(13)

where H′ represents an arbitrary label of all possible ones
(S(r)), and k8 (H8−1, H8 , r) = 4G?(,H8−1 ,H8r8 + 1H8−1 ,H8 ) where
,H8−1 ,H8 and 1H8−1 ,H8 are the weight parameter and bias param-
eter corresponding to label pair (H8−1, H8).

For CRF training, the objective of the model is to maximize
the following log-likelihood, which is given by:

! (W, b) =
∑
8

log(?(ŷ|r; W, b)) (14)

During the decoding phase, we search for the best label se-
quence H∗ that maximizes the likelihood as follows:

H∗ = arg max
Ĥ∈S(r)

?(ŷ|r; W, b) (15)

Furthermore, for sequence labeling, we adopt Viterbi to cal-
culate the final tag sequence efficiently.

4 Experiments
4.1 Datasets and Baseline Methods
To verify the effectiveness of the proposed framework, we
conduct experiments on the following four datasets, CoNLL-
2003 [Sang and De Meulder, 2003], NCBI-disease [Doğan
et al., 2014], SciERC [Luan et al., 2018], and JNLPBA
[Kim et al., 2004]. All datasets have been separated into
train/develop/test sets, including 4/1/6/5 entity types, respec-
tively. Table 1 presents some statistics of the 4 datasets.

We compare our proposed model with the following clas-
sic (i.e., BiLSTM-CRF, BiLSTM-CNNs, and NeuralNER)
and state-of-the-art (i.e., CS Embeddings, SciBERT, and Col-
laboNet) methods, respectively:

• BiLSTM-CRF [Huang et al., 2015]: This applies the
BiLSTM network to learn both past and future features
of word embeddings with CRF for sequence labeling.

Dataset train develop test

CoNLL-2003 #tok 204567 51578 46666
#ent 23499 5942 5648

NCBI-disease #tok 135701 23969 24497
#ent 5134 787 960

SciERC #tok 45762 6571 13501
#ent 5572 808 1683

JNLPBA #tok 441905 50646 101039
#ent 46390 4911 8662

Table 1: Statistics of these four datasets, #tok denotes tokens and
#ent denotes entities.
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Model CoNLL-2003 NCBI-disease SciERC JNLPBA
P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%)

BiLSTM-CRF (2015) 92.78 87.43 90.02 85.47 74.32 79.51 67.83 47.83 56.09 73.47 68.27 70.77
BiLSTM-CNNs (2016) 91.35 91.06 91.21 82.61 76.67 79.52 68.01 50.18 57.75 73.96 70.52 72.20
NeuralNER (2016) 90.88 90.62 90.75 85.67 64.30 73.46 67.43 47.15 55.49 73.08 71.56 72.31
CS Embeddings (2018) 92.37 93.12 92.74 85.02 87.33 86.16 62.58 61.99 62.28 71.18 77.68 74.29
SciBERT (2019) 88.46 89.13 88.79 84.32 89.06 86.63 63.83 65.42 64.61 70.73 80.36 75.24
CollaboNet (2019) 87.31 81.47 84.29 80.50 81.42 80.95 64.32 56.43 60.12 72.92 82.42 77.38
AMFF* 94.95 90.74 92.80 90.23 85.62 87.86 67.90 57.33 62.17 80.37 79.69 80.03
AMFF(without Attention) 94.20 93.06 93.63 87.90 89.03 88.46 67.87 61.03 64.27 78.60 79.79 79.72
AMFF 94.83 94.12 94.48 89.60 94.76 92.11 71.01 65.86 68.34 79.09 81.99 80.51

Table 2: Experiment results on four benchmark datasets compared to the classic and state-of-the-art methods. Standard precision (P), recall
(R), and F1 score (F1) are employed as evaluation metrics. AMFF* indicates the BiLSTM network has been incorporated into the global
word-level component.

• BiLSTM-CNNs [Chiu and Nichols, 2016]: This extracts
character-level features using CNN, and word-level fea-
tures from pretrained word embeddings, in addition to
encoding partial lexicon matches in neural networks.

• NeuralNER [Lample et al., 2016]: Similar to Chiu [Chiu
and Nichols, 2016], this regards words as sequences of
character and learn character-level features from a BiL-
STM, rather than CNNs.

• CS Embeddings [Akbik et al., 2018]: It obtains context
embeddings at character level, and the final representa-
tion is concatenated with pretrianed word embeddings.

• SciBERT (Beltagy2019) [Beltagy et al., 2019]: This in-
troduces a contextualized embedding model for scien-
tific text based on BERT, which achieves the state-of-
the-art on several tasks.

• CollaboNet (Yoon2019) [Yoon et al., 2019]: This is built
upon multiple identical single-task NER models (STMs)
that send information to the proper model for more ac-
curate predictions in the biomedical field.

In the experiment, we take both the pretrained word em-
bedding GloVe [Pennington et al., 2014] and the randomly
initialized character embedding as input, and train our pro-
posed model using SGD to perform backpropagation through
time. To avoid overfitting, dropout is applied to the input
of each component as well as the output of the feature fu-
sion layer in our model. For time efficiency, we merely ini-
tialize the related hyper-parameter values according to the
aforementioned baselines. We repeat the experiment with an
early stopping strategy 10 times, and report the average per-
formance on the test set as the final performance. We adopt
the F1 metric and BIOES tagging scheme for all datasets.

4.2 Overall Results and Comparisons
Table 2 gives the experiment results of AMFF and the base-
line methods. For a fair comparison, we report their average
results on the four benchmark datasets. Classic character-
based and word-based NER methods obtain lower F1 scores
than recent methods on most benchmark datasets, because the
final prediction in the BiLSTM-CRF network may be mis-
led by the previous label due to insufficient information. To
the best of our knowledge, SciBERT achieves state-of-the-art

performance on NCBI-disease and SciERC, which depends
on pretraining on a large corpus of scientific publications to
generate contextualized embeddings. CollaboNet obtains the
best result on JNLPBA due to multi-task learning, which may
make a wrong prediction when an error is overlapped. How-
ever, classic methods achieve an F1 score of more than 90 on
CoNLL-2003, which is slightly better than the result of SciB-
ERT and CollaboNet. This is probably because these two
methods are designed for academic and biomedical fields, re-
spectively, which fail to capture general features such as local
character features and lexical phrases from given sequences.
In addition, CS Embeddings achieves the state-of-the-art with
an F1 score of 92.74 on CoNLL-2003 and obtains competitive
results on the other datasets, which merely takes the global
word- and character-level features into consideration which
is similar to a part of our proposed AMFF.

As shown in Table 2, our proposed method achieves the
best results on the four benchmark datasets , which verifies its
effectiveness. Specifically, obtaining global word-level fea-
tures merely based on attention contributes to overall perfor-
mance (compared with AMFF*), which might because pre-
trained word embeddings have already provided inter-word
relations in no need of BiLSTM. In addition, there would be a
slight performance degradation if we get rid of attention from
our model, which highlights the importance of incorporating
multi-level features based on attention mechanisms.

4.3 Ablation Study
As Table 3 shows, the AMFF with a single component is not
good enough while the one with multiple components fusion
tends to be more competitive, which might because the multi-
level features captured from the four primary components
(i.e., CG, CL, WG, and WL) contribute to the effectiveness
of our model. Based on the attention mechanism, word-level
components seem to be more effective than character-level
components, which should be credited to the pretrained word
embedding. For SciERC, when fusing three components, the
F1 score decreases to 65.86, which could be due to the noise
caused by the fusion components. However, in general, our
proposed model tends to be more effective and robust with
the number of fusion components increasing. This is mainly
because all these components help to improve performance
from multi-level perspectives.
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Component CoNLL-2003 NCBI-disease SciERC JNLPBA
P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%)

AMFF CG 49.14 30.19 37.40 73.84 40.01 51.90 36.02 18.61 24.54 56.08 56.55 56.31
AMFF CL 73.17 70.31 71.71 85.15 84.60 84.87 53.94 28.17 37.01 76.56 69.73 72.99
AMFF WG 92.94 91.25 92.09 85.47 81.19 83.28 64.86 57.12 60.74 75.91 76.22 76.07
AMFF WL 93.20 91.97 92.58 87.22 86.20 86.71 64.91 64.01 64.46 78.33 71.45 74.74

AMFF WG CG 93.43 92.28 92.85 87.03 86.89 86.96 68.47 64.52 66.44 77.15 79.43 78.27
AMFF WG CG CL 93.40 92.54 92.96 88.96 85.40 87.14 68.13 63.75 65.87 77.49 80.95 79.18
AMFF WG CG WL CL 94.57 94.38 94.48 91.22 95.01 93.08 75.53 65.55 70.19 82.88 81.02 81.94

Table 3: Results of the ablation study of the AMFF framework on the develop set. ‘WG’, ‘WL’, ‘CG’, and ‘CL’ denote the global word-level
component, local word-level component, global character-level component, and local character-level component, respectively.

Sentence
Washington University, which is located in Missouri, is

named after George Washington.

Gold Label
Washington University: [ORG]; Missouri: [LOC];

George Washington: [PER]

CS Embeddings
Washington: [B-ORG], [B-PER]; University: [E-ORG], [E-PER];

Missouri: [S-LOC]; George: [B-PER]; Washington: [E-PER]

SciBERT
Washington: [B-ORG], [B-PER]; University: [E-ORG], [E-PER];

Missouri: [S-LOC]; George: [B-PER]; Washington: [E-PER]

AMFF
Washington: [B-ORG]; University: [E-ORG] ;

Missouri: [S-LOC]; George: [B-PER]; Washington: [E-PER]

Table 4: Case study. The bold words attract more attention.

4.4 Case Study for Detailed Analysis
Table 4 shows a case study comparing our model with CS
Embeddings [Akbik et al., 2018] and SciBERT[Beltagy et
al., 2019] , which are more representative than the others. In
the example, the polysemous word ‘Washington’ is likely to
lead to ambiguity, i.e., the first ‘Washington’ denotes an or-
ganization (ORG) together with ‘University’ while the second
should be categorized as a person (PER) in ‘George Washing-
ton’. CS Embeddings and SciBERT may recognize ‘Wash-
ington’ as B-ORG or B-PER from the context, which causes
‘University’ to be erroneously labeled E-PER due to a lack
of other auxiliary features. Different from the existing meth-
ods, the AMFF can easily recognize entities by taking more
features of the original sequences into consideration, such as
the lexical phrase and the keyword ‘in’, which is vital for dis-
tinguishing entity categorical labels. Furthermore, the AMFF
put more emphasis on disambiguation based on self-attention,
which enables the long-distance dependence to be captured,
as shown in Figure 1. This demonstrates that our model has
the advantage of distinguishing polysemous words by fusing
multi-level features from different perspectives.

4.5 Parameter Sensitivity Analysis
Four primary parameters, i.e., dropout rate, LSTM size, filter
number, and batch size, are selected to verify the effect of pa-
rameters on the effectiveness of the AMFF. The dropout rate
denotes what percentage of units will be dropped in a neural
network, the LSTM size controls how many hidden state units
there are in sequence labeling, the number of filters affects
the output shape of the character-level CNN module, and the
batch size controls training efficiency and the allocated re-
sources. To study uncertainty in the output of our proposed
model, we employ single-parameter sensitivity analysis by

Figure 3: Parameter sensitivity analysis of the AMFF framework.

varying one parameter while fixing the others each time. As
shown in Figure 3, the AMFF keeps high performance while
the parameter varies on the four benchmark datasets, which
demonstrates that multi-level features contribute to NER, and
further verifies the effectiveness and robustness of our pro-
posed model.

5 Conclusion
This paper presents a novel AMFF framework, which effec-
tively leverages multi-level features to predict entity categor-
ical labels. The proposed framework captures character-level
and word-level features from both global and local perspec-
tives, e.g., capitalization, inter-word relations, keywords, and
lexical phrases, by adopting attention mechanisms from dif-
ferent perspectives. Furthermore, the proposed framework
can be easily extended by incorporating more features, such
as affixe, to boost the performance of NER. The Experiment
results demonstrate that the AMFF surpasses previous state-
of-the-art models on CoNLL-2003, NCBI-disease, SciERC,
and JNLPBA datasets.
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