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Abstract— Unsupervised Anomaly Detection (UAD) is a key
data mining problem owing to its wide real-world applica-
tions. Due to the complete absence of supervision signals, UAD
methods rely on implicit assumptions about anomalous patterns
(e.g., scattered/sparsely/densely clustered) to detect anomalies.
However, real-world data are complex and vary significantly
across different domains. No single assumption can describe such
complexity and be valid in all scenarios. This is also confirmed
by recent research that shows no UAD method is omnipotent [1].
Based on above observations, instead of searching for a magic
universal winner assumption, we seek to design a general
UAD Booster (UADB) that empowers any UAD models with
adaptability to different data. This is a challenging task given
the heterogeneous model structures and assumptions adopted by
existing UAD methods. To achieve this, we dive deep into the
UAD problem and find that compared to normal data, anomalies
(i) lack clear structure/pattern in feature space, thus (ii) harder
to learn by model without a suitable assumption, and finally,
leads to (iii) high variance between different learners. In light
of these findings, we propose to (i) distill the knowledge of
the source UAD model to an imitation learner (booster) that
holds no data assumption, then (ii) exploit the variance between
them to perform automatic correction, and thus (iii) improve
the booster over the original UAD model. We use a neural
network as the booster for its strong expressive power as a
universal approximator and ability to perform flexible post-
hoc tuning. Note that UADB is a model-agnostic framework
that can enhance heterogeneous UAD models in a unified way.
Extensive experiments on over 80 tabular datasets demonstrate
the effectiveness of UADB. To facilitate further research, code,
figures, and datasets are available at UADB’s Github repository1.

Index Terms—unsupervised anomaly detection, unsupervised
learning, outlier detection

I. INTRODUCTION

Anomaly detection (AD), also known as Outlier Detection,
aims to identify the data objects or behaviors that significantly
deviate from the majority [2]. AD is considered as a crucial
machine learning problem and has been researched in a variety
of fields, including Web and Cyber Security (intrusion detec-
tion), Social Network Mining (malicious user/news discovery),
and Healthcare (rare disease diagnosis) [3]. Anomalies in
data can be translated into significant actionable information
in a wide range of application domains. For example, in
computer systems, unusual behaviors may show the presence
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of malicious activities; in clinical medicine, abnormal MRI
images may indicate the presence of a malignant tumor [4].

For its wide applications, AD has been an active re-
search area for several decades [5], [6], and numerous al-
gorithms have been proposed for AD, including supervised,
semi-supervised and unsupervised methods [1], [7]. However,
ground-truth labels usually need to be manually annotated by
domain experts, which is both expensive and time-consuming,
and accurately marking all types of abnormal samples is
usually unaffordable in practice [3]. Hence, the unsupervised
anomaly detection (UAD) methods are the most widely appli-
cable techniques as they do not require any label information
[3]. This makes UAD a longtime research hotspot in the field,
and new studies continue to appear in recent years [8]. In this
paper, we focus on unsupervised anomaly detection on tabular
datasets, which is a very challenging problem and has been the
focus of most related works in the literature [1], [6], [9]–[13].

However, despite the extensive research efforts that have
been made to address this problem, there still does not exist a
single universal winner solution that consistently outperforms
other counterparts due to the multifaceted complexity of the
task [1]. Specifically, to achieve accurate UAD on tabular
datasets, one faces following fundamental challenges:
• Unsupervision: In UAD’s problem setting, the label infor-

mation is completely absent in the training phase. Since
there are no supervision signals that can provide the model
with prior knowledge about the anomalous pattern, UAD
models can only detect potential anomalies by making
implicit assumptions about the anomaly data instances [14].

• Assumption Misalignment: Common assumptions adopted
by UAD methods include: (i) anomalies occur far from
their closest neighbors (neighbor-based, e.g., [15], [16]);
(ii) anomalies does not belong to any cluster/far away from
their closest cluster centroid/belong to small and/or sparse
clusters (clustering-based, e.g., [17]–[19]); (iii) anomalies
occur in the low probability regions of a stochastic model
(statistical-based, e.g., [20]–[22]). UAD methods get sat-
isfactory performance when their assumptions hold true,
but unfortunately, this is usually not the case in practice.
For instance, statistical-based UAD assume that the data
is generated from a particular distribution, which often
does not hold for high dimensional real datasets. The
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nearest neighbor/clustering-based approach makes specific
assumptions about the distribution of anomalies, but they are
incompatible and even conflict with each other. For above
reasons, UAD assumptions can be easily violated in real-
world data and result in suboptimal performance [3].

• Data Heterogeneity: Furthermore, the heterogeneity, di-
versity, and complexity of tabular data also pose several
great challenges to UAD. Unlike image/text/graph data that
has natural contexts between pixels/channels/words/nodes,
tabular data has no such shared contextual attributes that
can help detecting anomalies. In tabular datasets, features
are not explicitly linked to each other and often show
heterogeneity: they may vary significantly in value distribu-
tion, range, and even space (e.g., continuous vs. categorical
features) [23]. Therefore, even if a UAD method works well
in one specific tabular dataset, its underlying assumptions
are unlikely to hold in another tabular UAD task, since the
two datasets can have very different characteristics. This is
also confirmed by previous research efforts [1], [7] which
show that there is no universal winner for all UAD tasks.

For the above reasons, we believe that the way to better
UAD is not to look for a universal winner assumption which
is unlikely to exist. To achieve generally better UAD on diverse
and heterogeneous tabular data, the key is to go beyond
the static assumptions and empower the models with
adaptability to different data. In this direction, we propose
our solution based on two key motivating observations: (i) the
power of proper assumptions and (ii) the high variance of
anomalies. Specifically, (i) [1] has shown that, with a proper
data assumption, an unsupervised AD method can beat label-
informed semi-supervised AD techniques. This indicates that
the data assumption is a powerful tool for detecting specific
types of anomalies and therefore should not be discarded out-
right, but it still needs to be adaptively enhanced so as to find
anomalies that do not fit the assumption. (ii) Besides, unlike
classification tasks where each class has a unique underlying
distribution, in anomaly detection, anomalies are just irregular
instances with no clear structure/pattern in the feature space.
Therefore, compared to normal samples, anomalies are harder
to learn by a model and are likely to induce a high variance,
i.e., different models’ predictions of anomalies will vary, see
an example in Fig. 1. Such property can be used to support
the adaptive augmentation of UAD models.

In light of these analysis, we propose UADB (Unsupervised
Anomaly Detection Booster), a surprisingly simple yet effec-
tive framework that can boost the prediction accuracy of any
mainstream UAD methods on all types of tabular datasets.
Specifically, given any UAD model fT (·), we introduce a
booster model fB(·), then iteratively (i) train fB in a super-
vised manner using fT ’s predictions as pseudo labels ŷ; (ii) es-
timate sample variances v using the output of fT and fB ; (iii)
perform error correction by exploiting the sample variance.
Note that having the observation in Fig. 1, the error correction
can be simply done by adding sample variance to the pseudo
labels. This will result in a large increase in the anomaly score
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Fig. 1: The sample variance of normal (blue) and abnormal
(orange) instances in real-world datasets, estimated by an
UAD model IForest [24] and its imitation learner (a MLP
trained with IForest’s outputs as pseudo labels). The sample
variance is the variance of MLP’s prediction and IForest’s
output, and it is calculated per instance. Here, groundtruth=1.0
stands for anomalies, while groundtruth=0.0 stands for inliers.
Anomalies consistently demonstrate higher variance across
different datasets due to their weak structure/pattern in feature
space.
(higher score indicates higher confidence that the sample is
an anomaly) for false negatives (mispredicting anomalies) but
a small increment for false positives (mispredicting normal
samples), thus gradually narrowing the prediction gap between
them, and finally altering their rankings in the pseudo labels
to achieve error correction. We thus obtain a booster model
fB that is improved over its prototype fT as it benefits from
both knowledge distillation and adaptive error correction. We
highlight that UADB does not make any assumptions about
the input UAD prototype fT , it is a model-agnostic framework
that can generally enhance any fT in a unified way. Extensive
experiments and analyses conducted on over 80 tabular UAD
datasets demonstrate the effectiveness of UADB.

To sum up, this paper makes following 3-fold contributions:
• We investigate the key challenges of Unsupervised Anomaly

Detection (UAD) on tabular data, such as assumption mis-
alignment and data heterogeneity. They prompt us to explore
a new direction: empower static-assumption-based UAD
models with adaptability to different data.

• We propose UADB, a model-agnostic framework that can
effectively boost any UAD model’s performance on tabular
datasets via knowledge distillation and adaptive error cor-
rection. To our best knowledge, UADB is the first of its kind
as a general augmentation framework for UAD models.

• We conducted extensive experiments on more than 80
tabular datasets along with comprehensive analysis and
visualization. These results validate the effectiveness of
the proposed UADB framework and may provide valuable
insights for further research on versatile UAD boosters.
The rest of this paper is organized as follows: Section II re-



views closely related works in unsupervised anomaly detection
and knowledge distillation. Section III introduces the notations
and describes the proposed UADB framework. Section IV
presents the experimental results as well as related discussions
and analysis. And finally, section V concludes the paper.

II. RELATED WORK

In this section, we provide a systematical review of the
existing works related to unsupervised anomaly detection and
knowledge distillation applications.

A. Unsupervised Anomaly Detection

Anomaly detection is a big topic in machine learning, in-
cluding supervised, semi-supervised, and unsupervised meth-
ods. Due to the advantage of not requiring ground-truth labels,
unsupervised anomaly detection methods are widely used. In
the setting of unsupervised anomaly detection, we have no
prior knowledge about which type of data is normal or which
is abnormal, i.e. the training data is without true labels. Our
task is to find instances that deviate the most from the other
instances among all dataset [25]. Since unsupervised anomaly
detection has drawn interest in the academic community [26],
[27], numerous unsupervised anomaly detection methods have
been proposed. These methods could be roughly grouped into
shallow and deep methods, with the details as follows.

We list some representative shallow methods: (i) Isolation
Forest (IForest) [24] builds an ensemble of trees for a given
data set, then use the distance of instance to the root as
anomaly score; (ii) Histogram-based Outlier Score (HBOS)
[28]. The basic assumption is that the dataset’s dimensions
are independent. Each dimension would be divided into inter-
vals. The higher density represents the lower anomaly score;
(iii) Empirical-Cumulative-distribution-based Outlier Detec-
tion (ECOD) [29] first computes the empirical cumulative
distribution for each dimension of the input data. Then for each
dimension, ECOD aggregates the tail probabilities to compute
the anomaly score.

Some representative deep methods are as follows: (i) Deep
Support Vector Data Description (DeepSVDD) [30] trains
a neural network while minimizing the volume of a hy-
persphere that encloses the network representations of the
data, and the distance of the transformed embedding to the
hypersphere’s center is used to calculate the anomaly score;
(ii) Deep Autoencoding Gaussian Mixture Model (DAGMM)
[12] jointly optimizes the parameters of the deep autoen-
coder and the mixture model simultaneously in an end-to-
end fashion, leveraging a separate estimation network to help
with the parameter learning of the mixture model. The joint
optimization eliminates the need for pre-training by assisting
the autoencoder escape from less attractive local optima and
further reducing reconstruction errors.

B. Knowledge Distillation

Knowledge Distillation (KD) is a family of techniques that
aim to transfer knowledge from a trained source (teacher)
model(s) to a target (student) model [31]. The student models

are usually smaller but perform similarly or even better than
the large teacher models. Such a training scheme is also
known as the teacher-student architecture and has been proven
to be effective in numerous applications [32], [33]. Starting
from the success in image classification [34]–[36] and other
visual recognition tasks [37], [38], more knowledge distillation
systems are designed for broader applications such as neural
machine translation [39], [40], feature selection [41], [42], text
generation [43], speech recognition [44]–[46] and so on.

A number of research efforts have explored the application
of knowledge distillation to anomaly detection tasks. Salehi
et al. [47] tried to explore the multi-layer feature information
in distillation, so as to better exploit teacher model’s multi-
resolution knowledge and get a better student network for im-
age anomaly detection task. Also for image anomaly detection,
Bergmann et al. [48] proposed to include multiple student
networks and learn from the teacher model’s knowledge in
an ensemble mannner. Wang et al. [49] designed a multi-
scale feature matching strategy to enable student learning with
hierarchical supervision, thus improve the detection accuracy
of anomalies of various sizes in images. Motivated by the fact
that practitioners often build a large number of UAD models
rather than a single model for reliable further combination and
analysis, Zhao et al. [50] developed a system for accelerating
UAD with large-scale heterogeneous models. They train a
pseudo-supervised simple regressor student model to approxi-
mate the large ensemble of heterogeneous UAD models, thus
accelerating the inference.

We note that there are several fundamental differences be-
tween our proposed UADB framework and the aforementioned
KD + UAD techniques: Many methods are specifically de-
signed for distilling knowledge from large multi-layere neural
networks (e.g., [47], [49]), and for a specific AD task, such
as detecting pixel-level anomaly objects in images. While
in this work, we consider a more general case, to improve
any teacher UAD model on heterogeneous tabular datasets.
Furthermore, existing works directly transfer the knowledge
from the teacher model without modification and let the
student mimic the teacher’s behaviors. In UADB, we estimate
the variance using the discrepancy between teacher and student
and exploit this information to adjust the pseudo labels, thus
achieving adaptive error correction in knowledge distillation.
The details of UADB will be covered in the next section.

III. METHODOLOGY

In this section, we first introduce the notations and for-
malize the unsupervised anomaly detection booster problem
considered in this paper. We then demonstrate why anomalies
are likely to have high variance and show empirical evidence
collected from 80 tabular datasets. After that, we present how
UADB exploits information from both the teacher model and
the variance to achieve effective knowledge transfer and error
correction. Finally, we formalize UADB in Algorithm 1, and
Fig 3 gives an overview of the UADB framework.



TABLE I: Notation Definitions

Notation Definition

d Number of data features
x : [x1, x2, · · · , xd] A data sample

n Number of data samples
X ∈ Rn×d A UAD dataset

fS(·) : x → R[0,1] Source UAD (teacher) model
fB(·; θ) : x → R[0,1] Target Booster (student) model

θ Parameters of the booster model
T Number of student training steps
ŷi Pseudo label of the i-th sample

ŷ : [ŷ1, ŷ2, · · · , ŷn] ∈ Rn Pseudo label vector
ŷ(t) : [ŷ

(t)
1 , ŷ

(t)
2 , · · · , ŷ(t)n ] ∈ Rn Pseudo label vector at t-th iteration

A. Notations and problem definition

Notations. We first introduce the notations used in this
paper. Let d be the number of input features, a data sample
can be represented by its feature vector x : [x1, x2, · · · , xd],
then we can denote a dataset for UAD as X ∈ Rn×d, where n
is the number of samples in the dataset. Note that there is no
ground truth label y in the unsupervised setting. The goal of
unsupervised anomaly detection is to learn a detection model
f(·) without ground truth labels. A model f(·) takes a feature
vector x as input and outputs ŷ ∈ R[0,1], i.e., the predicted
anomaly score of x, higher score indicates higher confidence
that x is an anomaly.

Problem Definition. In this paper, we consider the problem
of finding a booster model fB(·) for a given source UAD
model fS(·). As described before, this is achieved by iterative
knowledge distillation with error correction by estimating and
exploiting the variance between teacher and student models.
Formally, given a source UAD model fS(·) : x → R[0,1], we
consider a parameterized booster model fB(·; θ) : x → R[0,1]

with θ denoting its parameters. The goal of learning a UAD
booster model is to find a parameter set θ∗ that maximize
fB(·; θ)’s prediction accuracy on X given the source UAD
model fS(·) and dataset X.

More specifically, we use the predictions of the source
model fS(X) as the initial pseudo label vector ŷ for knowledge
distillation. The target of distillation, booster model fB(·; θ) is
a neural network. Note that unlike typical knowledge distilla-
tion settings, the source knowledge, i.e., ŷ will be adjusted for
error correction during the booster model fB(·; θ)’s pseudo-
supervised training process. Suppose the total number of
training steps is T , we denote the adjusted pseudo label vector
at step/iteration t as ŷ(t). Let L be the loss function, then
in each training step, we need to (i) optimize θ to minimize
L(fB(X; θ), ŷ(t)) for knowledge transfer, and (ii) update ŷ(t)

for error correction. The former is a standard supervised
learning objective that can be handled by many optimizers,
but the latter objective has no straightforward solution. We
will introduce our solution in the following sections.

B. Anomalies pattern on variance

Motivations. In order to perform error correction, we need
information or statistics that can distinguish between abnor-

mal and normal samples. Normally such information can be
obtained from (partial) ground truth labels or prior knowledge
about the anomalies’ pattern provided by domain experts. But
unfortunately, none of them is available in UAD. We have to
find a new discriminative feature for error correction.

To achieve this, we look back to the fundamental dif-
ference between anomaly detection tasks and classification
tasks. In classification, each class has a unique underlying
distribution/structure in the feature space, and classifiers can
distinguish them by learning the difference between class
distributions. While in anomaly detection, only normal data
has a meaningful underlying structure, and anomalies are just
”abnormal” instances without a clear pattern, as they can be
caused by multiple unknown, hidden, and even random factors
(e.g., data corruption, sensor failure) [14]. This is also the
reason why one-class learning (only learning from the pattern
of normal data) obtains great success in anomaly detection.

Now we know that compared to normal samples, anomalies
lack a clear structure/pattern in the feature space, which can
be a sharp knife for distinguishing anomalies. Specifically,
data samples that lack a clear pattern usually have high
variance in predictions since they are hard to fit by a simple
hypothesis (model). Therefore, anomalies should likely have
high variances, i.e., different models’ predictions for one
anomaly may vary significantly, and this property can be used
as a discriminative feature to support error correction.
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Fig. 2: Comparison of average variance of normal samples and
anomalies on 84 different tabular datasets. Negative value in-
dicates that anomalies have higher average variance compared
to normal samples, which holds true on 71 out of 84 datasets.

Empirical Evidence. To verify whether the variance can
be used for error correction, we examine 84 real-world tab-
ular datasets (described in Table III) to collect some em-
pirical evidence. Specifically, for each dataset, we train a
teacher UAD model fS on it, then use its predictions as
static labels to train a pseudo-supervised student model fB .
We estimate the sample variance by measuring the differ-
ence between the predictions of the teacher and the stu-
dent model v̂i = variance([fS(xi), fB(xi)]) (xi is the i-th



Fig. 3: Overview of the proposed UADB framework. Best viewed in color.

sample). We then compute the average variance of normal
samples and anomalies, respectively, i.e., v̂normal/abnormal =∑

i∈normal/abnormal(v̂i)/S, S is a normalization term that equals
to the number of normal/abnormal instances. To improve
the visual display of the results, we show the relative aver-
age variance difference between normal and anomalies, i.e.,
(v̂normal − v̂abnormal)/v̂abnormal. Negative value indicates that
anomalies have higher average variance than normal samples.
Results are shown in Fig. 2.

As observed in Fig. 2, compared to normal samples, anoma-
lies have higher average variance on 85% (71/84) tabular
datasets, which directly validates our previous thoughts. The
relative differences are considerably high (> 5%) on 60/84
datasets. We note that the variance can be naturally esti-
mated in the teacher-student architecture, between teacher and
student model and/or student model checkpoints at different
steps. This allows us to exploit the variance difference between
normal samples and anomalies, achieving dynamic error cor-
rection during knowledge distillation.

C. Knowledge transfer and error correction

UADB Procedure. With the above analysis, we now elabo-
rate on the technical details of UADB training procedure. As
discussed before, appropriate data assumptions are powerful
tools for detecting specific types of anomalies and therefore
should not be discarded outright, but they need to be enhanced
with adaptive error correction so as to handle anomalies that
do not fit the assumption. Accordingly, UADB is designed to:

• keep the prior knowledge of the UAD model and its
assumption by knowledge transfer;

• perform adaptive error correction during transfer by ex-
ploiting the sample variance at the same time.

Specifically, given a source UAD model fS(·) : x→ R[0,1]

fitted on dataset X, we consider a parameterized booster model
fB(·; θ) : x→ R[0,1] with θ denoting its parameters. In UADB,
we use a neural network as the parameterized booster model
for its strong expressive power as a universal approximator,
this is important for handling diverse UAD models with
different architectures. We use the source model’s predictions

as the initial pseudo label vector ŷ(1), i.e., ŷ(1) = fS(X). Then
in t-th iteration, repeat:

• Update θ w.r.t objective argminθ L(fB(X; θ), ŷ(t));
• Estimate variance vector v̂ using fB(X; θ) and all previ-

ous pseudo label vectors Ŷ : {ŷ(1), · · · , ŷ(t)} (calculated
per instance);

• Update the pseudo label simply by:
– Adding variance v̂ to the pseudo label ŷ(t)

– Renormalize to guarantee ŷi ∈ R[0,1],∀i
– i.e., ŷ(t+1) = MinMaxScale(ŷ(t) + v̂)

Note that the error correction mechanism in UADB is surpris-
ingly simple. More complex error correction mechanisms can
be designed in many different ways, but following Occam’s ra-
zor principle of parsimony, we prefer a simpler solution for its
elegance, interpretability, and wide applicability. Algorithm 1
formalizes the proposed UADB framework.

Algorithm 1 Unsupervised Anomaly Detection Booster

Input: UAD dataset X, source UAD model fS(·) : x→ [0, 1],
number of booster training steps T

1: Initialize:
2: target booster model fB(·; θ)
3: pseudo label vector ŷ(1) ← fS(X)

4: pseudo label matrix Ŷ← [ŷ(1)] ∈ Rn×1

5: for t← 1 to T do
6: train fB(·; θ) by argminθ L(fB(X; θ), ŷ(t))
7: compute variance v̂← variance([Ŷ, fB(X; θ)]) 2

8: update ŷ(t+1) ← MinMaxScale(ŷ(t) + v̂)
9: update Ŷ← [Ŷ, ŷ(t+1)] ∈ Rn×(t+1)

10: end for
11: return the booster UAD model fB(·; θ)

Variance for Error Correction. To better illustrate why
this simple pseudo-label updating rule can achieve error cor-
rection, we now present related discussions and case studies.

As demonstrated before, compared to normal data instances,
anomalies are likely to have higher prediction variance. Since

2Calculated per instance.



UADB adopts a teacher-student architecture for booster model
training, the variance can be naturally estimated using the
source model fS and the target model fB . However, we do not
simply compute the variance using only the 2 entries from fS
and fB , since the student model is being updated during the
training process, which makes the variance estimation vulner-
able to unknown training dynamics. Inspired by the concept of
self-teaching in knowledge distillation research [51], we record
all the pseudo-label vectors (ŷ) in previous steps and compute
the variance on all ŷ and the current student prediction
fB(X; θ). This provides us with a more reliable variance esti-
mation by including more predictions from model checkpoints,
while mitigating the influence of random training dynamics by
using previous ŷs instead of student model outputs. But even
with reliable variance estimation v̂, why UADB can correct
errors by simply updating ŷ(t+1) ← MinMaxScale(ŷ(t) + v̂)?

Case Study. Let us consider four cases for the source
UAD model fT (·) (without loss of generality, we assume
anomalies are positive, i.e., y = 1 in the ground truth label
and the detection threshold is 0.5): (i) True Positive (TP):
y = 1, ŷfT = 1; (ii) False Negative (FN): y = 1, ŷfT = 0; (iii)
False Positive (FP): y = 0, ŷfT = 1; (iv) True Negative (TN):
y = 0, ŷfT = 0. Table II summarizes the four cases.

TABLE II: Four types of instances in UAD.

Case Ground Truth Label Prediction Variance

TP abnormal y = 1 ŷfT = 1 high
FN abnormal y = 1 ŷfT = 0 high
FP normal y = 0 ŷfT = 1 low
TN normal y = 0 ŷfT = 0 low

It is straightforward to observe from the Table II that the
goal of error correction is to correct FP and FN in the pseudo
labels. Specifically, in the booster model fB(·), we want to
increase its prediction of FN while decreasing its prediction
of FP. Also, note that the variance of FN is more likely to be
higher than FP, so intuitively, adding the respective variance to
the pseudo-label will naturally reduce the error gap between
FN and FP. This procedure can be repeated until the gap
between FN and FP is eliminated and their relative relationship
is inverted in the pseudo-label values, i.e., errors are corrected.
We now discuss these cases in detail.

1) True Positive (TP) and True Negative (TN): For a TP
instance xTP, the initial pseudo label ŷTP = fT (xTP) is close
to 1, and it has a high variance v̂abnormal. After adding the
variance, ŷTP(→ 1) + v̂abnormal(> v̂normal) is likely to be a
large value that greater than any other types of instances (FN,
FP, TN), so after min-max scaling, its new pseudo label ŷ∗TP
will still be close to 1. Oppositely, for a TN instance xTN,
the initial pseudo label ŷTN = fT (xTN) is close to 0, and it
has a low variance v̂normal < v̂abnormal. Therefore, after adding
its variance, ŷTN(→ 0) + v̂normal(< v̂abnormal) will still be the
smallest values among all cases. After min-max scaling, its
new pseudo label ŷ∗TN will still be close to 0. Thus the correct
knowledge in fT (·) will be maintained.

(a) True Negative (TN) (b) True Positive (TP)

(c) False Positive (FP) (d) False Negative (FN)

Fig. 4: Error correction during the UADB training process. We
compare UADB’s behavior (orange line) with a variant that
learns a student model by static pseudo-supervised training
without error correction (blue line). The dashed line indicates
the initial pseudo label ŷfT ∈ [0, 1]. We can observe that
the student model without error correction simply mimics the
teacher model’s behavior (including errors), while UADB can
gradually correct the booster’s predictions on FP (Fig. 4c) and
FN (Fig. 4d) by exploiting the variance difference between
normal and abnormal instances.

2) False Positive (FP) and False Negative (FN): The key
function of error correction is to correct the pseudo labels of
FPs and FNs. Specifically, for a FP instance xFP, its ground
truth label yFP = 0 but the pseudo label ŷFP = fT (xFP) is
close to 1. Thus we want to gradually decrease its score for
error correction and expect a smaller score after updating, i.e.,
ŷ∗FP < ŷFP. To prove this, let’s jointly consider FP and TP. After
adding variance, we have the unnormalized scores, which is
sFP : ŷFP(→ 1) + v̂normal(< v̂abnormal) for FP and sTP : ŷTP(→
1)+ v̂abnormal(> v̂normal) for TP. Note that although the pseudo
labels of FP and TP are both close to 1, after adding the
variance term, FP’s unnormalized score will be smaller than
TP due to its low variance, i.e., sFP < sTP. Then after the
scaling, we have ŷ∗FP = sFP−sTN

sTP−sTN
< ŷFP(ŷFP → 1), which means

ŷFP will decrease in updates. Likewise, a FN instance’s updated
unnormalized score will be larger than that of TN due to its
larger variance term, i.e., sFN > sTN, thus ŷ∗FN = sFN−sTN

sTP−sTN
>

ŷFN(ŷFN → 0). Hence, the error gap between FN and FP can
be narrowed by repeatedly applying this updating rule, thus
finally achieving error correction.

To validate previous analysis, for each case, we show an
example of how the booster’s prediction changes during the
UADB training process. Please see details in Fig. 4.



IV. EXPERIMENTS & ANALYSIS

In this section, we conduct comprehensive experiments to
validate the effectiveness of the proposed UADB framework.
We first introduce the experiment setup and the included
14 mainstream UAD models and 84 real-world datasets. To
provide an intuitive understanding of UADB, we construct
synthetic datasets with different types of anomalies, and visu-
alize the behaviors of example UAD models and their boosters.
After that, we test UADB on all 84 real-world tabular datasets
and present the empirical results and corresponding analysis.
Finally, we conduct ablation study and further compare UADB
with several intuitive booster frameworks.

A. Experiment Setup Details.

Source UAD Models. As the UADB is a model-agnostic
framework, we include 14 mainstream UAD techniques to test
UADB’s applicability and effectiveness to different UAD mod-
els with diverse architecture. These UAD algorithms include
IForest [24], HBOS [28], LOF [52], KNN [53], PCA [54],
OCSVM [55], CBLOF [56], COF [57], SOD [58], ECOD [29],
GMM [59], LODA [60], COPOD [61] and DeepSVDD [30].
More details could be found in UADB’s Github repository3.

The aforementioned 14 UAD methods are widely used in
practice and vary significantly in terms of both methodologies
(e.g., neighbor-based [52], [53], [57], clustering-based [56],
[59], density-based [28], [29]) and model architectures (e.g.,
tree [24], support vector machine [55], neural network [30]).
Thus they can be used to perform a comprehensive test of the
effectiveness and applicability of UADB.

Real-world Datasets. As described before, UAD on tabular
datasets are challenging due to the heterogeneity, complexity,
and diversity of tabular data. Table III shows the statistics
of the 84 heterogeneous tabular datasets that are included
for a comprehensive evaluation. Note that, in addition to the
native tabular datasets (i.e., from abalone to yeast), datasets
from larger and high-dimensional CV and NLP tasks are also
included. However, as many UAD models such as IForest
[24] and OCSVM [55] cannot directly handle CV or NLP
task, we follow previous work [1] and use a CV/NLP feature
extractor to generate tabular versions of these datasets. These
datasets vary significantly in properties and application do-
mains, including health care (e.g., disease diagnosis), finance
(e.g. credit card fraud detection), image processing (e.g. object
identification), language processing (e.g. speech recognition)
and more.

UADB Setup. As mentioned before, UADB adopt a neural
network as the booster model for its strong expressive power
as a universal approximator and ability to perform flexible
post-hoc tuning. We fix the parameter of source UAD model,
and only optimize and keep the booster fB(·; θ) as the final
UAD model. Specifically, the booster model is a simple 3-
layer fully-connected MLP (Multi-layer Perceptron) with 128
neurons in each hidden layer. In t-th training step/iteration
of UADB, the booster fB(·; θ) is updated w.r.t objective

3https://github.com/HangtingYe/UADB

argminθ L(fB(X; θ), ŷ(t)) for 10 epochs with batch size set
to 256, optimized by Adam optimizer with a learning rate of
0.001, and the total number of UADB training steps T = 10.
In addition, to prevent the booster model from overfitting the
source model, we train 3 booster models in a 3-fold cross-
validation manner (i.e., each model was trained on different 2
out of 3 splits of data and pseudo-labels). At inference time,
we average the outputs of the 3 booster models as the final
predictions. To reduce the effect of randomness, the reported
performance is averaged over 10 independent runs.

Evaluation Metric & Implementation Details. Following
the common practice of previous works, we use Area Under
the Curve of Receiver Characteristic Operator (AUCROC)
and Average Precision (AP) to evaluate UAD models’ perfor-
mance. Larger AUCROC/AP score indicates better detection
performance. Following [1], we use the popular PyOD Python
package [62] to implement all source UAD models, and apply
their default parameter settings in PyOD4. The booster model
is implemented using the PyTorch [63] framework.

B. Visualization on Synthetic Datasets

Before diving into the results on real-world datasets, we first
show some visualizations on synthetic datasets to provide an
intuitive understanding of how UADB works and improves
over the original model. Previous research [1], [64] have
demonstrated that anomalies in real-world applications could
be roughly divided into four specific types, i.e. clustered,
global, local, and dependency anomalies. Accordingly, we
generate 4 synthetic datasets, each contains a specific type
of anomaly, as shown in the rows of Fig. 5. For each type of
anomaly, we select two UAD models that generally perform
best on the given anomaly, then apply UADB to get two
booster models, and show their predictions and errors in Fig. 5.

It can be observed that UADB generally maintains the
predictions of the teacher model by knowledge transfer. But
more importantly, the booster models benefit from the adaptive
correction mechanism and thus are able to correct the errors
when learning from the teacher model, e.g., the false positives
in IForest-Clustered (1th-row left) and the false negatives in
HBOS-Global (2nd-row right). On average, UADB achieves
38.94% error correction rate on all 8 Model-Anomaly pairs,
with a maximum at 86.36% on IForest-Clustered (1st-row
left), where 38 out of 44 errors of the source IForest model
are corrected in its booster. These results show that UADB
is able to handle different type of anomalies, and can make
improvements even over the best-performing UAD models.

C. Results & Analysis on Real-world Datasets

In this section, we carry out extensive experiments on
84 heterogeneous real-world datasets with 14 different main-
stream UAD models. The results can provide a comprehensive
evaluation of the effectiveness of UADB in real-world UAD
tasks. The statistics of the 84 heterogeneous tabular datasets
are shown in Table III. Specifically, we aim to answer the
following research questions (RQs) in this section:

4Please refer to https://pyod.readthedocs.io/en/latest/pyod.models.html.

https://github.com/HangtingYe/UADB
https://pyod.readthedocs.io/en/latest/pyod.models.html
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Fig. 5: Visualization of the detection results of UAD models and their UADB boosters when facing different types of anomalies.
Specifically, we generate 4 synthetic datasets (in 4 rows) with different types of anomalies, i.e. Clustered, Global, Local and
Dependency. For each dataset, we test two UAD models (1st & 3rd columns) that are best in handling the corresponding
anomaly [1] and their boosters (2nd & 4th columns), we then plot their decision boundaries. In each figure, the orange/blue
interface represents the normal/abnormal space predicted by the model. We can observe that UADB boosters can maintain the
right decisions of the source model by knowledge transfer, while correcting the wrong predictions by adaptive error correction.
UADB improves the UAD model’s detection results on all 8 model-anomaly-type pairs, achieving up to 86% correction rate.

1) RQ1: Can UADB generally boost the performance of
different UAD models in real-world applications?

2) RQ2: How does the error correction mechanism work?
And what is the role of iterative training?

3) RQ3: How much did the iterative error correction mech-
anism contribute to UADB training?

4) RQ4: Can other intuitive mechanisms that exploit the
variance also improve over UAD models?

Main Results (RQ1). First, we train the 14 dif-
ferent mainstream UAD models as well as their cor-
responding UADB boosters on all 84 tabular datasets.
Note that this is a large-scale experiment that result in
14(models)×84(datasets)×2(metrics)×2(source & booster) =

4704 numerical results. We cannot fully display these results
here due to space limitations. Therefore, we provide a sum-
marization of the experimental results in Table IV, and part of
the more detailed results are available in Table V.

From Table IV we can observe that:

• UADB achieves consistent improvements over the 14
source UAD models for 84 tabular datasets. It achieved a
more than 1% average performance improvement for each
model, whether using AUCROC or AP as the evaluation
metric. In addition, we conduct Wilcoxon signed-rank
test (with α = 0.05) for each source UAD model and
its booster over 84 datasets. In all settings, the improve-
ment is statistically significant at the 95% confidence



TABLE III: Data description of the 84 real-world datasets.

Datasets % Anomaly Category Datasets % Anomaly Category Datasets % Anomaly Category Datasets % Anomaly Category

abalone 49.82 Biology mammography 2.32 Healthcare WDBC 2.72 Healthcare FashionMNIST 6 5.00 Image
ALOI 3.04 Image mnist 9.21 Image Wilt 5.33 Botany FashionMNIST 7 5.00 Image

annthyroid 7.42 Healthcare musk 3.17 Chemistry wine 7.75 Chemistry FashionMNIST 8 5.00 Image
Arrhythmia 45.78 Healthcare optdigits 2.88 Image WPBC 23.74 Healthcare FashionMNIST 9 5.00 Image

breastw 34.99 Healthcare PageBlocks 9.46 Document yeast 34.16 Biology SVHN 0 5.00 Image
cardio 9.61 Healthcare Parkinson 75.38 Healthcare CIFAR10 0 5.00 Image SVHN 1 5.00 Image

Cardiotocography 22.04 Healthcare pendigits 2.27 Image CIFAR10 1 5.00 Image SVHN 2 5.00 Image
concrete 50.00 Physical Pima 34.90 Healthcare CIFAR10 2 5.00 Image SVHN 3 5.00 Image

cover 0.96 Botany satellite 31.64 Astronautics CIFAR10 3 5.00 Image SVHN 4 5.00 Image
fault 34.67 Physical satimage-2 1.22 Astronautics CIFAR10 4 5.00 Image SVHN 5 5.00 Image
glass 4.21 Forensic shuttle 7.15 Astronautics CIFAR10 5 5.00 Image SVHN 6 5.00 Image

HeartDisease 44.44 Healthcare skin 20.75 Image CIFAR10 6 5.00 Image SVHN 7 5.00 Image
Hepatitis 16.25 Healthcare smtp 0.03 Web CIFAR10 7 5.00 Image SVHN 8 5.00 Image

http 0.39 Web SpamBase 39.91 Document CIFAR10 8 5.00 Image SVHN 9 5.00 Image
imgseg 42.86 image speech 1.65 Linguistics CIFAR10 9 5.00 Image agnews 0 5.00 NLP

InternetAds 18.72 Image Stamps 9.12 Document FashionMNIST 0 5.00 Image agnews 1 5.00 NLP
Ionosphere 35.90 Oryctognosy thyroid 2.47 Healthcare FashionMNIST 1 5.00 Image agnews 2 5.00 NLP

landsat 20.71 Astronautics vertebral 12.50 Biology FashionMNIST 2 5.00 Image agnews 3 5.00 NLP
letter 6.25 Image vowels 3.43 Linguistics FashionMNIST 3 5.00 Image amazon 5.00 NLP

Lymphography 4.05 Healthcare Waveform 2.90 Physics FashionMNIST 4 5.00 Image imdb 5.00 NLP
magic.gamma 35.16 Physical WBC 4.48 Healthcare FashionMNIST 5 5.00 Image yelp 5.00 NLP

TABLE IV: The detection performance improvement achieved by UADB over 14 source UAD models on 84 datasets. “Original”
indicates the average score achieved by the corresponding source UAD model on all datasets. “Improvement” indicates the
average score improvement achieved by the UADB booster over the UAD model, “Improvement (%)” indicates the average
score improvement in percentage. “Effects” represents the number of datasets that UADB booster made improvements over
the source model. “P-value” represents the results of the Wilcoxon signed-rank test (with α = 0.05), “P-value” less than 0.05
indicates the improvement is statistically significant.

Source UAD Model IForest HBOS LOF KNN PCA OCSVM CBLOF COF SOD ECOD GMM LODA COPOD DeepSVDD

AUCROC

Original 0.7028 0.6848 0.6311 0.6794 0.6930 0.6750 0.7110 0.6105 0.6638 0.6866 0.7274 0.6571 0.6882 0.5346

Improvement 0.0117 0.0153 0.0694 0.0452 0.0130 0.0241 0.0215 0.0580 0.0562 0.0144 0.0133 0.0293 0.0116 0.0979

Improvement (%) 1.66 2.23 11.00 6.65 1.88 3.57 3.02 9.50 8.46 2.10 1.83 4.46 1.69 18.31

Effects 49 59 51 46 53 58 51 57 57 57 47 62 52 68

P-value 1.89e-2 1.99e-4 7.18e-4 8.51e-4 1.48e-3 2.61e-6 3.06e-3 5.71e-5 3.19e-6 1.31e-4 1.80e-2 4.62e-6 1.20e-2 3.53e-11

AP

Original 0.3012 0.2918 0.1903 0.2550 0.3051 0.2738 0.3057 0.1989 0.2322 0.2908 0.2805 0.2636 0.2832 0.1727

Improvement 0.0134 0.0137 0.1146 0.0627 0.0010 0.0229 0.0184 0.0670 0.0742 0.0101 0.0283 0.0390 0.0146 0.0741

Improvement (%) 4.45 4.69 60.22 24.59 0.32 8.36 6.02 33.69 31.96 3.47 10.09 14.80 5.16 42.91

Effects 57 62 56 51 62 59 57 60 60 66 51 64 64 70

P-value 1.77e-4 2.00e-6 1.21e-6 3.50e-6 3.64e-6 1.20e-8 1.96e-4 5.22e-7 7.23e-9 2.29e-8 1.26e-3 4.56e-7 2.38e-7 1.74e-10

level according to the Wilcoxon signed-rank test. This
demonstrates the superior adaptability and generality of
UADB to different models and tasks.

• There is no UAD model that consistently outperforms
others on all tasks, i.e., the universal winner UAD solu-
tion does not exist. This is aligned with the findings in
previous works [1].

• Using a different evaluation metric can lead to a dif-
ferent “best model”. For example, GMM [59] obtains
the best average performance in terms of AUCROC, but
CBLOF [56] becomes the best performer if we change
the evaluation metric to AP.

• UADB can make improvements even over the best
performer UAD model (i.e., GMM [59] in terms of
AUCROC and CBLOF [56] in terms of AP). Despite
their relatively good performance, UADB still managed

to achieve an average 1.83%/10.09% relative perfor-
mance gain of AUCROC/AP over GMM, and average
3.02%/6.02% relative performance gain of AUCROC/AP
over CBLOF.

As observed in Fig. 2, for a small portion of datasets,
anomalies do not have higher average variance than normal
samples. We further explore UADB’s performance on these
datasets, which are shown in Fig. 6. Though the empirical
evidence does not hold, UADB could still achieve improve-
ments over 12 out of 14 UAD models on more than half of
these datasets.

Sensitivity Analysis. Fig. 7 demonstrated that for most
UAD models, the performance of the UADB gradually im-
proves with an increase in training iterations, and the UADB’s
performance reaches a stable level after 10 training iterations.
Thus, it is reasonable to set the total training steps T to 10



TABLE V: UADB’s performance on representative UAD models (teacher) in terms of AUCROC and AP (higher is better). Due
to the space limitations, we select 4 widely used UAD techniques (i.e., IForest [24], HBOS [28], LOF [52], and KNN [53]) as
representatives and show the performance of them and their UADB boosters on 5 example datasets. In each sub-table, we show
the teacher model’s performance as well as the booster’s performance (during and after UADB training) on the 5 datasets. The
“improvement” indicates the performance improvement that the UADB booster achieved over its source UAD model. In each
sub-table row, we show the performance sub-table in terms of AUCROC and AP for a specific UAD model.

(a) Performance of (IForest) and its UADB booster in terms of AUCROC (b) Performance of (IForest) and its UADB booster in terms of AP

Datasets Teacher iter 2 iter 4 iter 6 iter 8 iter 10 Improvement Datasets Teacher iter 2 iter 4 iter 6 iter 8 iter 10 Improvement

speech 0.5057 0.579 0.6002 0.613 0.62 0.6233 0.1176 pendigits 0.3392 0.3995 0.4154 0.4505 0.4973 0.5524 0.2132
Wilt 0.4276 0.4407 0.4989 0.5305 0.5309 0.5364 0.1088 vowels 0.1825 0.1743 0.1835 0.2463 0.3143 0.3408 0.1582

satellite 0.6668 0.6988 0.7117 0.725 0.7413 0.7625 0.0957 satellite 0.6248 0.7074 0.7163 0.7252 0.7317 0.7399 0.1151
vowels 0.8118 0.8318 0.8488 0.8707 0.8918 0.9066 0.0949 InternetAds 0.5078 0.5166 0.5221 0.5313 0.5468 0.5588 0.051

abalone 0.4989 0.5435 0.5524 0.5589 0.5603 0.5663 0.0674 abalone 0.5111 0.531 0.5379 0.5443 0.5468 0.5529 0.0418

(c) Performance of (HBOS) and its UADB booster in terms of AUCROC (d) Performance of (HBOS) and its UADB booster in terms of AP

Datasets Teacher iter 2 iter 4 iter 6 iter 8 iter 10 Improvement Datasets Teacher iter 2 iter 4 iter 6 iter 8 iter 10 Improvement

speech 0.4673 0.5931 0.612 0.626 0.6299 0.633 0.1657 pendigits 0.2805 0.3397 0.359 0.3671 0.3779 0.389 0.1085
Wilt 0.3849 0.5111 0.5311 0.5492 0.5464 0.5426 0.1577 vowels 0.0883 0.0865 0.1052 0.1254 0.1524 0.182 0.0936

vowels 0.6726 0.7341 0.7732 0.7878 0.7987 0.8051 0.1325 Ionosphere 0.4133 0.4516 0.5228 0.5313 0.5095 0.486 0.0727
mnist 0.6141 0.6662 0.6623 0.6672 0.675 0.6779 0.0638 imgseg 0.6105 0.644 0.6478 0.6476 0.6509 0.6538 0.0433

imgseg 0.656 0.6945 0.7012 0.7032 0.7058 0.7096 0.0536 cardio 0.4679 0.5132 0.5182 0.5134 0.5099 0.508 0.0401

(e) Performance of (LOF) and its UADB booster in terms of AUCROC (f) Performance of (LOF) and its UADB booster in terms of AP

Datasets Teacher iter 2 iter 4 iter 6 iter 8 iter 10 Improvement Datasets Teacher iter 2 iter 4 iter 6 iter 8 iter 10 Improvement

http 0.3685 1 1 1 1 1 0.6315 http 0.0603 1 1 1 1 1 0.9397
shuttle 0.4886 0.9199 0.9244 0.9691 0.9537 0.9525 0.4638 shuttle 0.0958 0.6814 0.7598 0.873 0.7902 0.7882 0.6924

satimage-2 0.4702 0.5677 0.6909 0.7618 0.8402 0.9146 0.4444 optdigits 0.0732 0.1114 0.1825 0.2627 0.3593 0.4551 0.3819
optdigits 0.5819 0.8488 0.8884 0.9128 0.9318 0.9438 0.3619 satellite 0.3746 0.6268 0.675 0.6887 0.7047 0.7117 0.3371

musk 0.4586 0.5008 0.5584 0.6137 0.6848 0.7528 0.2942 WDBC 0.1026 0.1757 0.2627 0.3202 0.3604 0.3754 0.2727

(g) Performance of (KNN) and its UADB booster in terms of AUCROC (h) Performance of (KNN) and its UADB booster in terms of AP

Datasets Teacher iter 2 iter 4 iter 6 iter 8 iter 10 Improvement Datasets Teacher iter 2 iter 4 iter 6 iter 8 iter 10 Improvement

Stamps 0.6587 0.773 0.8458 0.8863 0.8876 0.8851 0.2264 shuttle 0.1558 0.9055 0.9203 0.8229 0.7425 0.7379 0.5822
SpamBase 0.5086 0.6249 0.6675 0.692 0.7087 0.7119 0.2033 satimage-2 0.3294 0.4703 0.5803 0.6749 0.8082 0.8873 0.5579
pendigits 0.7133 0.8409 0.8484 0.8691 0.8861 0.9047 0.1914 satellite 0.5041 0.7098 0.7306 0.7448 0.7609 0.7683 0.2642

musk 0.6845 0.775 0.7961 0.8153 0.8377 0.8551 0.1706 SpamBase 0.3967 0.4643 0.5138 0.5479 0.5746 0.5815 0.1848
shuttle 0.6618 0.9908 0.9903 0.9365 0.8425 0.8134 0.1516 WPBC 0.232 0.2343 0.2788 0.3481 0.3952 0.4123 0.1803
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Fig. 6: UADB’s performance on datasets that anomalies do not
have higher average variance than normal samples. “Improve-
ment” indicates the improvements achieved by the UADB
booster over the UAD model on these datasets.

in Section IV-A. In addition, Fig. 8 shows the AUCROC
performance of UADB w.r.t. different MLP layers. The results
indicate that UADB performs very stably w.r.t. the number of
MLP layers on all datasets.
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Fig. 7: UADB’s performance (AUCROC) with different num-
ber of training iterations/steps. The results are averaged over
84 tabular datasets.

Case Study on Real-world Datasets (RQ2). To further
validate the role of iterative training, we show some real-
world dataset cases for better understanding. In Fig. 9, we
show the ranking development of 4 types of instances (i.e.
True Positive (TP), True Negative (TN), False Positive (FP),



Fig. 8: UADB’s performance (AUCROC) with different MLP
layers. The results are averaged over 84 tabular datasets.

and False Negative (FN)) on several real-world datasets, and
also show the respective performance of UAD booster during
multiple iterations. Higher ranking represents higher anomaly
score. Let’s first consider TP and FP, the initial pseudo labels
(teacher’s prediction) are closer to 1 (i.e. the ranking is high),
however, the variance of TP is higher than FP (anomalies has
higher average variance compared to normal samples), thus
after adding the variance to pseudo labels, the ranking of FP
would decrease compared to TP. After multiple iterations, the
difference in ranking between FP and TP will increase (TP
maintains high ranking while the ranking of FP decreases).
Likewise, the difference in ranking between FN and TN will
also increase. Therefore, after multiple training iterations,
UADB could maintain the right decisions of the source model,
while correcting the wrong predictions by error correction
mechanism.

Ablation Study (RQ3). To further validate the effectiveness
of the error correction mechanism in UADB, we carry out
ablation study on real-world datasets. Note that in our case,
removing error correction in UADB results in no knowledge
correction, which forces the booster models to have identical

(a) The development of ranking.

(b) The development of AUCROC performance.

Fig. 9: The development of instances’ ranking and UADB’s
performance on landsat, optdigits and satellite. Here, we adopt
LOF as UAD model and the number of training steps is set to
20. We reported the average ranking of 4 types of instances
(TP, TN, FP, FN) respectively.

output with the teacher model. So the ablation study can be
done by simply comparing the performance of teacher UAD
models and their UADB boosters. Same as above, to obtain
reliable conclusions, we conduct the ablation study on all 84
real-world tabular datasets. We summarize the ablation study
results in boxplots of performance, as shown in Fig. 10.

(a) Evaluation metric: Area Under the Curve of Receiver Charac-
teristic Operator (AUCROC)

(b) Evaluation metric: Average Precision (AP)

Fig. 10: Boxplots of performance of 14 teacher UAD models
and their UADB boosters on 84 tabular datasets.

We can observe that:
• In terms of both evaluation metrics, removing the error

correction mechanism results in obvious average perfor-
mance degradation for all tested UAD techniques.

• The degradation is more significant in terms of AP,
where not only the average, but also the best and worst
performance among the 84 datasets get degraded.

• The performance gain from error correction is especially
important for those UAD models that do not perform well
by themselves, such as LOF [52], COF [57], KNN [53],
SOD [58], and DeepSVDD [30] (in terms of AP).

Comparison with Other Intuitive Mechanisms (RQ4).
Finally, to further validate the effectiveness of UADB’s de-
sign, we consider several variants of UADB and compare
their performance. Motivated by previous works that directly
use the discrepancy between multiple models’ output as the
predicted anomaly score, we apply different training and
inference schema to generate multiple variant booster frame-
works. Specifically, we consider 4 different alternative booster
frameworks:

1) Naı̈ve Booster: it only uses the source model’s output as
static pseudo labels, then use it to train the booster model
without any in-iteration adjustments on pseudo labels.
The booster’s output are used directly as the predicted
anomaly score at inference.

2) Discrepancy Booster: similar to the Naı̈ve Booster, it
also adopt the source model’s output as static labels for
pseudo-supervised training of the booster model. How-
ever, when inference, it uses the discrepancy (Standard



TABLE VI: Ablation study results. The average AUCROC and AP over 84 datasets are reported. For each UAD model, we
show the results of 6 variants (UAD itself and 5 different types of booster). The best results are highlighted in bold.

Comparison between different booster training strategies in terms of AUCROC

Source UAD Model Iforest HBOS LOF KNN PCA OCSVM CBLOF COF SOD ECOD GMM LODA COPOD DeepSVDD Average

Origin 0.7028 0.6848 0.6311 0.6794 0.6930 0.6750 0.7110 0.6105 0.6638 0.6866 0.7274 0.6571 0.6882 0.5346 0.6777
Naı̈ve Booster 0.6896 0.6728 0.6365 0.6778 0.6943 0.6733 0.7093 0.6108 0.6813 0.6863 0.7173 0.6751 0.6713 0.5641 0.6766

Discrepancy Booster 0.5589 0.5526 0.5807 0.5850 0.6065 0.6019 0.5356 0.5439 0.6025 0.5497 0.6362 0.5677 0.5607 0.5851 0.5755
Self Booster 0.6838 0.6688 0.6334 0.6686 0.6809 0.6618 0.7008 0.6073 0.6701 0.6722 0.7031 0.6736 0.6658 0.5667 0.6685

Discrepancy Booster* 0.6235 0.5904 0.5731 0.6144 0.6195 0.5970 0.5679 0.5670 0.6358 0.6122 0.6597 0.5761 0.6039 0.5580 0.6031
UADB 0.7144 0.7001 0.7004 0.7245 0.7060 0.6991 0.7324 0.6686 0.7199 0.7010 0.7407 0.6864 0.6998 0.6343 0.7072

Comparison between different booster training strategies in terms of AP

Source UAD Model Iforest HBOS LOF KNN PCA OCSVM CBLOF COF SOD ECOD GMM LODA COPOD DeepSVDD Average

Origin 0.3012 0.2918 0.1903 0.2550 0.3051 0.2738 0.3057 0.1989 0.2322 0.2908 0.2805 0.2623 0.2832 0.1727 0.2670
Naı̈ve Booster 0.2966 0.2926 0.2257 0.2572 0.2923 0.2735 0.3086 0.2154 0.2608 0.2838 0.2901 0.2865 0.2841 0.2187 0.2744

Discrepancy Booster 0.1588 0.1629 0.1739 0.1837 0.1946 0.1854 0.1580 0.1647 0.1881 0.1537 0.2080 0.1813 0.1627 0.1856 0.1751
Self Booster 0.2946 0.2911 0.2127 0.2594 0.2938 0.2760 0.3095 0.2132 0.2647 0.2837 0.3033 0.2887 0.2817 0.2132 0.2748

Discrepancy Booster* 0.2078 0.2057 0.1854 0.2076 0.2255 0.1999 0.1825 0.1802 0.2260 0.1940 0.2564 0.1897 0.2015 0.1988 0.2048
UADB 0.3146 0.3055 0.3049 0.3178 0.3061 0.2967 0.3241 0.2659 0.3064 0.3009 0.3092 0.3013 0.2978 0.2468 0.3039

deviation) between booster’s output and source model’s
output as the predicted anomaly score.

3) Self Booster: it involves multiple booster training iter-
ations like UADB, but in each iteration, it does not
perform error correction on the pseudo labels. Instead, it
uses booster’s output after MinMax normalization as the
pseudo label in the next iterations. At inference, booster’s
output is used as the predicted anomaly score.

4) Discrepancy Booster*: it also involves multiple booster
training iterations like UADB. The booster training strat-
egy is identical to that of Self Booster, but at inference,
the discrepancy between booster’s output and source
model’s output is used as the predicted anomaly score.

Following the previous setting, we apply all booster frame-
works to 14 UAD models and 84 tabular datasets to get reliable
results. The comparison results between UADB and these
alternative booster frameworks are shown in Table VI. We
can obeserve that:

• UADB is the best performer among all booster frame-
works, it generally outperforms other counterparts by a
large margin.

• Directly use the discrepancy between a teacher and a
student model’s output as the anomaly score cannot get
good anomaly detection performance. This may due to the
fact that only two models are included causing inaccurate
discrepancy estimation.

• Self Booster obtains better results than other counter
parts, indicating the importance of multi-stage training
and pseudo labels adjustments.

To this point, we answered all the research questions that
were proposed at the start of this section. Through comprehen-
sive experiments and analysis on multiple real-world datasets
and UAD models, we show that UADB can generally boost
the performance of different UAD models on heterogeneous
tabular datasets, and the error correction mechanism can

effectively prevent the transfer of the wrong knowledge in the
teacher model. UADB generally shows wide applicability and
great performance in various real-world applications.

V. CONCLUSION

In this paper, we aim to design better unsupervised anomaly
detection (UAD) techniques for tabular datasets. This task
faces several fundamental challenges including (i) unsupervi-
sion: lack of prior knowledge about the anomalous pattern; (ii)
assumption misalignment: the assumptions of UAD methods
can be easily violated in real-world data and result in sub-
optimal performance; (iii) data heterogeneity: tabular data’s
properties vary greatly across different domains. For above
reasons, a universal winner that consistently outperforms other
solutions does not exist due to the multifaceted complexity of
the task. We argue that the key to generally better UAD on di-
verse and heterogeneous tabular data is to go beyond the static
assumptions and empower UAD models with adaptability to
different data.

In light of this, we propose UADB (Unsupervised Anomaly
Detection Booster), a versatile framework for improving any
UAD model’s general performance on tabular datasets. Specif-
ically, UADB is designed to (i) keep the prior knowledge of the
UAD model and its assumption by knowledge transfer, and (ii)
perform adaptive error correction during transfer by exploiting
the sample variance at the same time. The structure of UADB
is conceptually simple, but has proven to be very effective
in real-world UAD tasks. Extensive experiments show that
UADB can generally achieve significant performance improve-
ment over the 14 different source UAD models on 84 hetero-
geneous tabular datasets. To our best knowledge, UADB is the
first of its kind as a general framework for enhancing UAD
models. To sum up, we carry out a preliminary exploration
on designing a model-agnostic booster framework to enhance
UAD on tabular datasets. We hope our findings can shed some
light on developing better versatile UAD solutions.
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