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Abstract
Out-of-distribution generalization is challenging
for non-participating clients of federated learn-
ing under distribution shifts. A proven strategy is
to explore those invariant relationships between
input and target variables, working equally well
for non-participating clients. However, learning
invariant relationships is often in an explicit man-
ner from data, representation, and distribution,
which violates the federated principles of privacy-
preserving and limited communication. In this pa-
per, we propose FEDIIR, which implicitly learns
invariant relationships from parameter for out-of-
distribution generalization, adhering to the above
principles. Specifically, we utilize the prediction
disagreement to quantify invariant relationships
and implicitly reduce it through inter-client gra-
dient alignment. Theoretically, we demonstrate
the range of non-participating clients to which
FEDIIR is expected to generalize and present the
convergence results for FEDIIR in the massively
distributed with limited communication. Exten-
sive experiments show that FEDIIR significantly
outperforms relevant baselines in terms of out-of-
distribution generalization of federated learning.

1. Introduction
With the growth of storage and computational capabilities on
devices within distributed networks, federated learning has
emerged as a popular distributed learning paradigm(Yang
et al., 2019; Kairouz et al., 2021; Li et al., 2020a). In the
federated learning scenario, multiple clients collaborate to
solve machine learning problems under the coordination of
a server, where each client’s raw data is stored locally and
is not exchanged or transferred. The federated networks are
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Figure 1. Illustration of inter-client gradient alignment with two
clients. If the inter-client gradient is aligned, the model’s local
learning on one client will also improve its performance on other
clients. This indicates that the model implicitly learns invariant
relationships that work equally for all clients. In this way, FEDIIR
will converge to the OOD solution instead of the ERM one.

usually comprised of a large number of clients that gener-
ate and collect data in a non-identical distribution manner,
most of which may never participate in training. Since the
distribution shift probably exists between participating and
non-participating (unseen) clients, models that follow em-
pirical risk minimization (ERM) may perform poorly on the
non-participating clients, known as the out-of-distribution
(OOD) generalization problem(Mohri et al., 2019; Yuan
et al., 2022). The OOD generalization is challenging under
the principles specific to federated learning.

A proven strategy in the OOD generalization litera-
ture(Peters et al., 2016; Arjovsky et al., 2019) is to learn the
invariant relationships that are stable across distributions
and build a model that works equally well over OOD. Intu-
itively, an invariant relationship is a statistical relationship
between inputs and target variables that is maintained across
all data distributions. A typical example(Beery et al., 2018)
is training a model to classify camels from cows, which fails
when the background is switched. The reason is that the
model classifies relying on the spurious relationship (i.e.,
background color vs. label) rather than the invariant rela-
tionship (i.e., animal feature vs. label). Therefore, when
the client’s data are drawn from different distributions, the
model should make predictions using invariant relationships
instead of relying on varying spurious relationships.
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Question We find that there exists an open discussion:
could the current techniques for learning invariant relation-
ships adhere entirely to the federated principles of privacy-
preserving and limited communication?

An Explicit Perspective Most existing work concentrates
on learning invariant relationships explicitly from three
angles: data, representation, and distribution(Shen et al.,
2021; Wang et al., 2022). The methods that rely on data
or representation, such as IRM(Arjovsky et al., 2019) and
REX(Krueger et al., 2021), require a centralized setting
where data or representation is shared across clients, putting
clients’ privacy at risk. The distribution-based methods,
such as FEDADG(Zhang et al., 2021) and FEDSR(Nguyen
et al., 2022), can protect privacy by matching distributions.
Still, in the scenario where clients are massively distributed
with limited communication 1, these methods may fail be-
cause they usually assume the presence of only a small
number of participating clients, most of which are involved
in each round of communication.

Motivation However, those practical explicit methods may
not entirely adhere to the federated principles of privacy-
preserving and limited communication. Considering that
the model parameter is usually the only interaction between
the client and the server, we thus stand on a new perspective,
i.e., restrict the method to the parameter space for learning
invariant relationships implicitly.

A New Perspective: Implicit From this perspective, an
implicit method does not need to communicate anything
other than the parameter, which can offer better protection
for client privacy than explicit methods. Additionally, these
implicit methods can be analyzed in the stochastic optimiza-
tion framework like standard federated techniques(Wang
et al., 2021), which helps to examine its convergence be-
havior in scenarios with a large number of clients. In fact,
convergence analysis is usually neglected in the OOD gen-
eralization literature(Nagarajan et al., 2021; Ahuja et al.,
2021). But it is important to know the convergence rate of
the method in federated learning, as communication is the
primary bottleneck(Wang et al., 2021; Kairouz et al., 2021).

Motivated by the above analysis, this paper proposes
Federated Learning with Implicit Invariant Relationships
(FEDIIR), which implicitly learns invariant relationships
for OOD generalization while adhering to the federated
principles of privacy-preserving and limited communication.
Specifically, we theoretically introduce prediction disagree-
ment to quantify the invariant relationships and obtain its
surrogate in the parameter space by parameterization, i.e.,
the maximum gap of the gradient across clients. By aligning
the inter-client gradient, FEDIIR implicitly reduces predic-

1In this scenario, only a fraction of clients is available during
one communication round, as participating clients are sampled
from an enormous population.

tion disagreement, encouraging the model to use invariant
relationships for making predictions. As seen in Figure 1,
when the inter-client gradient is unaligned, the model’s local
learning on client 2 degrades its performance on client 1,
which indicates the model absorbs spurious relationships
detrimental to client 1. After aligning the inter-client gra-
dient, the model is able to learn invariant relationships that
work equally for all clients implicitly. We summarize our
main contributions below.

1. We propose a method for implicitly learning invariant
relationships, called FEDIIR, designed to address the
problem of OOD generalization under the challenges
specific to federated learning.

2. We theoretically demonstrate that FEDIIR is expected
to generalize to non-participating clients whose dis-
tributions can be written as an affine combination of
participating clients’ distributions. We also present
the convergence results for FEDIIR in the massively
distributed with limited communication scenario, in-
cluding both µ-PL inequality and non-convex cases.

3. We validate the effectiveness of the proposed method
using two scenarios: a small number of clients and a
large number of clients (limited communication). The
experimental results show that FEDIIR significantly
outperforms existing federated learning methods in
terms of OOD generalization.

2. Preliminaries
In this section, we introduce the federated learning scenario
and formalize its OOD generalization problem.

Notation Let X and Y represent the input space and target
space, respectively. Call is the (possibly infinite) collection
of all the possible clients. We denote by Cpar ⊆ Call the
participating clients, where Cpar is drawn from a distribution
Qpar. Each client c ∈ Call holds a local dataset denoted as
Dc = {(xc

i , y
c
i )}

nc
i=1 i.i.d. drawn from the distribution Pc

over X ×Y , and the random variables that follow Pc are rep-
resented by (Xc, Y c) ∼ Pc. The model we consider is for-
malized as f = w◦Φ, where Φ : X → Z ⊆ Rn denotes the
(feature) representation and w : Z → Ŷ denotes the classi-
fier2. The set of all models is given asF . We assume that the
model is parameterized as fθ = wω ◦Φϕ, where θ = (ϕ, ω).
We denote the loss function as ℓ(f(x), y) : Ŷ × Y → R+,
e.g., cross-entropy loss in classification problems, mean-
squared error loss in regression problems, etc. We use
R(f) = Ec∼Qpar

Rc(f) to denote the global expected
risk of model f , where Rc(f) = EXc,Y cℓ(f(Xc), Y c)
is the expected risk w.r.t. client c. With finite samples,

2In a regression problem, the term “classifier” means the last
layer of the regression model.
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the empirical risk of model f w.r.t. client c is defined as
Rc(f) = 1

nc
ℓ(f(xc

i ), y
c
i ) and the global empirical risk is

R(f) = Ec∼QparRc(f). Unless otherwise stated, ∥ · ∥ de-
notes the Euclidean L2-norm.

Federated Learning This work is interested in the scenario
where clients are massively distributed with limited commu-
nication, referred to as the cross-device federated learning
in Kairouz et al. (2021). In this scenario, the clients are
a very large number of highly unreliable mobile devices,
e.g., phones or sensors, in which only a fraction of clients
participate in each round.

The federated learning scenario involves two levels of sam-
pling, drawing client c from the distribution Qpar and then
drawing sample (x, y) from that client’s local data distribu-
tion Pc. In the standard federated learning paradigm, the
goal is to learn a global model that minimizes the average ex-
pected risk over all participating clients, i.e., the Empirical
Risk Minimization (ERM) principle(Vapnik, 1991; McMa-
han et al., 2017). Mathematically, ERM is formalized as the
following optimization problem.

min
f

E
c∼Qpar

[
Rc(f) = E

Xc,Y c
ℓ(f(Xc), Y c)

]
(ERM)

A standard algorithm for solving (ERM) is FE-
DAVG(McMahan et al., 2017), whose pseudo-code is pre-
sented in Algorithm 1. Intrinsically, (ERM) minimizes the
risk of the model over the mixture distribution

⋃
c∈Cpar

Pc.
The distribution of non-participating clients may be, in gen-
eral, quite different from

⋃
c∈Cpar

Pc because there are dis-
tribution shifts across clients(Mohri et al., 2019). Thus,
models following the ERM principle may perform poorly
on non-participating clients.

Out-of-distribution Generalization In order to general-
ize the model appropriately to non-participating clients, we
examine the problem of Out-Of-Distribution (OOD) gen-
eralization in federated learning. Following Arjovsky et al.
(2019), we formulate it as finding the model that performs
optimally in the worst case. Within the terminology of fed-
erated learning, OOD generalization attempts to minimize
the maximum risk of the model over all possible clients,
formalized as the following optimization problem.

min
f

max
c∈Call

[
Rc(f) = E

Xc,Y c
ℓ(f(Xc), Y c)

]
(OOD)

The (OOD) cannot be directly solved because we cannot
observe all potential clients in Call. To generalize to non-
participating clients, a key of existing methods(Peters et al.,

2016; Ahuja et al., 2020) is to learn invariant relationships
between input X and target Y , which is maintained across
all clients. The model using invariant relationships removes
spurious correlations that depend on specific clients and thus
can be robustly generalized to non-participating clients.

Why need an implicit method? As previously men-
tioned, explicit methods for learning invariant relationships
can hardly adhere to the federated principles of privacy-
preserving and limited communication. The first reason is
that most explicit methods require sharing data or repre-
sentations across clients, violating privacy-preserving. The
second reason is that explicit methods usually require clients
to participate in each round, which violates limited commu-
nication. Because the model parameter is typically the only
interaction between the client and the server, we argue that
methods for learning invariant relationships should be re-
stricted to the parameter space. In this way, implicit methods
provide better privacy protection and can also be analyzed
efficiently for convergence in the scenario where clients are
massively distributed with limited communication.

3. The Proposed FEDIIR Method
In this section, we present our FEDIIR method. We first in-
troduce prediction disagreement theoretically to quantify the
invariant relationship and obtain its surrogate objective in
the parameter space by parameterization. Based on this sur-
rogate objective, we formulate the optimization objective of
FEDIIR, which learns the invariant relationships implicitly
through inter-client gradient alignment. Finally, we out-
line the optimization process for FEDIIR in the massively
distributed with limited communication scenario.

3.1. Implicit Invariant Relationships

Without prior knowledge or structural assumptions, the
(OOD) problem would be pointless because it is impos-
sible to characterize the samples from the non-participating
client. A commonly used assumption in the invariant learn-
ing literature(Rojas-Carulla et al., 2018; Arjovsky et al.,
2019; Liu et al., 2021) is as follows.

Assumption A. There exists a representation Φ(·) such that
for all c, c′ ∈ Call and for all z in the intersection of the
supports supp

(
P(Φ(Xc))

)
∩ supp

(
P(Φ(Xc′))

)
, we have

E
Xc,Y c

[Y c|Φ(Xc) = z] = E
Xc′ ,Y c′

[Y c′ |Φ(Xc′) = z].

This assumption shows that the relationship between repre-
sentation Φ(X) and target Y is fixed across distributions in
Call, i.e., using Φ(X) to predict Y is invariant. We call such
a relationship between Φ(X) and Y an invariant relation-
ship, and a model that only uses the invariant relationship
to predict is called the invariant predictor. The invariant
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predictor captures the latent invariant relationship between
the input variable X and the target variable Y , which works
equally well across all clients in Call.

We attempt to learn the invariant relationships implicitly
because the model parameter is the only interaction be-
tween the clients and the server. To do so, we consider
a representation Φ(·) on which the optimal classifier for
the client c is specified as w∗

c (·). For some loss functions,
such as cross-entropy and mean-squared error, the optimal
classifiers can be written as conditional expectations, i.e.,
w∗

c (z) = E[Y c|Φ(Xc) = z]. Recall the invariant relation-
ship w.r.t. Assumption A, which shows that the optimal
classifiers of all clients have the same prediction for the
representation z. Based on the above observations, we can
quantify the invariant relationship using the prediction dis-
agreement between the optimal classifier of clients, being
formalized as follows.
Definition 1 (Prediction Disagreement). Given the collec-
tion C of clients, for the representation Φ(·), let the optimal
classifier for client c be w∗

c (·). The prediction disagreement
w.r.t. C and Φ(·) is defined as:

I(Φ, C) = sup
z∈U(Φ,C)

sup
(c,c′)∈C2

|w∗
c (z)− w∗

c′(z)|,

where U(Φ, C) = ∪c∈Csupp
(
P(Φ(Xc))

)
is the union of

the supports.

The prediction disagreement I(Φ, C) gives the maximum
prediction gap among the client’s optimal classifiers. The
following theorem relates the prediction disagreement to the
invariant predictor, proved in Appendix B.
Theorem 2. Given the collection Call of clients, for the
representation Φ(·), let the optimal classifier for client c be
w∗

c (·). If I(Φ, Call) = 0, then f = w ◦ Φ is an invariant
predictor, where w(·) = w∗

c (·) for any c ∈ Call.

According to this theorem, a representation with the lowest
prediction disagreement elicits an invariant predictor, i.e.,
the model that only predicts using invariant relationships.
Thus, we can lead to an invariant predictor by reducing the
prediction disagreement w.r.t. Definition 1. Suppose that
the current global model is f with parameters θ = (ϕ, ω).
The client c initializes the local model using f and per-
forms a gradient descent ωc = ω − ∇ωRc(θ). We ap-
proximate w(·;ωc) via its first-order Taylor expansion w.r.t.
−∇ωRc(θ) around ω, obtaining

sup
(c,c′)∈C2

|w(z;ω −∇ωRc(θ))− w(z;ω −∇ωRc′(θ))|

≈ sup
(c,c′)∈C2

|w(z;ω)− [∇ωw(z;ω)]
⊤∇ωRc(θ)

− w(z;ω) + [∇ωw(z;ω)]
⊤∇ωRc′(θ)|

≤ sup
(c,c′)∈C2

∥∇ωw(z;ω)∥ ∥∇ωRc(θ)−∇ωRc′(θ)∥︸ ︷︷ ︸
A

.

The first thing to see is that the term “A” only involves
the parameter space, which is the inter-client gradient gap
concerning the classifier. The term “A” can be viewed
as a surrogate objective for prediction disagreement in the
parameter space. Thus, we can implicitly reduce prediction
disagreement by aligning the inter-client gradient of the
classifier, thereby encouraging the model to use invariant
relationships for making predictions. In contrast to the
work(Arjovsky et al., 2019; Ahuja et al., 2020) that explicitly
enforces the invariance constraint w.r.t. Assumption A, this
strategy of implicitly promoting invariance is more suitable
for federated learning scenarios.

3.2. Optimization Objective

As analyzed in the previous section, we can learn invariant
relationships implicitly by aligning the inter-client gradient
of the classifier. To enable the optimization objective to
be separable across clients, we propose to align the classi-
fier’s local and global gradient, i.e., ∥∇ωRc(f)−∇ωR(f)∥,
where R(f) = Ec∼QparRc(f) is the global expected risk.
Therefore, FEDIIR attempts to minimize the empirical risk
and align the local and global gradients of the classifier,
formalized as the following optimization objective.

min
f

E
c∼Qpar

[
Rc(f) +

γ

2
∥∇ωRc(f)−∇ωR(f)∥2

]
(FEDIIR)

The optimization objective of FEDIIR is quite direct: it adds
a penalty term concerning the gradient of the classifier to the
local sub-problem. The penalty factor γ controls the balance
between the reducing risk term and the aligning gradient
term, with γ = 0 recovering (ERM). In the practice of deep
learning, these objectives may be at odds with each other,
as the reducing risk term greedily maximizes the speed of
learning(Parascandolo et al., 2021). Therefore, FEDIIR
prioritizes learning invariant relationships by trading off
some convergence speed, resulting in an improved OOD
generalization capability of the model.

By minimizing risk and aligning gradient, FEDIIR forces
the local learning to progress consistently across clients. If
the inter-client gradient is aligned, the model’s local learn-
ing on one client will also improve its performance on other
clients, indicating that the model learns invariant relation-
ships that work equally for all clients. Further, FEDIIR also
prompts the model to converge on a client-shared solution.
Specifically, we assume that the model f = w ◦ Φ con-
verges to the stationary point of global expected risk, i.e.,
∇R(f) = Ec∼Qpar

∇Rc(f) = 0. If classifier w(·) has an
equal gradient on all client, then∇ωRc(f) = 0 holds for all
c ∈ Cpar. Notice that the classifier of the invariant predictor
also reaches optimality for all clients simultaneously (see
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Definition 6) since the invariant features have the same joint
distributions with the targets across all clients.

Discussion of related work Our objective is similar to
that of IGA(Koyama & Yamaguchi, 2020), a centralized
approach that attempts to align the gradient of the model
f = w ◦ Φ rather than only the classifier w. In fact, IGA
is much more expensive to optimize than FEDIIR because,
most of the time, |ω| ≪ |θ|. We show that satisfying the
invariance of the classifier w is sufficient, which can be ef-
fectively optimized in limited resources of communication.
Moreover, our objective is similar to FEDPROX(Li et al.,
2020b), which adds a penalty term to the local sub-problem
regarding the model parameter. The penalty term of FED-
PROX can be roughly written as γ

2 ∥θc − θ∥2, where θ is the
current global model parameter. A drawback of FEDPROX
is that it may lead to θc ≈ θ in local learning, inherently
limiting the potential of local learning. Our method does not
confine local learning to the area around the global model
and is more concerned with the consistency of the learning
process. A more extensive discussion of related work is
provided in Appendix A.

3.3. Optimization in Limited Communication

We describe below the optimization process for the pro-
posed objective in the massively distributed with limited
communication scenario. A widespread practice derived
from FEDAVG(McMahan et al., 2017) is performing mul-
tiple local updates on the clients to reduce communication
costs. To do so, we maintain a server-level state that remains
fixed throughout the local update of clients. We summarize
the pseudo-code of FEDAVG and FEDIIR in Algorithm 1.

We start by rewriting some notations under finite samples
only in terms of θ, instead of f . We denote the global em-
pirical risk as R(θ) = Ec∼Qpar

Rc(θ) w.r.t. all participating
clients Cpar, where Rc(θ) is the empirical risk of model
f (corresponding to θ) w.r.t. client c. In particular, for a
mini-batch ζ = {(xi, yi)}ni=1 with size n, we denote by
R(θ; ζ) = 1

nℓ(f(xi), yi) the empirical risk of θ over ζ.

In the t-th communication round, the server randomly sam-
ples a subset C of clients with |C| = C. For the global model
parameter θt−1, we then use the average full-batch gradient
gω = 1

C

∑
c∈C ∇ωRc(θ

t−1) as the unbiased estimate3 of
the global gradient∇ωR(θt−1). Note that gω remains fixed
throughout the local update of the clients. For each c ∈ C,
client c initializes the local model parameter θtc = θt−1 and
performs K local updates:

θtc ← θtc − ηlgc,

where ηl denotes the local step-size, gc ← ∇Rc(θ
r
c ; ζ) is

3Appendix C presents a discussion in detail on the additional
computation introduced and the stability of the global gradient
estimate in FEDIIR.

Algorithm 1 FEDAVG and FEDIIR

Initialize: θ0
for t = 1, . . . , T do

sample subset C of clients with |C| = C

gω := 1
|C|
∑

c∈C ∇ωRc(θ
t−1)

on client c ∈ C in parallel do
initialize local model θtc = θt−1

for k = 1, . . . ,K do
sample mini-batch ζ from local data Dc

gc ← ∇Rc(θ
t
c; ζ)

gc ← ∇[Rc(θ
t
c; ζ) +

γ
2 ∥∇ωRc(θ

t
c; ζ)− gω∥2]

update θtc ← θtc − ηlgc
end for
∆c = θtc − θt−1

end on client
θt = θt−1 + ηg

1
C

∑
c∈C ∆c

end for

the stochastic gradient of FEDAVG and gc ← ∇[Rc(θ
r
c ; ζ)+

γ
2 ∥∇ωRc(θ

r
c ; ζ) − gω∥2] is the stochastic gradient of

FEDIIR. Finally, the server aggregates the parameter up-
dates of the sampled clients:

θt = θt−1 + ηg
1

C

∑
c∈C

∆c,

where ηg denotes the global step-size and ∆c = θtc − θt−1

denotes the the parameter updates on client c.

4. Theoretical Analysis
In this section, we present our main theoretical results. We
first establish a generalization risk bound, providing the
range of non-participating clients to which FEDIIR is ex-
pected to generalize. We also present the convergence re-
sults for FEDIIR in the scenario where clients are massively
distributed with limited communication, guaranteeing that
the global empirical risk can converge to a stationary point.

4.1. Generalization Analysis

When the number of participating clients is finite in prac-
tice, what is the range of non-participating clients to which
FEDIIR is expected to generalize? We provide a simple gen-
eralization risk bound that gives some clues for this question.
We consider the binary classification setting Y = {0, 1},
and Ŷ = [0, 1] denotes the estimated probability of the true
label being 1. Given a collection of participating clients
Cpar, we use R(f) = Ec∼Qpar

Rc(f) to denote the global
expected risk. For λ ∈ Λν := {{λc : c ∈ Cpar}|λc ≥
−ν,

∑
c∈Cpar

λc = 1}, we define a non-participating client
λ with distribution Pλ, where Pλ =

∑
c∈Cpar

λcPc is an
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affine combination. For this non-participating client λ, its
expected risk is denoted asRλ(f) =

∑
c∈Cpar

λcRc(f). If
ν = 0, the non-participating clients fall within the convex
hull of participating clients; if ν > 0, the non-participating
clients fall outside of that convex hull. The following theo-
rem presents a sufficient condition for the model to general-
ize to the affine combination of participating clients, proved
in Appendix D.

Theorem 3. Given the collection Cpar of clients, let’s as-
sume that ℓ(·, ·) ≤ M . Then for all f = w ◦ Φ ∈ F , we
have the following risk bound for the affine combination of
participating clients:

sup
λ∈Λν

Rλ(f) ≤ R(f) + M̃I(Φ, Cpar)

+ M̃ sup
(c,c′)∈C2

par

ρ(Pc(X),Pc′(X)),

where M̃ = (1 + |Cpar|ν)M is monotonic in ν, and
ρ(Pc(X),Pc′(X)) = supX |Pc(X) − Pc′(X)| is the total
variation distance.

The upper bound of risk on the affine combinations of par-
ticipating clients consists of three terms: the first term is
the global expected risk; the second term corresponds to the
prediction disagreement; and the third term measures the
distance between marginal distributions. Most upper bounds
for OOD generalization(Albuquerque et al., 2019; Arjovsky,
2020) involve the invariance constraint or the covariate shift
across Call, thus they do not provide insights about the range
of generalization. In contrast, Theorem 3 shows that the
model is expected to perform as well on non-participating
clients as on participating clients if the invariance constraint
and covariate shift in Cpar are sufficiently small, where the
distribution of non-participating clients can be written as an
affine combination of participating clients’ distributions. As
a result, FEDIIR implicitly reduces the invariance constraint
by aligning the inter-client gradient, thereby promising to
generalize to non-participating clients included in the affine
combination of participating clients.

4.2. Convergence Analysis

Because communication is the primary bottleneck in fed-
erated learning, we do not want to sacrifice convergence
speed alone for OOD generalization. To this end, we ana-
lyze the convergence of the FEDIIR algorithm w.r.t. global
empirical risk R(θ) = Ec∼Qpar

Rc(θ), including the µ-PL
inequality and the general non-convex two classes of func-
tions. Although the gradient alignment term also affects the
optimization of representation Φ(·), we fix Φ as the identity
mapping to clearly show the convergence results. We first
state a few customary assumptions on the function, and their
formal versions can be found in Appendix E.1.

Assumption B (Smoothness). For all clients c, we assume
that Rc(ω) is L-smoothness and Moral-smoothness.

Assumption C (Bounded Statistical Heterogeneity). For all
clients c, we assume that when there is no perturbation, the
variance of the local gradient w.r.t. the global gradient is
bounded by G.

Assumption D (Bounded Intra-client Variance). For all
clients c, we assume that ∇Rc(ω; ζ), ∇2Rc(ω; ζ), and
∇2Rc(ω; ζ)∇Rc(ω; ζ) are unbiased estimates of∇Rc(ω),
∇2Rc(ω), and ∇2Rc(ω)∇Rc(ω), respectively, with vari-
ances bounded by σ2.

Assumption B states the smoothness of the local risk func-
tion, which is standard in the optimization literature(Crane
& Roosta, 2019; Elgabli et al., 2022). Because FEDIIR in-
volves the second-order gradient, we also assume that Rc(ω)
is Moral-smoothness. As proved in Roosta et al. (2022), the
Moral-smoothness is strictly weaker than the gradient and
Hessian Lipschitz continuous, which are commonly used in
second-order methods. Assumption C bounds the variance
of local gradients relative to the global gradient, a technique
widely used for quantifying statistical heterogeneity in the
federated learning literature(Karimireddy et al., 2021; Wang
et al., 2021). Assumption D bounds the variance of the
stochastic gradient and stochastic Hessian, which is com-
mon in stochastic optimization analysis(Fallah et al., 2020).

We now present the convergence results of FEDIIR for the µ-
PL inequality case. We say R(ω) satisfies the µ-PL inequal-
ity (formalized as Assumption E) for µ > 0 if ∥∇R(ω)∥2 ≥
2µ(R(ω)− R∗) (∀ω), where R∗ := minR(ω). The µ-PL
inequality is a generalization of strong convexity, which is
much weaker than the standard notion of strong convexity
and can even satisfy some non-convex functions. For the
sake of the presentation, we made some simplifications, and
its full version and proof can be found in Appendix E.3.

Theorem 4. Let Assumption B, C, D and E hold and
FEDIIR updates with constant local and global step-size
such that ηl ≤ 1

4KL
√

1+γ2
, η̃ = Kηgηl <

1
2αµ . Then, the

sequence of iterates generated by FEDIIR satisfies

E[R(ωt)−R∗] ≤ (1− 2αµη̃)t[R(ω0)−R∗]

+ ηl
β1G

2 + β2γ
2σ2 + β3γ

2G2σ2

2αµ
,

where α > 0 is a constant, and β1, β2, β3 are the polynomi-
als in ηl.

For the µ-PL inequality case, FEDIIR has a linear conver-
gence rate up to a solution that is proportional to ηl. This
shows that FEDIIR converges even with limited commu-
nication resources, where the penalty factor γ affects the
suboptimality of the solution. If the algorithm appears to
have stalled, we can halve the step-size and thus halve the
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suboptimality. Remark that our result was established with
a constant step-size, a strategy more commonly used in prac-
tice. We below present the convergence results of FEDIIR
for the general non-convex case.

Theorem 5. Let Assumption B, C, and D hold and FEDIIR
updates with constant local and global step-size such that
ηl ≤ 1

4KL
√

1+γ2
. Then, the sequence of iterates generated

by FEDIIR satisfies

1

T

T∑
t=1

E∥∇R(ωt−1)∥2 ≤ R(ω0)−R∗

αη̃T

+ ηl
β1G

2 + β2γ
2σ2 + β3γ

2G2σ2

α
,

where α > 0 is a constant, and β1, β2, β3 are the polyno-
mials in ηl. If we choose the step-sizes ηl = 1√

TKL
, ηg =

√
CK and omitting the larger order of each part, we have

the convergence rates of FEDIIR as follows

O

(
(R(ω0)−R∗)L2

√
TCK

,

√
CKL2G2

√
T

,
γ2σ2

√
TCK

,
γ2G2σ2

√
TCK

)
.

For the general non-convex case, FEDIIR converges to a
stationary point that is proportional to ηl at O( 1

T ) rate. By
correctly choosing the step-size, FEDIIR has a O( 1√

T
) con-

vergence rate. Since multiple terms in the bound increase
with penalty factor γ, a larger penalty factor will slow down
the convergence of the algorithm. Nevertheless, FEDIIR
has a good convergence rate in the scenario where clients
are massively distributed with limited communication.

5. Experiments
In this section, we conduct experiments to evaluate the per-
formance of our proposed FEDIIR and answer the following
questions. Q1: In a small number of clients scenario, can
FEDIIR achieve better performance compared with explicit
methods? Q2: How effective is the proposed FEDIIR in
the scenario where clients are massively distributed with
limited communication?

5.1. Experimental Setup

Benchmark Datasets. We conduct extensive experi-
ments on four widely used datasets, including RotatedM-
NIST(Ghifary et al., 2015), VLCS(Fang et al., 2013),
PACS(Li et al., 2017) and OfficeHome(Venkateswara et al.,
2017). These datasets are classic OOD generalization bench-
marks for classification. For all datasets, we perform the
“leave-one-domain-out” strategy. More specifically, we set
aside one domain as the test domain and the rest as the train-
ing domains. For a small number of clients scenario, each
training domain is treated as a separate participating client.

For scenarios with a large number of clients, we further
split each training domain into multiple sub-domains, each
of which is treated as a separate participating client. This
allows some clients to share a single training domain, but
no client has data from multiple domains simultaneously.
See Appendix F.1 for more details.

Implementation. For the RotatedMNIST dataset, we use a
network architecture comprising four 3× 3 convolutional
layers and one average pooling layer as the feature rep-
resentation Φ(·), and a single linear layer as the classi-
fier w(·). For the VLCS and PACS datasets, we employ
ResNet-18 as the feature representation Φ(·), replacing the
last fully connected layer with a 512-dimensional linear
layer. And we utilize two fully connected layers as the clas-
sifier w(·). For the OfficeHome dataset, we use ResNet-50
as the feature representation Φ(·), where the last fully con-
nected layer is replaced by a 2048-dimensional linear layer.
The classifier w(·) employed on OfficeHome is identical to
the one used for the VLCS dataset. For each dataset, we
only tune hyperparameters via grid search in the scenario
with a small number of clients and do not modify them
for a larger number of client scenarios (see Appendix F.3).
In all experiments, we train the global model using the
global step-size ηg = 1 for 100 communication rounds,
where the local model on the client is trained with stochas-
tic gradient descent (SGD) for one epoch. Per common
practice, we allocate 90% of the available data for training
and 10% for validation. We chose the global model that
maximizes accuracy on the overall validation set as the fi-
nal model (no data leakage from the test domain). We run
the experiments three times and report the average perfor-
mance of the final model on the test domain. Unless other-
wise stated, the performance of the methods on the dataset
refers to the average result obtained when each domain is
treated as a test domain once. Our code will be released at
https://github.com/YamingGuo98/FedIIR.

5.2. Results

Results on a small number of clients scenario. In re-
sponse to Q1, we compare the proposed method with base-
lines to evaluate the OOD generalization performance on
four datasets. We take FEDAVG(McMahan et al., 2017),
FEDADG(Zhang et al., 2021), and FEDSR(Nguyen et al.,
2022) as the baselines. The summarized results of the ex-
periments are presented in Table 1, while detailed results
for each domain can be found in Appendix F.4. From our
findings, we draw the following conclusions:

i) Our method FEDIIR consistently outperforms the base-
line FEDAVG on all datasets. It is worth emphasizing that
compared to FEDAVG, FEDIIR achieves this performance
improvement by merely introducing the inter-client gradient
alignment term;
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Algorithm
RotatedMNIST VLCS PACS OfficeHome

Average
ConvNet ResNet-18 ResNet-18 ResNet-50

FEDAVG 94.5±0.1 76.3±0.4 83.1±0.0 68.5±0.1 80.6
FEDADG 94.7±0.0 77.1±0.1 83.1±0.2 68.4±0.2 80.8
FEDSR 94.7±0.1 75.8±0.4 83.4±0.3 69.1±0.2 80.8
FEDIIR 95.0±0.2 76.6±0.6 83.7±0.3 69.2±0.0 81.1

Table 1. Average test accuracy (%) using leave-one-out domain validation in the scenario with a small number of clients. Each training
domain is treated as a separate participating client, and all participating clients are sampled in each round of communication.

Algorithm
RotatedMNIST VLCS PACS OfficeHome

Average
ConvNet ResNet-18 ResNet-18 ResNet-50

FEDAVG 90.8±0.6 65.0±1.1 68.8±0.7 60.5±0.2 71.3
FEDADG 92.2±0.4 60.7±2.2 72.3±0.6 60.1±0.2 71.3
FEDSR 91.2±1.1 60.0±0.2 72.7±0.6 55.3±0.7 69.8
FEDIIR 93.0±0.3 74.1±0.3 75.4±0.6 65.6±0.3 77.0

Table 2. Average test accuracy (%) using leave-one-out domain validation in the scenario with a large number of clients. The total number
of participating clients is 50, and the number of sampled clients in one communication round matches the number of training domains.

ii) In comparison to state-of-the-art methods, the proposed
FEDIIR achieves superior performance on the RotatedM-
NIST, PACS, and OfficeHome datasets. Remarkably, our
method employs a simple regularization technique, mak-
ing it more accessible and easier to implement in practice
compared to other approaches.

Analysis Our proposed method, FEDIIR, not only consis-
tently outperforms FEDAVG, but also achieves competitive
results when compared to methods specifically designed for
the scenario with a small number of clients. The reason is
that FEDIIR utilizes inter-client gradient alignment to effec-
tively encourage the model to learn invariant relationships
implicitly. In short, FEDIIR demonstrates excellent OOD
generalization performance in the scenario with a small
number of clients.

Results on a large number of clients scenario. To an-
swer the Q2, we study the OOD generalization performance
of the proposed method on four datasets, considering the
increase in the total number of participating clients. In
all experiments, the number of sampled clients during one
communication round remains fixed, corresponding to the
number of training domains: 5 for RotatedMNIST and 3 for
VLCS, PACS, and OfficeHome. Figure 2 visually displays
the experimental results, with the horizontal axis denoting
the total number of participating clients and the vertical
axis representing the average test accuracy. Additionally,
Table 2 presents full results with 50 participating clients,
accompanied by detailed domain-specific outcomes in Ap-
pendix F.4. Based on the results of our experiments, we
make the following conclusions:

i) The effectiveness of all baselines noticeably decreases as
the total number of participating clients increases. However,
our method FEDIIR produces comparable performance for
scenarios with both a small and large number of clients;

ii) Our proposed FEDIIR significantly outperforms all base-
lines even when the number of participating clients reaches
50. For instance, FEDIIR achieves a substantial average
improvement of 14% and 8% compared to the baselines on
VLCS and OfficeHome datasets, respectively.

Analysis As the participation rate of clients decreases in
one communication round, explicit methods inevitably incur
performance degradation. The fact that these approaches
explicitly learn invariant relationships necessitates relatively
reliable participating clients and is impractical for a large
number of clients. In contrast, our method implicitly learns
invariant relationships and converges quickly in scenarios
with a large number of clients population. In summary, the
proposed FEDIIR does indeed perform excellently for OOD
generalization performance in the scenario where the clients
are massively distributed with limited communication.

5.3. Visualization of the Convergence Process

To visualize the difference in convergence speed between
methods, we examine their average test accuracy versus
communication round. We consider a scenario with 50
participating clients, where the number of sampled clients
in one communication round coincides with the number of
training domains. Figure 3 presents the results for the VLCS
and PACS datasets, and Figure 5 displays the results for Ro-
tatedMNIST and OfficeHome. The experimental findings
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Figure 2. Average test accuracy (%) versus the total number of participating clients, with the number of sampled clients in one communi-
cation round matches the number of training domains.
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Figure 3. Average test accuracy (%) versus communication round
on VLCS (left) and PACS (right) dataset with 50 participating
clients, where the number of sampled clients in one communication
round matches the number of training domains.

demonstrate that FEDIIR exhibits faster convergence com-
pared to the baselines, particularly during the first 50 rounds
of communication. As demonstrated in Section 4.2, FEDIIR
has good convergence speed when appropriate learning step-
sizes are used, whereas the alternative methods do not pro-
vide any theoretical insight into the convergence speed. This
property is crucial in federated learning scenarios, where
clients are massively distributed and communication be-
comes a primary bottleneck.

5.4. Sensitivity of γ

Here, we investigate the sensitivity of FEDIIR w.r.t. the hy-
perparameter γ. With 50 participating clients and 3 sampled
clients in one communication round, we examine the per-
formance of FEDIIR on VLCS, PACS, and OfficeHome
datasets for various values of hyperparameter γ, where
γ ∈ {0, 0.0001, 0.001, 0.01, 0.1}. The experimental results
are presented in Figure 4. We observe that FEDIIR out-
performs FEDAVG when γ ∈ {0.0001, 0.001, 0.01}, but is
worse than FEDAVG when γ = 0.1. This can be attributed
to the fact that a smaller local step-size ηl is necessary for
the convergence of FEDIIR with a higher γ (Section 4.2).
In other words, achieving optimal performance of FEDIIR
requires striking a delicate balance between the hyperparam-
eter γ and the local step-size ηl, highlighting the importance
of careful consideration in tuning.
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Figure 4. Average test accuracy (%) for various values of the hy-
perparameter γ in FEDIIR, with 50 participating clients and 3
sampled clients in one communication.

6. Conclusion
In this paper, we study OOD generalization of federated
learning with a novel perspective that implicitly learns in-
variant relationships from the parameter. To this end, we
propose FEDIIR, a simple federated learning method that
performs better in OOD generalization by aligning inter-
client gradient. This method adheres entirely to the feder-
ated principles of privacy-preserving and limited communi-
cation. The theoretical results demonstrate that FEDIIR is
expected to generalize to non-participating clients included
in the affine combination of participating clients and also
has a good convergence speed under limited communica-
tion resources. Extensive experiments show that FEDIIR
provides better OOD generalization performance than the
relevant baseline, especially in the scenario where clients
are massively distributed with limited communication.
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A. Related Work
Federated Learning Federated learning is a popular distributed learning paradigm that enables collaborative training of a
global machine learning model over multiple clients involving data silos in a privacy-preserving manner(Yang et al., 2019;
Kairouz et al., 2021). FEDAVG(McMahan et al., 2017) defines a standard optimization method in which clients perform
multiple epochs of stochastic gradient descent (SGD) on their local data. Numerous studies have shown that this simple
method inevitably produces performance degradation when there are distribution shifts across clients(Zhao et al., 2018; Zhu
et al., 2021a; Li et al., 2022). Many existing works mainly address distribution shifts from the following two perspectives.
The first perspective focuses on stabilizing local model updates: FEDPROX(Li et al., 2020b) adds a proximal term to the
local subproblem for limiting the distance between the local and global models. SCAFFOLD(Karimireddy et al., 2020)
uses an additional control variable to correct for client-drift in local updates. FEDNTD(Lee et al., 2022) performs local-side
distillation only for not-true classes to prevent forgetting global knowledge corresponding to regions outside the local
distribution. FEDALIGN(Mendieta et al., 2022) regularizes the Lipschitz constants of the final block in a network with
respect to its representations, thereby improving local learning generality during training. Another perspective aims to
improve the efficacy of model aggregation: FEDDF(Lin et al., 2020) uses ensemble distillation techniques to aggregate
knowledge from heterogeneous local models on a proxy dataset. FEDBE(Chen & Chao, 2021) generates a series of models
from the Bayesian perspective using local models and combining them via Bayesian model Ensemble. FEDGEN(Zhu et al.,
2021b) learns a lightweight generator to ensemble knowledge of local models and regulates local training using the learned
knowledge. However, these studies focus on the distribution shifts across participating clients and ignore the generalization
to non-participating clients who are also affected by distribution shifts. Unlike these techniques, our methods attempt to
learn latent invariant relationships that work equally well for all clients, expecting to achieve OOD generalization.

Out-of-distribution Generalization OOD generalization aims to learn a model that can be generalized to unseen environ-
ments (corresponding to clients) under distribution shifts, which is critical in practice for model deployment in the wild(Shen
et al., 2021; Zhou et al., 2022; Wang et al., 2022). Recent research has attempted to build an invariant predictor by learning
invariant causal relationships, working equally well over OOD. IRM(Arjovsky et al., 2019) tries to find a representation
such that the optimal linear classifier, on top of that representation, is the same for all environments. IRM GAME(Ahuja
et al., 2020) reformulates IRM as finding the Nash equilibrium of an ensemble game among several environments, holding
for a large class of nonlinear classifiers. GROUPDRO(Sagawa et al., 2020) conducte an analysis of group DRO in overparam-
eterized neural networks, demonstrating the importance of regularization for worst-case group generalization. REX(Krueger
et al., 2021) learns invariant predictor by reducing differences in risk across environments, which essentially minimizes the
variance of training risks(Xie et al., 2020). MATCHDG(Mahajan et al., 2021) constructs a representation using contrastive
learning, where representations of the same object across environments are invariant. IGA(Koyama & Yamaguchi, 2020)
builds the invariant predictor based on information theory, which looks for the mutual-information maximizing feature
amongst the invariant features. These explicit methods require a centralized setting where data or representation is shared
across clients, violating the federated principles of privacy-preserving. In contrast, our methods do not need to communicate
anything other than the model parameter, which can offer better protection for client privacy than the above methods.

Generalization in Federated Learning Following the terminology introduced in Yuan et al. (2022), we aim to bridge the
participation gap introduced by non-participating (unseen) clients. AFL(Mohri et al., 2019) and DRFA(Deng et al., 2020)
suggests that the global modal is optimized for any target distribution formed by a mixture of client distributions instead of a
specific target distribution. FLRA(Reisizadeh et al., 2020) attempts to find a global model that minimizes the total loss
induced by the worst-case local affine transformation. FEDGMA(Tenison et al., 2021) assigns higher importance to the
consistent components of the gradient for promoting the global model converges to a consistent minimum across clients.
FEDSAM(Qu et al., 2022) focuses on local learning generality, where each local client trains the local model with the same
perturbation bound. These techniques can, at best, generalize to non-participating clients included in the convex hull of
participating clients but fail to extrapolate well, i.e., generalize to non-participating clients that fall outside of that convex
hull. To achieve a more ambitious OOD generalization, FEDADG(Zhang et al., 2021) employs the federated adversarial
learning approach to align the distributions among different clients for learning universal features. FEDSR(Nguyen et al.,
2022) enforces regularization on representation and conditional mutual information to encourage the model for learning
only the necessary information, which helps to ignore spurious relationships. FL GAME(Gupta et al., 2022) designs a
game-theoretic framework that allows parallel computation for learning causal features that are invariant across clients.
Typically, these explicit methods require clients to participate in each round, which violates the federated principle of limited
communication. In contrast, our approach involves only regularization in the parameter space, which can be efficiently
optimized in scenarios where clients are massively distributed with limited communication.
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Comparison with DFL(Luo et al., 2022) in “invariance” terminology We and DFL both understand the term “invariant”
in the context of causal learning, but our definitions differ slightly. In their work, a feature z is deemed “invariant” if
Pc(Z = z) = Pc′(Z = z), where c and c′ denote different clients. This definition responds to the problem of attribute
skewness, where the distribution of some features shifts across clients. On the other hand, we define z as an invariant feature
if Pc(Y |Z = z) = Pc′(Y |Z = z), where Y is the target variable. This definition supports OOD generalization because
the invariant features constitute the direct cause of the target. Based on different assumptions, we approach the problem
differently. DFL addresses the attribute skewness issue by separating features in the dataset that do not have skew and
successfully mitigating negative transfer. However, it might also take on spurious features that are not skewed, which may
lead to a failure to generalize to OOD. In contrast, we use inter-client gradient alignment to encourage the model to learn
invariant relationships and achieve OOD generalization.

B. More Details on Section 3.1
In this section, we supplement what was omitted in Section 3.1, including the formal definition of invariant predictor and the
proof of Theorem 2.

The formal definition of the invariant predictor, derived from Arjovsky et al. (2019), is presented as follows.

Definition 6 (Invariant Predictor). We say that a representation Φ elicits an invariant predictor f = w ◦ Φ : X → Y
across clients Call if there is a classifier w simultaneously optimal for all clients, that is, w ∈ argminwRc(w ◦ Φ) for all
c ∈ Call.

If features have different joint distributions with the targets across clients, a fixed classifier on top of them will not be optimal
in all clients. This suggests that the invariant predictor w.r.t. Definition 6 uses only invariant relationships for predicting the
target variable, which captures the latent invariant relationship between the input variable X and the target variable Y .

We now prove Theorem 2, thus relating the prediction disagreement to the invariant predictor.

Theorem 2*. Given the collection Call of clients, for the representation Φ(·), let the optimal classifier for client c be w∗
c (·).

If I(Φ, Call) = 0, then f = w ◦ Φ is an invariant predictor, where w(·) = w∗
c (·) for any c ∈ Call.

Proof. Notice that w∗
c (z) = E[Y c|Φ(Xc) = z] holds for all c ∈ Call. If I(Φ, Call) = 0, then Φ(·) satisfies following

invariant constraint for any pair (c, c′) ∈ C2all and all z ∈ ∩c∈Call
supp(P(Φ(Xc))):

E
Xc,Y c

[Y c|Φ(Xc) = z] = E
Xc′ ,Y c′

[Y c′ |Φ(Xc′) = z].

Thus, w(z) := w∗
c (z) = E[Y c|Φ(Xc) = z] for any c such that z ∈ supp(P(Φ(Xc))) is well defined, which indicates that

w(·) is simultaneously optimal for all clients, i.e., f = w ◦ Φ is an invariant predictor.

C. More Discussion on Section 3.3
This section discusses the additional computation introduced by FEDIIR and how to stabilize the estimate of the global
gradient in FEDIIR.

FEDIIR introduces extra computation because it needs to compute the average full-batch gradient of sampled clients in each
round of communication. However, we believe that the additional computation is manageable for most practical federated
settings, especially in scenarios with a large number of clients. Firstly, the number of sampled clients in one round of
communication is typically small, and the number of samples held by each client is also small. Additionally, FEDIIR only
aligns the gradients of the classifier, which generally consists of the last few layers of the model, and thus does not require
significant computational overhead. Overall, we argue that the additional computation introduced by FEDIIR is reasonable.

As the number of sampled clients in one round of communication is usually small, relying solely on the average full-batch
gradient of sampled clients to estimate the global gradient can result in significant errors. To mitigate this issue, we adopt the
exponential moving average (ema) technique to stabilize the estimate of the global gradient. Specifically, in the t-th round of
communication, we align g̃tω = υg̃t−1

ω + (1− υ)gω instead of gω , where υ is a hyperparameter to control the update speed.
FEDIIR using the ema technique enables a smoother estimation of the global gradient throughout training. It is worth noting
that similar techniques have been widely employed in OOD generalization(Rame et al., 2022; Blanchard et al., 2021).
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D. Generalization Analysis
In this section, we restate Theorem 3 and provide proof.

Theorem 3*. Given the collection Cpar of clients, let’s assume that ℓ(·, ·) ≤M . Then for all f = w ◦ Φ ∈ F , we have the
following risk bound for the affine combination of participating clients:

sup
λ∈Λν

Rλ(f) ≤ R(f) + M̃I(Φ, Cpar) + M̃ sup
(c,c′)∈C2

par

ρ(Pc(X),Pc′(X)),

where M̃ = (1 + |Cpar|ν)M is monotonic in ν, and ρ(Pc(X),Pc′(X)) = supX |Pc(X) − Pc′(X)| is the total variation
distance.

Proof. Taking a cue from Bellot & van der Schaar (2020), we first rewrite the affine combination of risk:

sup
λ∈Λν

Rλ(f) = sup
λ∈Λν

∑
c∈Cpar

λcRc(f)

(a)

≤ (1 + |Cpar|ν) sup
c∈Cpar

Rc(f)− ν
∑

c∈Cpar

Rc(f)

=
1

|Cpar|
∑

c∈Cpar

Rc(f) + (1 + |Cpar|ν) sup
c∈Cpar

Rc(f)− (1 + |Cpar|ν)
1

|Cpar|
∑

c∈Cpar

Rc(f)

(b)
= R(f) + (1 + |Cpar|ν)

(
sup

c∈Cpar

Rc(f)−R(f)

)
≤ R(f) + (1 + |Cpar|ν) sup

(c,c′)∈C2
par

(
Rc(f)−Rc′(f)

)
,

where (a) comes from the fact that supc∈Cpar
Rc(f)−Rc(f) ≥ 0; (b) is from the definition of global expected riskR(f).

We will bound the second term of the above inequality below. For any (c, c′) ∈ C2par, there exists

Rc(f) = E
x∼Pc(X)

[
E

y∼Pc(Y |Φ(X)=Φ(x))
[ℓ(w(Φ(x)), y)]

]
︸ ︷︷ ︸

g(x)

= E
x∼Pc′ (X)

[
E

y∼Pc(Y |Φ(X)=Φ(x))
[ℓ(w(Φ(x)), y)]

]
︸ ︷︷ ︸

A1

+ E
x∼Pc(X)

[g(x)]− E
x∼Pc′ (X)

[g(x)]︸ ︷︷ ︸
A2

.

(1)

For the first term A1, we have

A1 = E
x∼Pc′ (X)

[
E

y∼Pc(Y |Φ(X)=Φ(x))
[ℓ(w(Φ(x)), y)] + E

y∼Pc′ (Y |Φ(X)=Φ(x))
[ℓ(w(Φ(x)), y)]

− E
y∼Pc′ (Y |Φ(X)=Φ(x))

[ℓ(w(Φ(x)), y)]

]

≤ E
x∼Pc′ (X)

[
E

y∼Pc′ (Y |Φ(X)=Φ(x))
[ℓ(w(Φ(x)), y)]

]
+ E

x∼Pc′ (X)

[
E

y∼Pc(Y |Φ(X)=Φ(x))
[ℓ(w(Φ(x)), y)]− E

y∼Pc′ (Y |Φ(X)=Φ(x))
[ℓ(w(Φ(x)), y)]

]
(a)

≤ Rc′(f) +M E
x∼Pc′ (X)

[ρ (Pc(Y |Φ(X) = Φ(x)),Pc′(Y |Φ(X) = Φ(x)))]

(b)

≤ Rc′(f) +M sup
z∈U(Φ,C)

|w∗
c (z)− w∗

c′(z)|,
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where (a) is from the condition ℓ(·, ·) ≤ M , (b) comes from the setting of Y is a binary variable, and U(Φ, C) =
∪c∈Csupp(P(Φ(Xc))) is the union of the supports.

Since ℓ(·, ·) ≤M , |g(x)| ≤M holds for all x. For the second term A2, the following inequality exist

A2 ≤Mρ(Pc(X),Pc′(X)).

Plugging back the bounds on A1 and A2, obtaining

sup
(c,c′)∈C2

par

(
Rc(f)−Rc′(f)

)
≤M sup

z∈U(Φ,C)
sup

(c,c′)∈C2
par

|w∗
c (z)− w∗

c′(z)|+M sup
(c,c′)∈C2

par

ρ(Pc(X),Pc′(X))

= MI(Φ, Cpar) +M sup
(c,c′)∈C2

par

ρ(Pc(X),Pc′(X)).

Let M̃ = (1 + |Cpar|ν)M to finish the proof.

E. Convergence Analysis of FEDIIR
In this section, we add more details about the convergence analysis of FEDIIR. We first examine the assumptions and
definitions, then introduce some technical lemmas, and finally prove the convergence result of FEDIIR.

E.1. Assumptions and Definitions

We reiterate the assumptions required for the proof and explain some of their implications.

Assumption B* (Smoothness). For all clients c, we assume that Rc(ω) is L-smoothness, i.e., there exist a constant L ≥ 0
such that

∥∇Rc(ω)−∇Rc(ω
′)∥ ≤ L∥ω − ω′∥ (∀ω, ω′);

we also assume that Rc(ω) is Moral-smoothness, i.e., there exist a constant L ≥ 0 such that

∥∇2Rc(ω)∇Rc(ω)−∇2Rc(ω
′)∇Rc(ω

′)∥ ≤ L∥ω − ω′∥ (∀ω, ω′).

Further, if Rc(ω) is twice-differentiable, L-smoothness implies that∥∇2Rc(ω)∥ ≤ L.

Assumption C* (Bounded Statistical Heterogeneity). For all clients c, we assume that when there is no perturbation, the
variance of the local gradient w.r.t. the global gradient is bounded by G, i.e., there exists a constant G ≥ 0 such that

∥∇Rc(ω)−∇R(ω)∥2 ≤ G2 (∀ω).

Assumption D* (Bounded Intra-client Variance). For all clients c, we assume that ∇Rc(ω; ζ), ∇2Rc(ω; ζ), and
∇2Rc(ω; ζ)∇Rc(ω; ζ) are unbiased estimates of∇Rc(ω),∇2Rc(ω), and∇2Rc(ω)∇Rc(ω), respectively, with variances
bounded by σ2, i.e., there exist a constant σ ≥ 0 such that

∥∇Rc(ω; ζ)−∇Rc(ω)∥2 ≤ σ2

∥∇2Rc(ω; ζ)−∇2Rc(ω)∥2 ≤ σ2

∥∇2Rc(ω; ζ)∇Rc(ω; ζ)−∇2Rc(ω)∇Rc(ω)∥2 ≤ σ2

Assumption E (µ-PL Inequality). We say that R(ω) satisfies the µ-PL if the following holds for µ > 0:

∥∇R(ω)∥2 ≥ 2µ(R(ω)−R∗),

where R∗ = minR(ω).
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Note that the PL inequality is much weaker than the standard notion of strong convexity and can even satisfy some
non-convex functions(Karimi et al., 2016).

Now, let us rewrite the FEDIIR updates using notation convenient for analysis. In t-th communication round, server sample
clients C with |C| = C. We define the average gradient ḡt across the sampled clients as:

ḡt =
1

C

∑
c∈C
∇Rc(ω

t−1).

Client initialize local model parameter ωt
c,0 = ωt−1 and perform K local updates:

ωt
c,k = ωt

c,k−1 − ηl(gc(ω
t
c,k−1) + γHc(ω

t
c,k−1)(gc(ω

t
c,k−1)− ḡt)),

where gc(ω
t
c,k−1) = ∇Rc(ω

t
c,k−1; ζ) is stochastic gradient and Hc(ω

t
c,k−1) = ∇2Rc(ω

t
c,k−1; ζ) is stochastic Hessian.

Server aggregates the new global model parameter as:

ωt = ωt−1 + ηg
1

C

∑
c∈C

(ωt
c,K − ωt

c,0).

We introduce below some additional definitions to better describe the various errors we need to track. We define the effective
step-size to be

η̃ := Kηgηl.

We define the server update error as how much the server has moved from its starting point:

∥ωt − ωt−1∥2 : = ∥ − ηgηl
1

C

∑
c∈C

∑
k∈[K]

(
gc(ω

t
c,k−1) + γHc(ω

t
c,k−1)(gc(ω

t
c,k−1)− ḡt)

)
∥2

= ∥ η̃

CK

∑
c,k

(
(I + γHc(ω

t
c,k−1))gc(ω

t
c,k−1)− γHc(ω

t
c,k−1)ḡ

t
)
∥2.

We define the client drift error to be how much the clients have moved from their starting point:

Et : = 1

CK

∑
c∈C

∑
k∈[K]

E∥ωt
c,k−1 − ωt−1∥2

=
1

CK

∑
c,k

E∥ωt
c,k−1 − ωt−1∥2.

E.2. Technical Lemmas

We now present some technical lemmas involved in later proofs, where the proofs of Lemma 7 and Lemma 8 can be found
in Karimireddy et al. (2020).

Lemma 7 (Relaxed triangle inequality). Let {v1, v2, . . . , vτ} be τ vectors in Rd. Then the following inequalities are true
for the squared L2-norm:

1. ∥vi + vj∥2 ≤ (1 + a)∥vi∥2 + (1 + 1
a )∥vj∥

2 for a > 0 ;

2. ∥
∑τ

i=1 vi∥2 ≤ τ
∑τ

i=1 ∥vi∥2.

Lemma 8 (Separating mean and variance). Let {Ξ1,Ξ2, . . . ,Ξτ} be τ random variables in Rd which are not necessarily
independent. First suppose that their mean is E[Ξi] = ξi and variance is bounded as E[∥Ξi − ξi∥2] ≤ σ2. Then the
following holds

E[∥
τ∑

i=1

Ξ∥2] ≤ ∥
τ∑

i=1

ξ∥2 + τ2σ2
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Now instead suppose that their conditional mean is E[Ξi|Ξi−1, . . . ,Ξ1] = ξi, i.e., the variables {Ξi− ξi} form a martingale
difference sequence, and the variance is bounded by E[∥Ξi − ξi∥2] ≤ σ2 as before. Then we can show the tighter bound

E[∥
τ∑

i=1

Ξ∥2] ≤ 2∥
τ∑

i=1

ξ∥2 + 2τσ2

Lemma 9 (Separating mean and variance for FEDIIR). Suppose that {Rc} satisfies Assumption D, we then have the
following inequality

E∥ 1

CK

∑
c,k

(
I + γHc(ω

t
c,k−1)

)
gc(ω

t
c,k−1)∥2 ≤ 2E∥ 1

CK

∑
c,k

(
I + γ∇2Rc(ω

t
c,k−1)

)
∇Rc(ω

t
c,k−1)∥2 +

8γ2σ2

CK
.

Proof. For any c, k, we have upper bounds on the variance:

E∥
(
I + γHc(ω

t
c,k−1)

)
gc(ω

t
c,k−1)−

(
I + γ∇2Rc(ω

t
c,k−1)

)
∇Rc(ω

t
c,k−1)∥2

=E∥gc(ωt
c,k−1)−∇Rc(ω

t
c,k−1) + γHc(ω

t
c,k−1)gc(ω

t
c,k−1)− γ∇2Rc(ω

t
c,k−1)∇Rc(ω

t
c,k−1)∥2

(a)

≤2E∥gc(ωt
c,k−1)−∇Rc(ω

t
c,k−1)∥2 + 2γ2E∥Hc(ω

t
c,k−1)gc(ω

t
c,k−1)−∇2Rc(ω

t
c,k−1)∇Rc(ω

t
c,k−1)∥2

(b)

≤4γ2σ2,

where (a) is from Lemma 7 with a = 1, (b) is from Assumption D. Recalling that τ = CK finishes the lemma.

Lemma 10 (Smoothness for FEDIIR). Suppose that {Rc} satisfies Assumption B, we then have the following inequality

∥
(
I + γ∇2Rc(ω

t
c,k−1)

)
∇Rc(ω

t
c,k−1)−

(
I + γ∇2Rc(ω

t−1)
)
∇Rc(ω

t−1)∥2 ≤ 2(1 + γ2)L2∥ωt
c,k−1 − ωt−1∥2.

Proof. Using Lemma 7, there exists

∥
(
I + γ∇2Rc(ω

t
c,k−1)

)
∇Rc(ω

t
c,k−1)−

(
I + γ∇2Rc(ω

t−1)
)
∇Rc(ω

t−1)∥2

=∥∇Rc(ω
t
c,k−1)−∇Rc(ω

t−1) + γ∇2Rc(ω
t
c,k−1)∇Rc(ω

t
c,k−1)− γ∇2Rc(ω

t−1)∇Rc(ω
t−1)∥2

≤2∥∇Rc(ω
t
c,k−1)−∇Rc(ω

t−1)∥2 + 2γ2∥∇2Rc(ω
t
c,k−1)∇Rc(ω

t
c,k−1)−∇2Rc(ω

t−1)∇Rc(ω
t−1)∥2

≤2(1 + γ2)L2∥ωt
c,k−1 − ωt−1)∥2.

The last inequality comes from L-smoothness and Moral-smoothness of Rc(ω) w.r.t. Assumption B.

Lemma 11 (Statistical Heterogeneity for FEDIIR). Suppose that {Rc} satisfies Assumption C, we then have the following
inequality

E∥∇Rc(ω
t−1)∥2 ≤ 2∥∇R(ωt−1)∥2 + 2G2.

Proof. Using Lemma 7 and Assumption C, we have

E∥∇Rc(ω
t−1)∥2

=E∥∇Rc(ω
t−1)−∇R(ωt−1) +∇R(ωt−1)∥2

≤2G2 + 2E∥∇R(ωt−1)∥2.

E.3. Convergence Result of FEDIIR

We now present the proof of the convergence theorem for FEDIIR, including both µ-PL inequality and non-convex cases.
We first bound the server update error in Lemma 12, then bound the amount of client drift error in Lemma 13, and finally
prove the progress made in each round in Lemma 14. Based on this progress, we can derive the required rate of convergence.

Bounding the server update error We started looking at ways to bounding the server update error.
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Lemma 12. Suppose that {Rc} satisfies Assumption B, C and D, for all t ∈ [T ], we can bound the server update error as
follows

E∥ωt − ωt−1∥2 ≤ 8η̃2(3γ2L2 + 4γL+ 2 +
γ2σ2

CK
)E∥∇R(ωt−1)∥2 + 8η̃2(3γ2L2 + 4γL+ 2 +

γ2σ2

CK
)G2

+ 16η̃2(1 + γ2)L2Et + 16η̃2γ2σ2

CK
.

Proof. In t-th communication round, the server update error can be expanded as follows

E∥ωt − ωt−1∥2 = η̃2E∥ 1

CK

∑
c,k

(
I + γHc(ω

t
c,k−1)

)
gc(ω

t
c,k−1)−

γ

CK

∑
c,k

Hc(ω
t
c,k−1)ḡ

t∥2

(a)

≤ 2η̃2E∥ 1

CK

∑
c,k

(
I + γHc(ω

t
c,k−1)

)
gc(ω

t
c,k−1)∥2 + 2η̃2E∥ γ

CK

∑
c,k

Hc(ω
t
c,k−1)ḡ

t∥2

(b)

≤ 4η̃2E∥ 1

CK

∑
c,k

(
I + γ∇2Rc(ω

t
c,k−1)

)
∇Rc(ω

t
c,k−1)∥2︸ ︷︷ ︸

A1

+ 2η̃2E∥ γ

CK

∑
c,k

Hc(ω
t
c,k−1)ḡ

t∥2︸ ︷︷ ︸
A2

+
16η̃2γ2σ2

CK
,

where (a) is from Lemma 7 with a = 1; (b) is from Lemma 9.

For the first term A1, we repeatedly apply the relaxed triangle inequality w.r.t. Lemma 7:

A1 = 4η̃2E
∥∥∥ 1

CK

∑
c,k

( (
I + γ∇2Rc(ω

t
c,k−1)

)
∇Rc(ω

t
c,k−1)−

(
I + γ∇2Rc(ω

t−1)
)
∇Rc(ω

t−1)

+
(
I + γ∇2Rc(ω

t−1)
)
∇Rc(ω

t−1)
)∥∥∥2

(c)

≤ 8η̃2E∥ 1

CK

∑
c,k

((
I + γ∇2Rc(ω

t
c,k−1)

)
∇Rc(ω

t
c,k−1)−

(
I + γ∇2Rc(ω

t−1)
)
∇Rc(ω

t−1)
)
∥2

+ 8η̃2E∥ 1
C

∑
c

(
I + γ∇2Rc(ω

t−1)
)
∇Rc(ω

t−1)∥2

(d)

≤ 8η̃2

CK

∑
c,k

E∥
(
I + γ∇2Rc(ω

t
c,k−1)

)
∇Rc(ω

t
c,k−1)−

(
I + γ∇2Rc(ω

t−1)
)
∇Rc(ω

t−1)∥2

+
8η̃2

C

∑
c

E∥
(
I + γ∇2Rc(ω

t−1)
)
∇Rc(ω

t−1)∥2

(e)

≤ 16η̃2(1 + γ2)L2

CK

∑
c,k

E∥ωt
c,k−1 − ωt−1∥2 + 8η̃2(1 + γL)2

C

∑
c

E∥∇Rc(ω
t−1)∥2

(f)

≤ 16η̃2(1 + γ2)L2

CK

∑
c,k

E∥ωt
c,k−1 − ωt−1∥2 + 16η̃2(1 + γL)2E∥∇R(ωt−1)∥2 + 16η̃2(1 + γL)2G2,

where (c) is from Lemma 7 with a = 1; (d) is from Lemma 7; (e) is from Lemma 10; (f) is from Lemma 11.
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For the second term A2, we have

A2

(g)

≤ 2η̃2E

∥ γ

CK

∑
c,k

Hc(ω
t
c,k−1)∥2 · ∥ḡt∥2


(h)

≤ 2η̃2

2γ2E∥ 1

CK

∑
c,k

∇2Rc(ω
t
c,k−1)∥2 +

2γ2σ2

CK

[E∥ 1
C

∑
c

∇Rc(ω
t−1)∥2

]
(i)

≤ (4η̃2γ2L2 +
4η̃2γ2σ2

CK
)

[
1

C

∑
c

E∥∇Rc(ω
t−1)∥2

]
(j)

≤
(
4η̃2γ2L2 +

4η̃2γ2σ2

CK

)(
2G2 + 2E∥∇R(ωt−1)∥2

)
= 8η̃2γ2L2E∥∇R(ωt−1)∥2 + 8η̃2γ2σ2

CK
E∥∇R(ωt−1)∥2 + 8η̃2γ2L2G2 +

8η̃2γ2G2σ2

CK
,

where (g) is from that L2-norm satisfies the compatibility; (h) is from Lemma 8 and the definition of ḡt ; (i) is from
Assumption B and Lemma 7; (j) is from Lemma 11. Plugging back the bounds on A1 and A2, there exist

E∥ωt − ωt−1∥2 ≤ 16η̃2(1 + γL)2E∥∇R(ωt−1)∥2 + 8η̃2γ2L2E∥∇R(ωt−1)∥2 + 8η̃2γ2σ2

CK
E∥∇R(ωt−1)∥2

+ 16η̃2(1 + γL)2G2 + 8η̃2γ2L2G2 +
8η̃2γ2G2σ2

CK

+
16η̃2(1 + γ2)L2

CK

∑
c,k

E∥ωt
c,k−1 − ωt−1∥2 + 16η̃2γ2σ2

CK

= 8η̃2(3γ2L2 + 4γL+ 2 +
γ2σ2

CK
)E∥∇R(ωt−1)∥2 + 8η̃2(3γ2L2 + 4γL+ 2 +

γ2σ2

CK
)G2

+ 16η̃2(1 + γ2)L2Et + 16η̃2γ2σ2

CK
.

Bounding the client drift error We will now bound the client-drift error.

Lemma 13. Suppose that {Rc} satisfies Assumption B, C and D, the FEDIIR updates with constant local and global
step-size such that ηl ≤ 1

4KL
√

1+γ2
. Then, for all t ∈ [T ], we can bound the client drift error as follows

Et ≤ 36K2η2l (5γ
2L2 + 8γL+ 4 + γ2σ2)∥∇R(ωt−1)∥2 + 36K2η2l (5γ

2L2 + 8γL+ 4 + γ2σ2)G2 + 144K2η2l γ
2σ2.

Proof. Assuming K = 1, we have Et = 0 since ωt
c,0 = ωt−1 and the right-hand side are both positive. Thus, the lemma is

trivially true if K = 1. Without loss of generality, we assume below that K > 1. We first build a recursive bound for the
client drift error by expanding the clients’ update equation:

E∥ωt
c,k − ωt−1∥2 = E∥ωt

c,k−1 − ωt−1 − ηl(gc(ω
t
c,k−1) + γHc(ω

t
c,k−1)(gc(ω

t
c,k−1)− ḡt))∥2

(a)

≤ (1 +
1

K − 1
)E∥ωt

c,k−1 − ωt−1∥2 +Kη2l E∥(I + γHc(ω
t
c,k−1))gc(ω

t
c,k−1)− γHc(ω

t
c,k−1)ḡ

t∥2︸ ︷︷ ︸
A1
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where (a) is from Lemma 7 with a = K − 1. For the first term A1, we have

A1

(b)

≤ 2Kη2l E∥(I + γHc(ω
t
c,k−1))gc(ω

t
c,k−1)∥2 + 2Kη2l γ

2E∥Hc(ω
t
c,k−1)ḡ

t∥2

(c)

≤ 4Kη2l E∥(I + γ∇2Rc(ω
t
c,k−1)∇Rc(ω

t
c,k−1)∥2 + 16Kη2l γ

2σ2 + 2Kη2l γ
2E
[
∥Hc(ω

t
c,k−1)∥2 · ∥ḡt∥2

]
(d)

≤ 4Kη2l E
∥∥(I + γ∇2Rc(ω

t
c,k−1)∇Rc(ω

t
c,k−1)−

(
I + γ∇2Rc(ω

t−1)
)
∇Rc(ω

t−1)

+
(
I + γ∇2Rc(ω

t−1)
)
∇Rc(ω

t−1)
∥∥2

+ 16Kη2l γ
2σ2 + 2Kη2l γ

2
[
E∥∇2Rc(ω

t
c,k−1)∥2 + σ2

] [
E∥ 1

C

∑
c

∇Rc(ω
t−1)∥2

]
(e)

≤ 8Kη2l E∥(I + γ∇2Rc(ω
t
c,k−1)∇Rc(ω

t
c,k−1)−

(
I + γ∇2Rc(ω

t−1)
)
∇Rc(ω

t−1)∥2

+ 8Kη2l E∥
(
I + γ∇2Rc(ω

t−1)
)
∇Rc(ω

t−1)∥2

+ 16Kη2l γ
2σ2 + 2Kη2l γ

2
(
L2 + σ2

) [ 1

C

∑
c

E∥∇Rc(ω
t−1)∥2

]
(f)

≤ 16Kη2l (1 + γ2)L2E∥ωt
c,k−1 − ωt−1∥2 + 8Kη2l (1 + γL)2E∥∇Rc(ω

t−1)∥2 + 16Kη2l γ
2σ2

+ 2Kη2l γ
2
(
L2 + σ2

) [ 1

C

∑
c

E∥∇Rc(ω
t−1)∥2

]
(g)

≤ 16Kη2l (1 + γ2)L2E∥ωt
c,k−1 − ωt−1∥2 + 8Kη2l (1 + γL)2

(
2∥∇R(ωt−1)∥2 + 2G2

)
+ 16Kη2l γ

2σ2

+ 2Kη2l γ
2
(
L2 + σ2

) (
2∥∇R(ωt−1)∥2 + 2G2

)
= 16Kη2l (1 + γ2)L2E∥ωt

c,k−1 − ωt−1∥2 + 4Kη2l (5γ
2L2 + 8γL+ 4 + γ2σ2)∥∇R(ωt−1)∥2

+ 4Kη2l (5γ
2L2 + 8γL+ 4 + γ2σ2)G2 + 16Kη2l γ

2σ2,

where (b) is from Lemma 7 with a = 1; (c) is from Lemma 9 with C = 1 and K = 1; (d) is from Assumption D and the
definition of ḡt; (e) is from Lemma 7 with a = 1 and Assumption B; (f) is from Lemma 10 and that L2-norm satisfies the
compatibility; (g) is from Lemma 11. Plugging back the bounds onA1, we obtain the recursive bound of the client drift error

E∥ωt
c,k − ωt−1∥2 ≤ (1 +

1

K − 1
+ 16Kη2l (1 + γ2)L2)E∥ωt

c,k−1 − ωt−1∥2

+ 4Kη2l (5γ
2L2 + 8γL+ 4 + γ2σ2)∥∇R(ωt−1)∥2

+ 4Kη2l (5γ
2L2 + 8γL+ 4 + γ2σ2)G2 + 16Kη2l γ

2σ2

≤ (1 +
2

K − 1
)E∥ωt

c,k−1 − ωt−1∥2 + 4Kη2l (5γ
2L2 + 8γL+ 4 + γ2σ2)∥∇R(ωt−1)∥2

+ 4Kη2l (5γ
2L2 + 8γL+ 4 + γ2σ2)G2 + 16Kη2l γ

2σ2.

The last inequality comes from the condition on local step-size that ηl ≤ 1

4KL
√

1+γ2
, which implies 16Kη2l (1 + γ2)L2 ≤

1
K−1 . Unrolling the recursion above, there exists

E∥ωt
c,k − ωt−1∥2 ≤

(
4Kη2l (5γ

2L2 + 8γL+ 4 + γ2σ2)∥∇R(ωt−1)∥2 + 4Kη2l (5γ
2L2 + 8γL+ 4 + γ2σ2)G2

+ 16Kη2l γ
2σ2
) k∑

i=1

(1 +
2

K − 1
)i.

Note that (1 + 2
K−1 )

i ≤ 9, we have
∑k

t=1(1 +
2

K−1 )
i ≤ 9K for all k ∈ [K]. Averaging then over c and k, we get

Et ≤ 36K2η2l (5γ
2L2 + 8γL+ 4 + γ2σ2)∥∇R(ωt−1)∥2 + 36K2η2l (5γ

2L2 + 8γL+ 4 + γ2σ2)G2 + 144K2η2l γ
2σ2.

21



OOD Generalization of Federated Learning via Implicit Invariant Relationships

Progress made in each round Now that we have the bound on server update and client drift error, we can describe the
progress made in each round of FEDIIR.

Lemma 14. Suppose that {Rc} satisfies Assumption B, C and D, the FEDIIR updates with constant local and global
step-size such that ηl ≤ 1

4KL
√

1+γ2
. Then, for all t ∈ [T ], under condition 1

2 − 4η̃L(3γ2L2 + 4γL + 2 + γ2σ2

CK ) −

18η2l K
2L2(1 + γL)2(5γ2L2 + 8γL+ 4 + γ2σ2)− 288η̃η2l K

2(1 + γ2)L3(5γ2L2 + 8γL+ 4 + γ2σ2) > 0, the FEDIIR
makes progress in each round as follows:

ER(ωt) ≤ ER(ωt−1)− αη̃∥∇R(ωt−1)∥2 + η̃ηl
(
β1G

2 + β2γ
2σ2 + β3γ

2G2σ2
)
, (2)

where α > 0 is a constant, β1 = 4KL(3γ2L2+4γL+2)ηg + 18K2L2(1 + γL)2(5γ2L2+8γL+4)ηl + 288K2(1 +
γ2)L3(5γ2L2+8γL+4)η̃ηl, β2 = 8KL

CK ηg +72K2L2(1+ γL)2ηl +1152K2(1+ γ2)L3η̃ηl, β3 = 4KL
CK ηg +18K2L2(1+

γL)2ηl + 288K2(1 + γ2)L3η̃ηl are the polynomials in ηl.

Proof. Starting from the smoothness of R(ω), we have

ER(ωt) ≤ ER(ωt−1) + E⟨∇R(ωt−1), ωt − ωt−1⟩+ L

2
E∥ωt − ωt−1∥2

= ER(ωt−1) +
L

2
E∥ωt − ωt−1∥2

+ η̃E⟨∇R(ωt−1),− 1

CK

∑
c,k

(
I + γ∇2Rc(ω

t
c,k−1)

) (
∇Rc(ω

t
c,k−1)−∇Rc(ω

t−1)
)
−∇R(ωt−1)⟩

(a)

≤ ER(ωt−1)− η̃∥∇R(ωt−1)∥2 + η̃

2
∥∇R(ωt−1)∥2 + L

2
E∥ωt − ωt−1∥2

+
η̃

2
E∥ 1

CK

∑
c,k

(
I + γ∇2Rc(ω

t
c,k−1)

) (
∇Rc(ω

t
c,k−1)−∇Rc(ω

t−1)
)
∥2

(b)

≤ ER(ωt−1)− η̃

2
∥∇R(ωt−1)∥2 + L

2
E∥ωt − ωt−1∥2

+
η̃

2CK

∑
c,k

E∥
(
I + γ∇2Rc(ω

t
c,k−1)

) (
∇Rc(ω

t
c,k−1)−∇Rc(ω

t−1)
)
∥2

(c)

≤ ER(ωt−1)− η̃

2
∥∇R(ωt−1)∥2 + η̃(1 + γL)2

2CK

∑
c,k

E∥∇Rc(ω
t
c,k−1)−∇Rc(ω

t−1)∥2 + L

2
E∥ωt − ωt−1∥2

(d)

≤ ER(ωt−1)− η̃

2
∥∇R(ωt−1)∥2 + η̃(1 + γL)2L2

2CK

∑
c,k

E∥ωt
c,k−1 − ωt−1∥2 + L

2
E∥ωt − ωt−1∥2

= ER(ωt−1)− η̃

2
∥∇R(ωt−1)∥2 + η̃(1 + γL)2L2

2
Et + L

2
E∥ωt − ωt−1∥2,

where (a) is from that ⟨a,b⟩ ≤ 1
2 (∥a∥

2 + ∥b∥2); (b) is from Lemma 7, (c) is from that L2-norm satisfies the compatibility;
(d) is from Assumption B.
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Combining the above results with Lemma 12 and Lemma 13 yields

ER(ωt) ≤ ER(ωt−1)− η̃

2
∥∇R(ωt−1)∥2 + η̃(1 + γL)2L2

2
Et

+
L

2

(
8η̃2(3γ2L2 + 4γL+ 2 +

γ2σ2

CK
)E∥∇R(ωt−1)∥2 + 8η̃2(3γ2L2 + 4γL+ 2 +

γ2σ2

CK
)G2

+ 16η̃2(1 + γ2)L2Et + 16η̃2γ2σ2

CK

)
= ER(ωt−1)− η̃

2
∥∇R(ωt−1)∥2 + η̃

(
4η̃L(3γ2L2 + 4γL+ 2 +

γ2σ2

CK
)
)
E∥∇R(ωt−1)∥2

+
η̃

2

(
16η̃(1 + γ2)L3 + L2(1 + γL)2

)
Et

+ 4η̃2L
(
3γ2L2 + 4γL+ 2 +

γ2σ2

CK

)
G2 +

8η̃2Lγ2σ2

CK

≤ ER(ωt−1)− η̃

2
∥∇R(ωt−1)∥2 + η̃

(
4η̃L(3γ2L2 + 4γL+ 2 +

γ2σ2

CK
)
)
E∥∇R(ωt−1)∥2

+
η̃

2

(
16η̃(1 + γ2)L3 + L2(1 + γL)2

)(
36K2η2l (5γ

2L2 + 8γL+ 4 + γ2σ2)∥∇R(ωt−1)∥2

+ 36K2η2l (5γ
2L2 + 8γL+ 4 + γ2σ2)G2 + 144K2η2l γ

2σ2
)

+ 4η̃2L
(
3γ2L2 + 4γL+ 2 +

γ2σ2

CK

)
G2 +

8η̃2Lγ2σ2

CK

= ER(ωt−1)− η̃

2
∥∇R(ωt−1)∥2 + η̃

(
4η̃L(3γ2L2 + 4γL+ 2 +

γ2σ2

CK
) + 18η2l K

2L2(1 + γL)2

· (5γ2L2 + 8γL+ 4 + γ2σ2) + 288η̃η2l K
2(1 + γ2)L3(5γ2L2 + 8γL+ 4 + γ2σ2)

)
E∥∇R(ωt−1)∥2

+ η̃ηl
(
4KL(3γ2L2+4γL+2)ηg + 18K2L2(1 + γL)2(5γ2L2+8γL+4)ηl + 288K2(1 + γ2)L3(5γ2L2+8γL+4)η̃ηl

)︸ ︷︷ ︸
β1

G2

+ η̃ηl

(8KL

CK
ηg + 72K2L2(1 + γL)2ηl + 1152K2(1 + γ2)L3η̃ηl

)
︸ ︷︷ ︸

β2

γ2σ2

+ η̃ηl

(4KL

CK
ηg + 18K2L2(1 + γL)2ηl + 288K2(1 + γ2)L3η̃ηl

)
︸ ︷︷ ︸

β3

γ2G2σ2

≤ ER(ωt−1)− αη̃∥∇R(ωt−1)∥2 + η̃ηl
(
β1G

2 + β2γ
2σ2 + β3γ

2G2σ2
)
,

where the last inequality holds because there exists a constant α such that 1
2−4η̃L(3γ

2L2+4γL+2+ γ2σ2

CK )−18η2l K2L2(1+
γL)2(5γ2L2 + 8γL+ 4 + γ2σ2)− 288η̃η2l K

2(1 + γ2)L3(5γ2L2 + 8γL+ 4 + γ2σ2) > α > 0.

Convergence results of FEDIIR for µ-PL inequality case We first study the convergence of FEDIIR for the µ-PL
inequality case.

Theorem 4*. Let Assumption B, C, D and E hold and FEDIIR updates with constant local and global step-size such that
ηl ≤ 1

4KL
√

1+γ2
, η̃ < 1

2αµ . Then, under condition 1
2 − 4η̃L(3γ2L2 + 4γL+ 2 + γ2σ2

CK )− 18η2l K
2L2(1 + γL)2(5γ2L2 +

8γL+ 4+ γ2σ2)− 288η̃η2l K
2(1 + γ2)L3(5γ2L2 + 8γL+ 4+ γ2σ2) > 0, the sequence of iterates generated by FEDIIR

satisfies

E[R(ωt)−R∗] ≤ (1− 2αµη̃)t[R(ω0)−R∗] + ηl
β1G

2 + β2γ
2σ2 + β3γ

2G2σ2

2αµ
,

where α > 0 is a constant, β1 = 4KL(3γ2L2+4γL+2)ηg + 18K2L2(1 + γL)2(5γ2L2+8γL+4)ηl + 288K2(1 +
γ2)L3(5γ2L2+8γL+4)η̃ηl, β2 = 8KL

CK ηg +72K2L2(1+ γL)2ηl +1152K2(1+ γ2)L3η̃ηl, β3 = 4KL
CK ηg +18K2L2(1+

γL)2ηl + 288K2(1 + γ2)L3η̃ηl are the polynomials in ηl.
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Proof. Using the µ-PL inequality to Equation (2), we have

ER(ωt) ≤ ER(ωt−1)− 2αµη̃(R(ωt−1)−R∗) + η̃ηl
(
β1G

2 + β2γ
2σ2 + β3γ

2G2σ2
)
.

Subtracting R∗ from both sides yields:

E[R(ωt)−R∗] ≤ (1− 2αµη̃)[R(ωt−1)−R∗] + η̃ηl
(
β1G

2 + β2γ
2σ2 + β3γ

2G2σ2
)

≤ (1− 2αµη̃)t[R(ω0)−R∗] + η̃ηl
(
β1G

2 + β2γ
2σ2 + β3γ

2G2σ2
) t∑
i=0

(1− 2αµη̃)i

≤ (1− 2αµη̃)t[R(ω0)−R∗] + +η̃ηl
(
β1G

2 + β2γ
2σ2 + β3γ

2G2σ2
) ∞∑
i=0

(1− 2αµη̃)i

= (1− 2αµη̃)t[R(ω0)−R∗] + ηl
β1G

2 + β2γ
2σ2 + β3γ

2G2σ2

2αµ
,

where the last line uses that η̃ < 1
2αµ and the limit of the geometric series.

Convergence results of FEDIIR for general non-convex case We study below the convergence of FEDIIR for the general
non-convex case.
Theorem 5*. Let Assumption B, C, and D hold and FEDIIR updates with constant local and global step-size such that
ηl ≤ 1

4KL
√

1+γ2
. Then, under condition 1

2 − 4η̃L(3γ2L2 +4γL+2+ γ2σ2

CK )− 18η2l K
2L2(1+ γL)2(5γ2L2 +8γL+4+

γ2σ2)− 288η̃η2l K
2(1 + γ2)L3(5γ2L2 + 8γL+ 4 + γ2σ2) > 0, the sequence of iterates generated by FEDIIR satisfies

1

T

T∑
t=1

E∥∇R(ωt−1)∥2 ≤ R(ω0)−R∗

αη̃T
+ ηl

β1G
2 + β2γ

2σ2 + β3γ
2G2σ2

α
,

where α > 0 is a constant, β1 = 4KL(3γ2L2+4γL+2)ηg + 18K2L2(1 + γL)2(5γ2L2+8γL+4)ηl + 288K2(1 +
γ2)L3(5γ2L2+8γL+4)η̃ηl, β2 = 8KL

CK ηg +72K2L2(1+ γL)2ηl +1152K2(1+ γ2)L3η̃ηl, β3 = 4KL
CK ηg +18K2L2(1+

γL)2ηl + 288K2(1 + γ2)L3η̃ηl are the polynomials in ηl. If we choose the step-sizes ηl = O( 1√
TKL

), ηg =
√
CK and

omitting the larger order of each part, we have the convergence rates of FEDIIR as follows

1

T
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√
TCK

,

√
CKL2G2

√
T

,
γ2σ2

√
TCK

,
γ2G2σ2

√
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)
.

Proof. Summing up all the T inequalities in Equation (2) for t ∈ [T ] and dividing both sides by αη̃T , we have

1

T

T∑
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E∥∇R(ωt−1)∥2 =
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β1G

2 + β2γ
2σ2 + β3γ

2G2σ2

α

≤ R(ω0)−R∗

αη̃T
+ ηl

β1G
2 + β2γ

2σ2 + β3γ
2G2σ2

α
,

where the last inequality is the fact that R∗ ≤ R(ωT ). If we choose the step-sizes ηl=O( 1√
TKL

), ηg=
√
CK, we have

1
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t=1

E∥∇R(ωt−1)∥2 = O

(
(R(ω0)−R∗)L2

√
TCK

,

√
CKP2(L)G

2

√
T

,
P4(L)G

2

T
,

√
CKP2(L)G

2

T
3
2

,

√
CKL2G2

√
T

,

γ2σ2

√
TCK

,
P2(L)γ

2σ2

T
,

√
CKγ2σ2

T
3
2

,
γ2G2σ2

√
TCK

,
P2(L)γ

2G2σ2

T
,

√
CKγ2G2σ2

T
3
2

)
,

where Pn(L) the n-th degree polynomial in L. Omitting the larger order of each part, we have

1

T
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t=1

E∥∇R(ωt−1)∥2 = O

(
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√
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)
.
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F. Experiments
In this section, we provide additional details about the experimental setup, including the datasets, baseline methods, and
hyperparameters used. Then, we supplement the experimental results that were omitted in the main text.

F.1. Datasets

We first give more details about the datasets used in our experiments: RotatedMNIST(Ghifary et al., 2015), VLCS(Fang et al.,
2013), PACS(Li et al., 2017), and OfficeHome(Venkateswara et al., 2017). These datasets are classical OOD generalization
benchmarks for classification.

RotatedMNIST is a common variant of original MNIST where domain d ∈ {0, 15, 30, 45, 60, 75} contains digits rotated
by d degrees. The dataset contains 70,000 samples of dimension (1, 28, 28) and ten classes.

VLCS aggregates photographs from four domains: “VOC2007”, “LabelMe”, “Caltech101”, and “SUN09”. The dataset
contains 10,729 samples of dimension (3, 224, 224) and five classes (‘bird’, ‘car’, ‘chair’, ‘dog’, and ‘person’).

PACS includes images from four domains: “Photos”, “Art”, “Cartoons”, and “Sketches”. The dataset contains 9991 samples
of dimension (3, 224, 224) and seven classes (‘dog’, ‘elephant’, ‘giraffe’, ‘guitar’, ‘horse’, ‘house’, and ‘person’).

OfficeHome includes four distinct domains: “Art”, “Clipart”, “Product”, and “Real”. The dataset contains 15,588 samples
of dimension (3, 224, 224) and sixty five classes.

We start describing the data splitting in detail. We consider the most challenging domain separation setting, where each
client contains only samples from a single training domain(Bai et al., 2023). For M training domains {Sm}Mm , the number
of samples w.r.t. Sm is denoted by sm := |Sm|. With a slight abuse of notation, let’s assume that there are P participating
clients. For a small number of clients scenario (P = M ), each training domain is treated as a separate participating client,
i.e., Dc = Sc for c ∈ [M ]. For a large number of clients scenario (P > M ), we further split the training domain to distribute
it to more participating clients. Define the domain index of client c as Ind(c), where Ind(c) ∈ [M ]. We first iteratively split
the largest domain m∗ = argmaxm

sm∑C
c 1[Ind(c)=m]

, where 1[·] is the indicator function. We then treat each sub-domain as

a separate participating client, i.e., Dc =
SInd(c)∑C

c 1[Ind(c)=m]
4. This allows some clients to share a single training domain, but

no client holds data from multiple domains at the same time. Additionally, this makes every effort to distribute the number
of samples among the clients evenly. We summarize the pseudo-code for data splitting in Algorithm 2.

Algorithm 2 Data Splitting
Input: training domains {Sm}Mm and number of participating clients C
if P = M then
Ind(c) = c for all c ∈ [M ]

else if P > M then
Ind(c) = c for all c ∈ [M ]
for c = M + 1, . . . , P do
m∗ = argmaxm

sm∑C
c 1[Ind(c)=m]

Ind(c) = m∗

end for
end if
for c = 1, . . . , P do

Dc =
SInd(c)∑C

c 1[Ind(c)=m]

end for
Return: {Dc}Cc

F.2. Baselines

We compare our proposed method with the following representative classical federated learning methods.

4This means that the domain SInd(c) is randomly split into
∑C

c 1[Ind(c) = m] sub-domains.
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FEDAVG(McMahan et al., 2017) is the most classical federated learning method in which clients perform multiple epochs
of SGD on their local data. It is worth noting that this method lacks the capability for OOD generalization.

FEDADG(Zhang et al., 2021) employs the federated adversarial learning approach to align the distribution across clients for
learning universal features, which allows good generalization to non-participating clients.

FEDSR(Nguyen et al., 2022) performs regularization on the representation and conditional mutual information to encourage
the model to learn only the essential information, which helps ignore spurious relationships to achieve OOD generalization.

In addition to the federated learning methods described above, we also list some centralized methods as references in the
following.

ERM(Vapnik, 1991) is a foundational approach in machine learning, which attempts to minimize the average empirical risk
over all training environments (corresponding to clients).

IRM(Arjovsky et al., 2019) tries to find a representation such that the linear classifier on top of the representation is
simultaneously optimal in all environments. Such a representation will discard spurious correlations and can be expected to
generalize over OOD.

GROUPDRO(Sagawa et al., 2020) apply strong regularization to distributionally robust optimization (DRO) to enhance the
robustness of overparameterized neural networks, which significantly improve the performance of the worst group.

REX(Krueger et al., 2021) shows that reducing differences in risk across training environments can reduce a model’s
sensitivity to a wide range of extreme distributional shifts, resulting in better OOD generalization performance.

It is important to note that these centralized approaches are not direct competitors of our method because they do not apply
to domain separation settings in federated learning. As a result, we highlight (in bold) the best-performing method for
each of the centralized and federated settings, where the centralized method results are taken directly from Gulrajani &
Lopez-Paz (2021).

F.3. Hyperparameters

As mentioned in the main text, we used grid search to tune the hyperparameters of FEDIIR, summarized in Table 3.

Condition Hyperparameter Used value Searched candidates

RotatedMNIST
local step-size ηl 1e− 2 {1e− 2, 5e− 3, 2.5e− 3, 1e− 3, 5e− 4, 2.5e− 4, 1e− 4}
batch size 64 {32, 64}
regularization strength γ 1e− 2 {1e− 2, 5e− 3, 1e− 3, 5e− 4, 1e− 4}

VLCS
local step-size ηl 1e− 3 {1e− 2, 5e− 3, 2.5e− 3, 1e− 3, 5e− 4, 2.5e− 4, 1e− 4}
batch size 32 {32, 64}
regularization strength γ 5e− 3 {1e− 2, 5e− 3, 1e− 3, 5e− 4, 1e− 4}

PACS
local step-size ηl 2.5e− 3 {1e− 2, 5e− 3, 2.5e− 3, 1e− 3, 5e− 4, 2.5e− 4, 1e− 4}
batch size 32 {32, 64}
regularization strength γ 1e− 3 {1e− 2, 5e− 3, 1e− 3, 5e− 4, 1e− 4}

OfficeHome
local step-size ηl 1e− 3 {1e− 2, 5e− 3, 2.5e− 3, 1e− 3, 5e− 4, 2.5e− 4, 1e− 4}
batch size 32 {32, 64}
regularization strength γ 5e− 4 {1e− 2, 5e− 3, 1e− 3, 5e− 4, 1e− 4}

ALL

number of rounds T 100 None
global step-size ηg 1 None
ema υ 0.95 {0.90, 0.95, 0.99}
seed {0, 1, 2} None

Table 3. Hyperparameters of FEDIIR used in the experiments.

Remark 15. These hyperparameters are only tuned in a small number of clients scenario (P = M ) and remain unchanged
across all the scenarios with a large number of clients (P > M ), where P refers to the total number of participating clients
and M represents the number of training domains.
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F.4. Additional Experimental Results

Tables 4 to 7 provide detailed results for each domain in the scenario with a small number of clients, where the centralized
methods are included as reference baselines. Tables 8 to 11 present detailed results for the specific domain with a large
number of client scenarios, where the total number of participating clients is 50. Furthermore, Figure 5 visually depicts the
test accuracy versus communication round on the RotatedMNIST and OfficeHome datasets. Finally, Figure 6 shows the
validation accuracy versus communication round on all datasets, using the same experimental setup as in Section 5.3.

Algorithm Backbone
RotatedMNIST (Number of participating clients is 5)

0 15 30 45 60 75 Average

Centralized
Methods

ERM ConvNet 95.9±0.1 98.9±0.0 98.8±0.0 98.9±0.0 98.9±0.0 96.4±0.0 98.0
GROUPDRO ConvNet 95.6±0.1 98.9±0.1 98.9±0.1 99.0±0.0 98.9±0.0 96.5±0.2 98.0
IRM ConvNet 95.5±0.1 98.8±0.2 98.7±0.1 98.6±0.1 98.7±0.0 95.9±0.2 97.7
REX ConvNet 95.9±0.2 99.0±0.1 98.9±0.1 98.9±0.1 98.7±0.1 96.2±0.2 97.9

Federated
Methods

FEDAVG ConvNet 82.7±0.3 98.2±0.1 99.0±0.1 99.1±0.0 98.2±0.1 89.9±0.4 94.5
FEDADG ConvNet 83.4±0.5 98.2±0.1 99.1±0.0 99.1±0.0 98.7±0.1 89.7±0.3 94.7
FEDSR ConvNet 84.2±0.4 98.0±0.1 98.9±0.1 99.0±0.0 98.3±0.1 90.0±0.3 94.7
FEDIIR ConvNet 83.8±1.3 98.2±0.1 99.1±0.0 99.1±0.0 98.5±0.1 90.8±0.2 95.0

Table 4. Average test accuracy (%) using leave-one-out domain validation on RotatedMNIST dataset with 5 participating clients.

Algorithm Backbone
VLCS (Number of participating clients is 3)

C L S V Average

Centralized
Methods

ERM ResNet-50 97.7±0.4 64.3±0.9 73.4±0.5 74.6±1.3 77.5
GROUPDRO ResNet-50 97.3±0.3 63.4±0.9 69.5±0.8 76.7±0.7 76.7
IRM ResNet-50 98.6±0.1 64.9±0.9 73.4±0.6 77.3±0.9 78.5
REX ResNet-50 98.4±0.3 64.4±1.4 74.1±0.4 76.2±1.3 78.3

Federated
Methods

FEDAVG ResNet-18 95.3±1.0 62.6±0.9 73.0±0.3 74.1±0.8 76.3
FEDADG ResNet-18 95.2±0.5 63.2±0.7 75.6±0.3 74.3±0.6 77.1
FEDSR ResNet-18 93.8±1.1 62.3±0.3 74.4±0.6 72.8±0.3 75.8
FEDIIR ResNet-18 96.3±0.4 60.9±0.2 73.2±0.8 76.1±1.4 76.6

Table 5. Average test accuracy (%) using leave-one-out domain validation on VLCS dataset with 3 participating clients.
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Algorithm Backbone
PACS (Number of participating clients is 3)

A C P S Average

Centralized
Methods

ERM ResNet-50 84.7±0.4 80.8±0.6 97.2±0.3 79.3±1.0 85.5
GROUPDRO ResNet-50 83.5±0.9 79.1±0.6 96.7±0.3 78.3±2.0 84.4
IRM ResNet-50 84.8±1.3 76.4±1.1 96.7±0.6 76.1±1.0 83.5
REX ResNet-50 86.0±1.6 79.1±0.6 96.9±0.5 77.7±1.7 84.9

Federated
Methods

FEDAVG ResNet-18 82.6±0.4 77.0±0.4 94.3±0.2 78.5±0.4 83.1
FEDADG ResNet-18 81.7±0.3 76.8±0.6 94.8±0.4 79.3±0.9 83.1
FEDSR ResNet-18 82.8±1.5 75.2±0.5 94.0±0.6 81.7±0.8 83.4
FEDIIR ResNet-18 82.9±0.8 75.8±0.3 94.2±0.2 81.9±0.8 83.7

Table 6. Average test accuracy (%) using leave-one-out domain validation on PACS dataset with 3 participating clients.

Algorithm Backbone
OfficeHome (Number of participating clients is 3)

A C P R Average

Centralized
Methods

ERM ResNet-50 61.3±0.7 52.4±0.3 75.8±0.1 76.6±0.3 66.5
GROUPDRO ResNet-50 60.4±0.7 52.7±1.0 75.0±0.7 76.0±0.7 66.0
IRM ResNet-50 58.9±2.3 52.2±1.6 72.1±2.9 74.0±2.5 64.3
REX ResNet-50 60.7±0.9 53.0±0.9 75.3±0.1 76.6±0.5 66.4

Federated
Methods

FEDAVG ResNet-50 64.5±0.1 54.0±0.2 76.8±0.1 78.6±0.3 68.5
FEDADG ResNet-50 64.3±0.5 54.1±0.6 77.3±0.3 78.1±0.1 68.4
FEDSR ResNet-50 65.3±0.2 57.3±0.5 76.2±0.1 77.8±0.1 69.1
FEDIIR ResNet-50 64.3±0.4 56.6±0.6 77.2±0.1 78.4±0.1 69.2

Table 7. Average test accuracy (%) using leave-one-out domain validation on OfficeHome dataset with 3 participating clients.

Algorithm Backbone
RotatedMNIST (Number of participating clients is 50)

0 15 30 45 60 75 Avg

Federated
Methods

FEDAVG ConvNet 77.9±3.2 95.9±0.5 96.9±0.2 97.0±0.0 96.0±0.4 81.2±1.6 90.8
FEDADG ConvNet 80.9±3.9 96.3±0.4 96.9±0.3 97.2±0.3 96.4±0.4 85.5±1.9 92.2
FEDSR ConvNet 78.3±6.5 95.7±0.6 96.3±0.4 97.1±0.3 96.0±0.4 84.0±0.5 91.2
FEDIIR ConvNet 84.0±1.7 96.8±0.4 97.7±0.0 97.7±0.2 97.4±0.2 84.5±1.2 93.0

Table 8. Average test accuracy (%) using leave-one-out domain validation on RotatedMNIST dataset with 50 participating clients, where
the number of sampled clients in one communication round is 5.

Algorithm Backbone
VLCS (Number of participating clients is 50)

C L S V Average

Federated
Methods

FEDAVG ResNet-18 80.2±4.4 58.4±0.9 59.7±0.6 61.5±0.8 65.0
FEDADG ResNet-18 72.3±7.9 56.3±1.4 55.9±1.7 58.3±0.2 60.7
FEDSR ResNet-18 72.0±1.0 59.2±1.2 50.4±0.9 58.6±0.2 60.0
FEDIIR ResNet-18 93.8±1.7 61.5±0.8 69.6±0.2 71.6±0.3 74.1

Table 9. Average test accuracy (%) using leave-one-out domain validation on VLCS dataset with 50 participating clients, where the
number of sampled clients in one communication round is 3.
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Algorithm Backbone
PACS (Number of participating clients is 50)

A C P S Average

Federated
Methods

FEDAVG ResNet-18 69.9±0.9 59.0±2.1 90.9±0.6 55.4±1.7 68.8
FEDADG ResNet-18 73.1±1.4 64.2±1.9 92.2±0.6 59.6±0.5 72.3
FEDSR ResNet-18 70.9±2.0 69.7±1.0 86.3±3.6 64.1±3.6 72.7
FEDIIR ResNet-18 78.4±0.3 67.9±1.8 88.8±1.4 66.6±1.0 75.4

Table 10. Average test accuracy (%) using leave-one-out domain validation on PACS dataset with 50 participating clients, where the
number of sampled clients in one communication round is 3.

Algorithm Backbone
OfficeHome (Number of participating clients is 50)

A C P R Average

Federated
Methods

FEDAVG ResNet-50 58.7±0.4 45.4±1.1 67.5±1.4 70.2±1.1 60.5
FEDADG ResNet-50 57.8±0.8 44.2±0.5 67.4±0.6 70.8±0.9 60.1
FEDSR ResNet-50 53.8±1.0 41.1±0.8 59.7±1.7 66.8±1.2 55.3
FEDIIR ResNet-50 62.9±0.3 50.3±0.3 74.1±0.5 75.3±1.0 65.6

Table 11. Average test accuracy (%) using leave-one-out domain validation on OfficeHome dataset with 50 participating clients, where
the number of sampled clients in one communication round is 3.
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Figure 5. Average test accuracy (%) versus communication round on RotatedMNIST (left) and OfficeHome (right) dataset with 50
participating clients, where the number of sampled clients in one communication round matches the number of training domains.
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Figure 6. Average validation accuracy (%) versus communication round on four datasets with 50 participating clients, where the number
of sampled clients in one communication round matches the number of training domains.
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