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Abstract—Many real-world applications reveal difficulties in
learning classifiers from imbalanced data. The rising big data
era has been witnessing more classification tasks with large-
scale but extremely imbalance and low-quality datasets. Most
of existing learning methods suffer from poor performance or
low computation efficiency under such a scenario. To tackle this
problem, we conduct deep investigations into the nature of class
imbalance, which reveals that not only the disproportion between
classes, but also other difficulties embedded in the nature of data,
especially, noises and class overlapping, prevent us from learning
effective classifiers. Taking those factors into consideration, we
propose a novel framework for imbalance classification that aims
to generate a strong ensemble by self-paced harmonizing data
hardness via under-sampling. Extensive experiments have shown
that this new framework, while being very computationally
efficient, can lead to robust performance even under highly
overlapping classes and extremely skewed distribution. Note that,
our methods can be easily adapted to most of existing learning
methods (e.g., C4.5, SVM, GBDT and Neural Network) to boost
their performance on imbalanced data.

Index Terms—imbalance learning, imbalance classification,
ensemble learning, data re-sampling

I. INTRODUCTION

The development of information technology brings the

explosion of massive data in our daily life. However, many

real applications usually generate very imbalanced datasets

for corresponding key classification tasks. For instance, online

advertising services can give rise to a high amount of datasets,

consisting of user views or clicks on ads, for the task of

click-through rate prediction [1]. Commonly, user clicks only

constitute a small rate of user behaviors . For another example,

credit fraud detection [2] relies on the dataset containing

massive real credit card transactions where only a small

proportion are frauds. Similar situations also exist in the tasks

of medical diagnosis, record linkage and network intrusion

detection etc [3]–[5]. In addition, real-world datasets are likely

to contain other difficulty factors, including noises and missing

values. Such highly imbalanced, large-scale and noisy data

brings serious challenges of downstream classification tasks.

This work was conducted when the first author was an intern at Microsoft
Research Asia. This work is partially supported by National Natural Science
Foundation of China (No.61976102).

Traditional classification algorithms (e.g., C4.5, SVM or

Neural Networks [6]–[8]) demonstrate unsatisfactory perfor-

mance on imbalanced datasets. The situation can be even

worse when the dataset is large-scale and noisy at the same

time. Attribute to their inappropriate presuming on relatively

balanced distribution between positive and negative samples,

the minority class is usually ignored due to the overwhelming

number of majority instances. On the other hand, the minority

class usually carries the concepts with greater interests than

majority class [9], [10].

To overcome such issue, a series of research work has been

proposed, which can be classified into three categories:

• Data-level methods modify the collection of examples to

balanced distributions and / or remove difficult samples.

They may be inapplicable on datasets with categorical

features or missing values due to their distance-based design

(e.g., NearMiss, Tomeklink [11], [12]). Besides, they suffer

from large computational cost (e.g., SMOTE, ADASYN

[13], [14]) when applying on large-scale data.

• Algorithm-level methods directly modify existing learning

algorithms to alleviate the bias towards majority objects.

However, they require assistance from domain experts

before-hand (e.g., setting cost matrix in cost-sensitive learn-

ing [15], [16]). They may also fail when cooperating with

batch-training classifiers like neural network since they do

not balance the class distribution on the training data.

• Ensemble methods combine one of the previous approaches

with an ensemble learning algorithm to form an ensemble

classifier. Some of them suffer from large training cost and

poor applicability (e.g., SMOTEBagging [17]) on realistic

tasks. The other ones potentially lead to underfitting or

overfitting (e.g., EasyEnsemble, BalanceCascade [18]) when

the dataset is highly noisy.

For above reasons and more, none of the prevailing methods

can well handle the highly imbalanced, large-scale and noisy
classification task, while it is a common problem in real-world

applications. The main reason behind existing methods’ failure

on such tasks is that they ignored difficulties embedded in the

nature of imbalance learning. Not only the class imbalance it-
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self, other factors like presence of noise samples [19] and over-

lapped underlying distribution between the classes [20], [21]

also significantly deteriorate the classification performance.

Their influences can be further enlarged by the high imbalance

ratio. Besides, different models show various sensitivity to

these factors. For above reasons, all these factors need to be

considered to achieve more accurate classification.

We introduce the concept of “classification hardness” to

integrate aforementioned difficulties. Intuitively, hardness rep-

resents the difficulty of correctly classifying a sample for a

specific classifier. Thus the distribution of classification hard-

ness implicitly contains the information of task difficulties. For

example, noises are likely to have large hardness values and

the proportion of high-hardness samples reflected the level of

class overlapping. Moreover, hardness distribution is naturally

adaptive to different models since it was defined with respect

to given classifier. Such hardness distribution can be used to

guide the re-sampling strategy to achieve better performance.

Based on the classification hardness, we propose a novel

learning framework called Self-paced Ensemble (abbreviated

as SPE) in this paper. Instead of simply balancing the posi-

tive/negative data or directly assigning instance weights, we

consider the distribution of classification hardness over the

dataset, and iteratively select the most informative majority

data samples according to the hardness distribution. The under-

sampling strategy is controlled by a self-paced procedure. Such

self-paced procedure enables our framework gradually focuses

on the harder data samples, while still keeps the knowledge of

easy sample distribution in order to prevent overfitting. Fig. 1

shows the pipeline of self-paced ensemble.

In summary, the contributions of this paper are as follows:

• In this paper we demonstrate the reason of conventional im-

balance learning methods failing on the real-world massive

imbalanced classification task. We conduct comprehensive

experiments with analysis and visualization that can be

valuable for other similar classification systems.

• We proposed Self-paced Ensemble (SPE), a learning frame-

work for massive imbalanced data classification. SPE can be

used to boost any canonical classifier’s performance (e.g.,

C4.5, SVM, GBDT, and Neural Network) on real-world

highly imbalanced tasks while being very computationally

efficient. Comparing with the existing methods, SPE is

accurate, fast, robust, and adaptive.

• We introduce the concept of classification hardness. By con-

sidering the distribution of classification hardness over the

dataset, the learning procedure of our proposed framework

SPE is automatically optimized in a model-specific way.

Unlike prevailing methods, our learning framework does not

require any pre-defined distance metrics which is usually

unavailable in real-world scenarios.

II. PROBLEM DEFINITION

In this section, we first describe the class imbalance problem

considered in this paper. Then we give some necessary symbol

definition and show the evaluation criteria that are commonly

used in imbalanced scenarios.

Fig. 1. Self-Paced Ensemble Process.

Class imbalance: A dataset is said to be imbalanced when-

ever the number of instances from the different classes is not

nearly the same. Class imbalance exists in the nature of various

real-world applications, like medicine (sick vs. healthy), fraud

detection (normal vs. fraud), or click-through-rate prediction

(clicked vs. ignored). The uneven distribution poses a difficulty

for applying canonical learning algorithms on imbalanced

dataset, as they will be biased towards the majority group due

to their accuracy-oriented design. Despite such problem has

been extensively studied, in real applications, class imbalance

often co-exists with other difficulty factors, such as enormous

data scale, noises, and missing values. Therefore, the perfor-

mances of existing methods are still unsatisfactory.

Symbol definition: In this paper, we only consider the binary

situation that exists widely in practical applications [2], [9],

[10]. In binary imbalance classification, only two classes were

considered: the minority class with less samples and the

majority class with relatively more samples. For simplicity,

in this paper we always let the minority class to be positive

class and the majority class to be negative. We use D to denote

the collection of all training samples (x, y). The minority class

set P and majority class set N are then defined as:

P = {(x, y) | y = 1}, N = {(x, y) | y = 0}
Therefore, we have |N | � |P| for (highly) imbal-

anced problems. In order to uniformly describe the level

of class imbalance in different datasets, we consider the

Imbalance Ratio (IR), which is defined as the number of

majority class examples divided by the number of minority

class examples:

Imbalanced Ratio (IR) =
nmajority

nminority
=
|N |
|P|

Evaluation criteria: Since the accuracy does not well reflect

the model performance, we usually adopt the other evaluation

criteria based on the number of true / false positive / negative

prediction. Under the binary scenario, the results of the cor-

rectly and incorrectly recognized examples of each class can
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be recorded in a confusion matrix. Table I shows the confusion

matrix for binary classification.

TABLE I
CONFUSION MATRIX FOR BINARY CLASSIFICATION.

Label
Predict

Positive Negative

Positive True Positive (TP) False Negative (FN)

Negative False Positive (FP) True Negative (TN)

For evaluating the performance on minority class, recall and

precision are commonly used. Furthermore, we also consider

the F1-score, G-mean (i.e., harmonic / geometric mean of

precision and recall) [22], [23], MCC (i.e., Matthews correla-

tion coefficient) [24], and AUCPRC (i.e., the area under the

precision-recall curve) [25].

- Recall = TP
TP+FN

- Precision = TP
TP+FP

- F1-score = 2 · Recall×Precision
Recall+Precision

- G-mean =
√
Recall · Precision

- MCC = TP×TN−FP×FN√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

- AUCPRC = Area Under Precision-Recall Curve

III. LIMITATIONS OF EXISTING METHODS

In this section, we give a brief introduction to existing

imbalance learning solutions, and discuss why they obtain

unsatisfactory performance on the real-world industrial tasks.

To solve the class imbalance problem, researchers have pro-

posed a variety of methods. This research field is also known

as imbalance learning. As mentioned in the introduction,

we categorize existing imbalance learning methods into three

groups: Data-level, Algorithm-level and Ensemble.

Data-level Methods: This group of methods concentrates on

modifying the training set to make it suitable for a standard

learning algorithm. With respect to balancing distributions,

data-level methods can be categorized into three groups:

• Under-sampling approaches that remove samples from the

majority class (e.g., [12], [26], [27]).

• Over-sampling approaches that generate new objects for the

minority class (e.g., [13], [14], [28]).

• Hybrid-sampling approaches that combine two methods

above (e.g., [29], [30]).

Standard random re-sampling methods often lead to removal

of important samples or introduction of meaningless new

objects. Therefore, more advanced methods were proposed that

try to maintain structures of groups and/or generate new data

according to underlying distributions. They apply k-Nearest

Neighborhood (k-NN) algorithm [31] to extract underlying

distribution in the feature space, and use that information to

guide their re-sampling.

However, the application of k-NN algorithm requires pre-

defined distance metric, which is usually unavailable in the

real-world datasets since they may contain categorical features

and/or missing values. k-NN algorithm is also easily disturbed

by noises thus unable to reveal the underlying distribution for

re-sampling methods when the dataset is noisy. Moreover, the

computational cost of applying k-NN grows quadratically with

the size of the dataset. Thus running such distance-based re-

sampling methods on large-scale datasets can be extremely

slow.

Algorithm-level Methods: This group of methods concen-

trates on modifying existing learners to alleviate their bias

towards majority groups. It requires good insight into the mod-

ified learning algorithm and precise identification of reasons

for its failure in mining skewed distributions. The most popular

algorithm-level method is cost-sensitive learning [15], [16]. By

assigning large cost to minority instances and small cost to

majority instances, it boosts minority importance during the

learning process to alleviate the bias towards majority class.

It must be noted that the cost matrix on a specific task

is given by domain expert before-hand, which is usually

unavailable in many real-world problems. Even if one has

the domain knowledge required for setting the cost, such

cost matrix is usally designed for specific tasks and do not

generalize across different classification tasks. On the other

hand, for the batch training models such as neural networks,

the positive (minority) samples are only contained in a few

batches. Even if we apply cost-sensitive into the training

process, the model still soon stuck into local minima.

Ensemble Methods: This group of methods concentrates

on merging one of the data-level or algorithm-level solutions

with an ensemble learning method to get a robust and strong

classifier. Ensemble approaches are gaining more popularity

in real-world applications for their good performance on

imbalanced tasks. Most of them are based on a canonical

ensemble learning algorithm with an imbalance learning algo-

rithm embedded in the pipeline, e.g., SMOTE [13] + Adaptive

Boosting [32] = SMOTEBoost [33]. Some other ensemble

methods introduce another ensemble classifier as their base

learner, e.g., EasyEnsemble [18] trains multiple AdaBoost

classifier to form its final ensemble.

However, those ensemble-based methods suffer from low

efficiency, poor applicability and high sensitivity to noise when

applying on realistic imbalanced tasks, since they still have

those data-level/algorithm-level imbalance learning methods in

their pipeline. There are few methods carried out preliminary

exploration of using training feedback information to perform

dynamic re-sampling on imbalance datasets. However, such

methods do not take full account of the data distribution. For

instance, BalanceCascade iteratively discards majority samples

that were well-classified by the current classifier. It may

result in overweighting outliers in late iterations and finally

deteriorate the ensemble.

IV. CLASSIFICATION HARDNESS DISTRIBUTION

Before we describe our algorithm, we introduce the concept

of the “classification hardness” in this section. We explain the

benefits of considering hardness distribution into imbalance

learning framework. We also present an intuitive visualization

in Fig. 2 to help understand the relationship between hardness,

imbalance ratio, class overlapping and model capacity.
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(a) Non-overlapped Dataset (b) Hardness (KNN [31]) (c) Hardness (AdaBoost [32])

(d) Overlapped Dataset (e) Hardness (KNN [31]) (f) Hardness (AdaBoost [32])

Fig. 2. Comparison of overlapped / non-overlapped dataset under different level of class imbalance. (a)(c) shows the original datasets, (b)(e) are the hardness
w.r.t. KNN classifier, and (e)(f) are the hardness w.r.t. AdaBoost classifier.

Definition: We use the symbol H to denote the classification

hardness function, where H can be any “decomposable” error

function, i.e., the overall error is calculated by the summation

of individual sample errors. Examples include Absolute Error,

Squared Error (Brier-score) and Cross Entropy. Suppose F
is a trained classifier, we use F (x) to denote the classifier’s

output probability of x being a positive instance. Then the

classification hardness of sample (x, y) with respect to F is

given by the function H(x, y, F ).

Advantages: The concept of the classification hardness has

two advantages under the imbalance classification scenario:

• First, it fills the gap between the imbalance ratio and the

task difficulty. As mentioned in the introduction, even with

the same imbalance ratio, different tasks could demonstrate

extremely different difficulties. We show a detailed example

in Fig. 2. In Fig. 2(a), the dataset is generated with two

disjoint Gaussian components. The growth of the imbalance

ratio does not affect much of the task hardness. While in Fig.

2(d) the dataset is generated by several overlapped Gaussian

components. As the imbalance ratio grows, it varies from an

easy classification task to an extremely hard task. However,

the imbalance ratio could not well reflect such task hardness.

Instead, we show the classification hardness of those two

datasets based on different classifiers. As the imbalance ratio

grows, the quantity of the hard samples increases sharply

in Fig. 2(e) and Fig. 2(f), while stays constant in Fig. 2(b)

and Fig. 2(c). Thus, the classification hardness carries more

information about the underlying data structure and better

indicates the current task hardness.

• Second, the classification hardness also fills the gap between

data sampling strategy and the classifiers’ capacity. Most of

the existing sampling method totally ignores the capacity

of the base classifier. However, different classifiers usually

demonstrate very different performances on the imbalanced

data classification. For example, in Fig.2, KNN and Ad-

aboost show very different hardness distribution for the

same dataset. It is beneficial to consider the model capacity

when performing under-sampling. Using the classification

hardness, our framework is able to optimize any kind of

classifier’s final performance in a model-specific way.

Types of Data Samples: Intuitively, we distinguish three

kinds of data samples, i.e., trivial, noise and borderline sam-

ples according to their corresponding hardness values:

• Most of the data samples are trivial samples and can be

well-classified by the current model, e.g., the blue samples

in Fig. 2(e) and Fig. 2(f). Each of the trivial samples only

contributes tiny hardness. However, the overall contribution

is non-negligible due to its large population. For such kind

of samples, we only need to keep a small proportion of

them to represent the “skeleton” of their corresponding

distribution in order to prevent overfitting, then drop most

of them since they have already been well-learned.

• On the contrary, there are also several noise samples, e.g.,

the dark red samples in Fig. 2. Despite their small popula-

tion, each of them contributes a large hardness value. Thus,

the total contribution can be very huge. We stress that these

noise samples are usually caused by the indistinguishable

overlapping or outliers since they exist stably even when the

model is converged. Enforcing model to learn such samples

could lead to serious overfitting.

• For the rest samples, here we simply classify them as the

borderline samples. The borderline samples are the most

informative data samples during the training. For example,

as we can see, in Fig. 2, the light red points are very close

to the decision boundary of the current model. Enlarging

the weights of those borderline samples is usually helpful

to further improve the model performance.

The above discussion provides us with an intuition to

distinguish different data samples. However, since it is hard to

make such an explicit distinction in practice, we alternatively

categorize the data samples in a “soft” way, as described in

the next section.

V. SELF-PACED ENSEMBLE

We now describe Self-paced Ensemble1 (SPE), our frame-

work for massive imbalance classification. Firstly, we demon-

strate the ideas of hardness harmonize and self-paced factor.

After that, we summarize the SPE procedure in Algorithm 1.

1github.com/ZhiningLiu1998/self-paced-ensemble
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(a) Original majority set N (b) α = 0 (c) α = 0.1 (d) α→∞

Fig. 3. An example to visualize how self-paced factor α controls the self-paced under-sampling. The left part of each subfigure shows the number of samples in
each bin, the right part shows the hardness contribution from each bin. Subfigure (a) is the distribution over all majority instances. (b)(c)(d) are the distribution
over subsets under-sampled by our mechanism when α = 0, α = 0.1, and α → ∞, respectively. Note that the y-axis uses log scale since the number of
samples within different hardness bins can differ by orders of magnitude.

A. Self-paced Under-sampling

Motivated by previous observations, we aim to design an

under-sampling mechanism that reduces the effect of trivial

and noise samples, while enlarges the importance of the

borderline samples as we expected. Therefore, we introduce

the concept of “hardness harmonize” and a self-paced training

procedure, to achieve such goal.

1) Hardness Harmonize: We split all the majority samples

into k bins according to their hardness values, where k is a

hyper-parameter. Each bin indicates a specific hardness level.

We then under-sample the majority instances into a balanced

dataset by keeping the total hardness contribution in each

bin as the same. Such method is so-called “harmonize” in

the gradient-based optimization literature [34], where they

harmonize the gradient contribution in batch training of neural

networks. In our case, we adopt a similar idea to harmonize

the hardness in the first iteration.

However, we do not simply use the hardness harmonize

in all the iterations. The main reason is that the population

of trivial samples grows during the training process since the

ensemble classifier will gradually fit the training set. Hence,

simply harmonizing the hardness contribution still leaves a lot

of trivial samples (Fig. 3(b)). Those samples greatly slow down

the learning procedure in the later iterations since they are

less informative. Instead, we introduce the “self-pace factor”

to perform self-paced harmonize under-sampling.

2) Self-paced Factor: Specifically, start from harmonizing

the hardness contribution of each bin, we gradually decrease

the sample probability of those bins with a large population.

The decreasing level is controlled by a self-paced factor α.

When α goes large, we focus more on the harder samples

instead of the simple hardness contribution harmonize. In the

first few iterations, our framework mainly focuses on those

informative borderline samples, thus the outliers and noises

do not affect much of the generalization ability of our model.

In the later iterations where α is very large, our framework still

keeps a reasonable fraction of trivial (high confidence) samples

as the “skeleton”, which effectively prevents our framework

from overfitting. Fig. 3 shows the self-paced under-sampling

process of a real-world large-scale dataset2.

2Payment Simulation dataset, statistics can be found in Table III.

B. Algorithm Formalization

Finally, in this subsection, we describe our algorithm for-

mally. Recall that in Section 2, we use D to denote the

collection of all training samples (x, y). N / P is the majority

/ minority set in D. We use Ddev to denote the validation

set, which is used to measure the generalization ability of the

ensemble model. Note that Ddev keeps the original imbalanced

distribution with no re-sampling. Moreover, we use B� to

denote the �-th bin, where B� is defined as

B� = {(x, y) | �− 1

k
≤ H(x, y, F ) <

�

k
} w.l.o.g. H ∈ [0, 1]

The details are shown in Algorithm 1. Notice that we update

hardness value in each iteration (line 4-5) in order to select

data samples that were most beneficial for the current ensem-

ble. We use the tan function (line 7) to control the growth of

self-paced factor α. Thus we have α = 0 in the first iteration

and α→∞ in the last iteration.

Algorithm 1: Self-paced Ensemble

Input: Training set D, hardness function H, base

classifier f , number of base classifiers n, number

of bins k,

1 Initialize: P ⇐ minority in D, N ⇐ majority in D
2 Train classifier f0 using random under-sample majority

subsets N ′0 and P , where |N ′0| = |P|.
3 for i=1 to n do

4 Ensemble Fi(x) =
1
i

i−1∑

j=0

fj(x)

5 Cut majority set into k bins w.r.t. H(x, y, Fi):
B1, B2, · · · , Bk

6 Average hardness contribution in �-th bin:

h� =
∑

s∈B�
H(xs, ys, Fi)/|B�|, ∀� = 1, . . . , k

7 Update self-paced factor α = tan( iπ
2n )

8 Unnormalized sampling weight of �-th bin:

p� =
1

h�+α , ∀ � = 1, . . . , k

9 Under-sample from �-th bin with p�∑
m pm

· |P| samples

10 Train fi using newly under-sampled subset

11 end
12 return final ensemble F (x) = 1

n

∑n
m=1 fm(x)
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TABLE II
GENERALIZED PERFORMANCE (AUCPRC) ON CHECKER BOARD DATASET.

Model Hyper RandUnder Clean SMOTE Easy10 Cascade10 SPE10

KNN k neighbors=5 0.281±0.003 0.382±0.000 0.271±0.003 0.411±0.003 0.409±0.005 0.498±0.004
DT max depth=10 0.236±0.010 0.365±0.001 0.299±0.007 0.463±0.009 0.376±0.052 0.566±0.011

MLP hidden unit=128 0.562±0.017 0.138±0.035 0.615±0.009 0.610±0.004 0.582±0.005 0.656±0.005
SVM C=1000 0.306±0.003 0.405±0.000 0.324±0.002 0.386±0.001 0.456±0.010 0.518±0.004

AdaBoost10 n estimator=10 0.226±0.019 0.362±0.000 0.297±0.004 0.487±0.017 0.391±0.013 0.570±0.008
Bagging10 n estimator=10 0.273±0.002 0.401±0.000 0.316±0.003 0.436±0.004 0.389±0.007 0.568±0.005

RandForest10 n estimator=10 0.260±0.004 0.229±0.000 0.306±0.011 0.454±0.005 0.402±0.012 0.572±0.003
GBDT10 boost rounds=10 0.553±0.015 0.602±0.000 0.591±0.008 0.645±0.006 0.648±0.009 0.680±0.003

VI. EXPERIMENTS & ANALYSIS

In this section, we present the results of our experimental

study on one synthetic and five real-world extremely imbal-

anced datasets. We tested the applicability of our proposed

algorithm to incorporate with different kinds of base classi-

fiers. We also show some visualizations to help understand

the difference between our proposed method and the other

imbalance learning methods. We evaluated the experiment

results with multiple criteria, and demonstrate the strength of

our proposed framework.

A. Synthetic Dataset

To provide more insights of our framework, we first show

the experimental results on the synthetic dataset. We create a

4×4 checkerboard dataset to validate our method. The dataset

contains 16 Gaussian components. All Gaussian components

share the same covariance matrix of 0.1 × I2. We set the

number of minority samples |P| as 1, 000, and the number

of majority |N | as 10, 000. The training set D, validation set

Ddev and test set Dtest were independently sampled from same

original distribution. See Fig. 4 for an example.

Fig. 4. An example of checkerboard dataset. Blue dots represent the majority
class samples, red ones represent the minority class samples.

1) Setup Details: We compared our proposed method SPE3

with following imbalance learning approaches:

- RandUnder (Random Under-sampling) randomly under-

sample the majority class to get a subset N ′ such that

|N ′| = |P|. The set N ′ ∪ P was then used for training.

- Clean (Neighbourhood Cleaning Rule based under-
sampling) [27] removes a majority instance if most of its

neighbors come from another class.

- SMOTE (Synthetic Minority Over-sampling TechniquE) [13]

generates synthetic minority instances between existing

minority samples until the dataset is balanced.

3In our implementation of SPE, we set the number of bins k = 20, and use
absolute error as the classification hardness, i.e., H(x, y, F ) = |F (x) − y|,
unless otherwise stated.

- Easy (EasyEnsemble) [18] utilizes RandUnder to train

multiple AdaBoost [32] models and combine their outputs.

- Cascade (BalanceCascade) [18] extends Easy by it-

eratively drop majority examples that were already well

classified by current base classifier.

In addition, according to our aforementioned discussion

in the Classification Hardness section, by considering the

hardness distribution our proposed framework SPE is able

to work with any kind of classifiers and optimize the final

performance in a model-specific way. Hence, we introduce

8 canonical classifiers in order to test the effectiveness and

applicability of different imbalance learning methods:

- K-Nearest Neighbors (KNN) [31]

- Decision Tree (DT) [6]

- Support Vector Machine (SVM) [7]

- Multi-Layer Perceptron (MLP) [8]

- Adaptive Boosting (AdaBoost) [32]

- Bootstrap aggregating (Bagging) [35]

- Random Forest (RandForest) [36]

- Gradient Boosting Decision Tree (GBDT) [37]

We apply imbalanced-learn [38] package to implement

aforementioned imbalance learning methods, and scikit-

learn [39], LightGBM [40], Pytorch [41] packages to imple-

ment the canonical classifiers. We use subscripts to denote the

number of base models in an ensemble classifier, e.g., Easy10

indicates Easy with 10 base models. Due to space limitation,

we only present the experimental results of AUCPRC in this

experiment, other metrics will be used in following extensive

experiments on real-world datasets.

2) Results on synthetic dataset: Table II lists the results on

checkerboard task. Note that to reduce randomness, we show

the mean and standard deviation of 10 independent runs. We

also list the hyper-parameters we used for each base classifier.

From the Table II we can observe that:

• SPE consistently outperform other methods on the checker-

board dataset using 8 different classifiers.

• Distance-based re-sampling lead to poor results when

cooperating with specific classifiers, e.g., SMOTE+KNN,

Clean+RandForest. We argue that the ignorance of dif-

ference in model capacity is the main reason that causes

invalidity to those re-sample methods.

• Comparing with other methods, ensemble methods Easy
and Cascade obtain better and more robust performance

but still worse than our proposed ensemble framework SPE.
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(a) cov = 0.05 (b) cov = 0.10 (c) cov = 0.15

Fig. 5. Training curve under different level of overlap.

3) Robustness under Class Overlapping: Furthermore, we

test the robustness of SPE, when the Gaussian components

have different levels of overlapping. We control the compo-

nents overlapping by replacing the original covariance matrix

from 0.1×I2 to 0.05×I2 and 0.15×I2. The distribution is less

overlapped when the covariance factor in covariance matrix

is smaller, and more overlapped when it is bigger. We keep

the size and imbalance ratio to be the same, and sample three

different checkerboard datasets respectively. Fig. 5 shows how

the AUCPRC (on test set) changes within training process:

• The level of distribution overlapping significantly influences

the classification performance, even though the size and

imbalance ratio of all datasets are totally the same.

• As the overlapping aggravates, the performance of

Cascade shows more obvious downward trend in later

iterations. The reason behind is that Cascade inclines to

overfit the noise samples, while SPE can alleviate this issue

by keeping a reasonable proportion of trivial and borderline

samples.

(a) Clean (b) SMOTE (c) Easy (d) Cascade (e) SPE

Fig. 6. Visualization of training set (upper, blue/red dot indicates a sample
from majority/minority class) and predict probability (lower, blue/red dot
indicates the classifier tend to classify a sample as majority/minority class)
on checkerboard dataset. Note that ensemble methods Easy, Cascade and
SPE train multiple base models in each iteration with different training sets,
so we show training sets of 5th and 10th model in their pipeline.

4) Intuitive Visualization: We give a visualization in Fig.

6 to show how the aforementioned imbalance learning ap-

proaches train / predict on checkerboard dataset.

As we can see, Clean tries to clean up the majority outliers

who were surrounded by minority data points, however, it

retains all the trivial samples so that the learning model can-

not focus on more informative data. SMOTE over-generalizes

minority class due to indistinguishable overlapping. Easy
performs simple random under-sampling and thus part of

majority samples are dropped which causes the information

loss. Cascade keeps many outliers in late iterations. Those

outliers finally lead to bad generalization. By contrast, SPE
gets a much more accurate and robust results by considering

the classification hardness distribution over the dataset.

B. Real-world Datasets

We choose several real-life datasets with highly skewed

class distribution to assess the effectiveness of our proposed

learning framework on realistic tasks.

Credit Fraud contains transactions made by credit cards in

September 2013 by European card-holders [2]. The task is

to detect frauds from credit card transaction records. It is a

highly imbalanced dataset with only 492 frauds out of 284,807

transactions, which brings a high imbalance ratio of 578.88:1.

Payment Simulation is a large-scale dataset with 6.35 million

instances. It simulates mobile money transactions based on

a sample of real transactions extracted from one month of

financial logs from a mobile money service implemented in

an African country. Similarly, it has 8,213 frauds out of

6,362,620 transactions and a high imbalance ratio 773.70:1.

Record Linkage is a dataset of element-wise comparison of

records with personal data from a record linkage setting. The

task requires us to decide whether the underlying records

belong to one person. The underlying records stem from the

epidemiological cancer registry of the German state of North

Rhine-Westphalia, which has 5,749,132 record pairs, and

20,931 of them are matches. KDDCUP-99 contains a standard

set of data to be audited, which includes a wide variety of

intrusions simulated in a military network environment. The

competition task was to build a network intrusion detector,

a predictive model capable of distinguishing between “bad”

connections, called intrusions or attacks, and “good” normal

connections. It is a multi-class task with 4 main categories of

attacks: DOS, R2L, U2R and probing (PRB). We formed 2

two-class imbalanced problems by taking the majority class

(i.e., DOS) and a minority class (i.e., PRB and R2L), namely,

KDDCUP (DOS vs. PRB) and KDDCUP (DOS vs. R2L).

Table III lists the statistics of each dataset.

1) Setup Details: For each real-world task, we use 60% of

the full data as the training set D and 20% as the validation set

Ddev (some classifiers like GBDT need validation set for early

stopping), the rest 20% is then used as the test set Dtest. All

results in this section were evaluated on the test set in order

to test the classifier’s generalized performance.

2) Results on Real-world Datasets: We first extend the

previous experiment on synthetic data to realistic datasets that

we mentioned above. Table IV lists the experimental results

of applying 6 different imbalance learning approaches (i.e.,

RandUnder, Clean, SMOTE, Easy, Cascade, and SPE)

combine with 5 different canonical classification algorithms

(i.e., KNN, DT, MLP, AdaBoost10, and GBDT10) on 5 real-
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TABLE III
STATISTICS OF THE REAL-WORLD DATASETS

Dataset #Attribute #Sample Feature Format Imbalance Ratio Model
Credit Fraud 31 284,807 Numerical 578.88:1 KNN, DT, MLP

KDDCUP (DOS vs. PRB) 42 3,924,472 Integer & Categorical 94.48:1 AdaBoost10
KDDCUP (DOS vs. R2L) 42 3,884,496 Integer & Categorical 3448.82:1 AdaBoost10

Record Linkage 12 5,749,132 Numerical & Categorical 273.67:1 GBDT10

Payment Simulation 11 6,362,620 Numerical & Categorical 773.70:1 GBDT10

TABLE IV
GENERALIZED PERFORMANCE ON 5 REAL-WORLD DATASETS.

Dataset Model Metric RandUnder Clean SMOTE Easy10 Cascade10 SPE10

Credit Fraud

KNN

AUCPRC 0.052±0.002 0.677±0.000 0.352±0.000 0.162±0.012 0.676±0.015 0.752±0.018
F1 0.112±0.007 0.821±0.000 0.559±0.001 0.250±0.020 0.792±0.023 0.843±0.016

GM 0.228±0.009 0.822±0.000 0.593±0.001 0.399±0.025 0.810±0.001 0.852±0.002
MCC 0.222±0.014 0.822±0.000 0.592±0.001 0.650±0.004 0.815±0.006 0.855±0.006

DT

AUCPRC 0.014±0.001 0.598±0.013 0.088±0.011 0.339±0.039 0.592±0.029 0.783±0.015
F1 0.032±0.002 0.767±0.004 0.177±0.006 0.478±0.021 0.737±0.023 0.838±0.021

GM 0.119±0.003 0.778±0.006 0.303±0.017 0.548±0.048 0.749±0.011 0.843±0.007
MCC 0.124±0.001 0.780±0.008 0.310±0.003 0.409±0.015 0.778±0.049 0.831±0.008

MLP

AUCPRC 0.225±0.050 0.001±0.000 0.527±0.017 0.605±0.016 0.738±0.009 0.747±0.011
F1 0.388±0.047 0.003±0.000 0.725±0.013 0.762±0.023 0.803±0.004 0.811±0.010

GM 0.494±0.040 0.040±0.000 0.665±0.060 0.748±0.019 0.806±0.007 0.828±0.003
MCC 0.178±0.008 0.000±0.000 0.718±0.006 0.705±0.004 0.744±0.046 0.826±0.008

AdaBoost10

AUCPRC 0.930±0.012 - - - - - - 0.995±0.002 1.000±0.000 1.000±0.000
KDDCUP F1 0.962±0.001 - - - - - - 0.997±0.000 0.999±0.000 0.999±0.000

(DOS vs. PRB) GM 0.964±0.001 - - - - - - 0.997±0.001 0.998±0.000 0.999±0.000
MCC 0.956±0.004 - - - - - - 0.992±0.001 0.993±0.003 0.999±0.000

AdaBoost10

AUCPRC 0.034±0.005 - - - - - - 0.108±0.011 0.945±0.005 0.999±0.001
KDDCUP F1 0.050±0.005 - - - - - - 0.259±0.058 0.965±0.005 0.991±0.003

(DOS vs. R2L) GM 0.164±0.011 - - - - - - 0.329±0.015 0.967±0.008 0.988±0.004
MCC 0.175±0.016 - - - - - - 0.214±0.004 0.905±0.056 0.986±0.004

Record Linkage GBDT10

AUCPRC 0.988±0.011 - - - - - - 0.999±0.000 1.000±0.000 1.000±0.000
F1 0.995±0.000 - - - - - - 0.996±0.000 0.998±0.000 0.998±0.000

GM 0.994±0.002 - - - - - - 0.996±0.000 0.998±0.000 0.998±0.000
MCC 0.780±0.000 - - - - - - 0.884±0.000 0.940±0.000 0.998±0.000

Payment Simulation GBDT10

AUCPRC 0.278±0.030 - - - - - - 0.676±0.058 0.776±0.004 0.944±0.001
F1 0.446±0.030 - - - - - - 0.709±0.021 0.851±0.003 0.885±0.001

GM 0.530±0.020 - - - - - - 0.735±0.011 0.851±0.001 0.885±0.001
MCC 0.290±0.023 - - - - - - 0.722±0.015 0.856±0.002 0.876±0.001

world classification tasks4. The performance was evaluated by

4 criterions (i.e., AUCPRC, F1-score, G-mean, and MCC) on

the test set. For reduce the effect of randomness, we show the

mean and standard deviation of 10 independent runs:

• SPE demonstrates the best performance on all tested real-

world tasks using 5 classifiers over 4 evaluation criteria.

• Clean + MLP performs poorly on Credit Fraud task since

Clean only cleans up noises and does not guarantee a

balanced dataset. As described above, the batch training

method will fail when the class distribution is skewed.

• RandUnder and Easy10 use randomized under-sampling

to get a small majority subset for training. They suffer from

severe information loss and high potential variance when

applying on highly imbalanced dataset.

Some results of Clean and SMOTE are missing in Table

IV due to lack of appropriate distance metric and unacceptable

computational cost. Take the KDDCUP (DOS vs. PRB) dataset

as an example, from our experiment, Clean needs more than

8 hours to calculate the distance between each data sample.

Similarly, SMOTE generates millions of synthetic samples that

further enlarge the scale of the training set.

4Due to space limitation, Table 5 only lists some most representative re-
sults. See github.com/ZhiningLiu1998/self-paced-ensemble
for additional experimental results on more datasets and classifiers.

C. Extensive Experiments on Real-world Datasets

We further introduce some other widely used re-sampling

and ensemble-based imbalance learning methods for a more

comprehensive comparison. By showing supplementary infor-

mation, e.g., the number of samples used for training and the

processing time, we demonstrate the efficiency of different

methods on real-world highly imbalanced tasks.

1) Comparison with Re-sampling Methods: 9 more re-

sampling based imbalance learning methods were introduced,

including 5 under-sampling methods, 3 over-sampling methods

and 2 hybrid-sampling methods (see Table V):

- NearMiss [11] selects |P| samples from the majority class

for which the average distance of the k nearest samples of

the minority class is the smallest.

- ENN (Edited Nearest Neighbor) [42] aims to remove noisy

samples from the majority class for which their class differs

from the one of their nearest-neighbors.

- TomekLink [12] removes majority samples by detecting

“TomekLinks”. A TomekLink exists if two samples of

different class are the nearest neighbors of each other.

- AllKNN [43] extends ENN by repeating the algorithm

multiple times, the number of neighbors of the internal

nearest neighbors algorithm is increased at each iteration.

- OSS (One Side Sampling) [26] makes use of TomekLink
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TABLE V
GENERALIZED PERFORMANCE (AUCPRC) OF 12 DIFFERENT RE-SAMPLING METHODS.

Category Method LR KNN DT AdaBoost10 GBDT10 #Sample Re-sampling Time(s)
No re-sampling ORG 0.587±0.001 0.721±0.000 0.632±0.011 0.663±0.026 0.803±0.001 170885 - - -

Under-sampling

RandUnder 0.022±0.008 0.068±0.000 0.011±0.001 0.013±0.000 0.511±0.096 632 0.07
NearMiss 0.003±0.003 0.010±0.009 0.002±0.000 0.002±0.001 0.050±0.000 632 2.06
Clean 0.741±0.018 0.697±0.010 0.727±0.029 0.698±0.032 0.810±0.003 170,680 428.88
ENN 0.692±0.036 0.668±0.013 0.637±0.021 0.644±0.026 0.799±0.004 170,779 423.86

TomekLink 0.699±0.050 0.650±0.031 0.671±0.018 0.659±0.027 0.814±0.007 170,865 270.09
AllKNN 0.692±0.041 0.668±0.012 0.652±0.023 0.652±0.015 0.808±0.002 170,765 1066.48
OSS 0.711±0.056 0.650±0.029 0.671±0.025 0.666±0.009 0.825±0.016 163,863 240.95

Over-sampling

RandOver 0.052±0.000 0.532±0.000 0.051±0.001 0.561±0.010 0.706±0.013 341,138 0.14
SMOTE 0.046±0.001 0.362±0.005 0.093±0.002 0.087±0.005 0.672±0.026 341,138 1.23
ADASYN 0.017±0.001 0.360±0.004 0.031±0.001 0.035±0.007 0.496±0.081 341,141 1.87

BorderSMOTE 0.067±0.006 0.579±0.010 0.145±0.003 0.126±0.011 0.242±0.020 341,138 1.89

Hybrid-sampling
SMOTEENN 0.045±0.001 0.329±0.006 0.084±0.004 0.074±0.012 0.665±0.017 340,831 478.36
SMOTETomek 0.046±0.001 0.362±0.004 0.094±0.004 0.094±0.004 0.682±0.033 341,138 293.75

Under-sampling + Ensemble SPE10 0.755±0.003 0.767±0.001 0.783±0.015 0.808±0.004 0.849±0.002 632×10 0.116×10

by running it multiple times to iteratively decide if a sample

should be kept in a dataset or not.

- RandOver (Random Over-sampling) randomly repeats

some minority samples to balance the class distribution.

- ADASYN (ADAptive SYNthetic over-sampling) [14] focuses

on generating samples next to the original samples which

are wrongly classified using a k-nearest neighbors classifier.

- BorderSMOTE (Borderline Synthetic Minority Over-
sampling TechniquE) [28] offers a variant of the SMOTE
algorithm, where only the borderline examples could be

seeds for over-sampling.

- SMOTEENN (SMOTE with Edited Nearest Neighbours
cleaning) [30] utilizes ENN as the cleaning method after

applying SMOTE over-sampling to obtain a cleaner space.

- SMOTETomek (SMOTE with Tomek links cleaning) [29]

uses TomekLink instead of ENN as the cleaning method.

As mentioned before, running some of these re-sampling

methods on large-scale datasets can be extremely slow. It is

also hard to define an appropriate distance metric on a dataset

with non-numerical features. With these considerations, we

apply all methods on the Credit Fraud dataset. This dataset

has 284,807 samples, and only contains normalized numerical

features, which enables all distance-based re-sampling meth-

ods to achieve their maximum potential. Thus we can fairly

compare the pros and cons of different methods.

We use 5 different classifiers, i.e., Logistic Regression (LR),

KNN, DT, AdaBoost10, and GBDT10, to collaborate with:

ORG which refers to train classifier over the original training

set with no re-sampling, 12 re-sampling methods which refer

to train classifier on the re-sampled training set, and SPE
which refers to use our proposed method to get an ensemble

of the given classifier. We also list the number of examples

that used for training and the time it takes to perform re-

sampling for each method. All aforementioned re-sampling

methods were implemented using imbalanced-learn Python

package 0.4.3 [38] with Python 3.7.1, and run on an Intel

Core i7-7700K CPU with 16 GB RAM. Experimental results

were shown in Table V:

• SPE significantly boosts the performance of various canon-

ical classification algorithms on highly imbalanced dataset.

Comparing with other re-sampling methods, it only requires

very little training data and short processing time to achieve

such effects.

• Most methods can only obtain reasonable results (better

than ORG) when cooperating with specific classifiers. For

instance, TomekLink works well with LR, DT, and GBDT

but fails to boost the performance of KNN and AdaBoost.

The reason behind is that they perform model-agnostic re-

sampling without considering classifier’s capacity.

• On a dataset with such high imbalance ratio (IR=578.88:1),

the minority class is often poorly represented and lacks a

clear structure. Therefore, straightforward application of re-

sampling, especially over-sampling that rely on relations

between minority objects can actually deteriorate the classi-

fication performance, e.g., advanced over-sampling method

SMOTE perform even worse than RandOver and ORG.

2) Comparison with Ensemble Methods: In this experi-

ment, we introduce four other ensemble based imbalance

learning approaches for comparison:

- RUSBoost [44], which applies RandUnder within each

iteration of Adaptive Boosting (AdaBoost) pipeline.

- SMOTEBoost [33], which applies SMOTE to generate |P|
new synthetic minority samples within each iteration of

AdaBoost pipeline.

- UnderBagging [45] which applies RandUnder to get

each bag for Bagging [35]. Note that the only difference

between UnderBagging and Easy is that Easy use

AdaBoost as its base classifier.

- SMOTEBagging [17], which applies SMOTE to get each

bag for Bagging [35], where each bag’s sample quantity

varies.

Our proposed method was then compared with 4 above

methods and the Cascade that we used before. They were

considered as the most effective and widely-used imbalance

learning methods in very recent reviews [5], [46]. Considering

most of the previous approaches were proposed in combination

with C4.5 [17], [44], [45], for a fair comparison, we also

use the C4.5 classifier as the base model in this experi-

ment. Easy was not included here since it is equivalent to

UnderBagging when cooperating with C4.5 classifier.
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TABLE VI
GENERALIZED PERFORMANCE OF 6 ENSEMBLE METHODS WITH DIFFERENT AMOUNT OF BASE CLASSIFIERS.

# Base Classifiers Metric RUSBoostn SMOTEBoostn UnderBaggingn SMOTEBaggingn Cascaden SPEn

n = 10

AUCPRC 0.424±0.061 0.762±0.011 0.355±0.049 0.782±0.007 0.610±0.051 0.783±0.015
F1 0.622±0.055 0.842±0.012 0.555±0.053 0.818±0.002 0.757±0.031 0.832±0.018

GM 0.637±0.045 0.847±0.014 0.577±0.044 0.819±0.002 0.760±0.031 0.835±0.018
MCC 0.189±0.016 0.822±0.018 0.576±0.044 0.819±0.002 0.759±0.031 0.835±0.018

# Sample 6,320 1,723,295 6,320 1,876,204 6,320 6,320

n = 20

AUCPRC 0.550±0.032 0.783±0.005 0.519±0.125 0.804±0.013 0.673±0.008 0.811±0.005
F1 0.722±0.021 0.840±0.009 0.678±0.088 0.833±0.005 0.779±0.012 0.856±0.008

GM 0.725±0.019 0.844±0.009 0.685±0.078 0.837±0.005 0.785±0.010 0.858±0.010
MCC 0.202±0.006 0.833±0.005 0.685±0.078 0.837±0.005 0.784±0.010 0.857±0.010

# Sample 12,640 3,478,690 12,640 3,752,408 12,640 12,640

n = 50

AUCPRC 0.714±0.025 0.786±0.009 0.676±0.022 0.818±0.004 0.696±0.028 0.822±0.006
F1 0.784±0.010 0.825±0.010 0.773±0.006 0.839±0.009 0.776±0.009 0.865±0.012

GM 0.784±0.010 0.830±0.010 0.774±0.006 0.843±0.008 0.785±0.011 0.868±0.012
MCC 0.297±0.015 0.794±0.007 0.774±0.006 0.842±0.008 0.784±0.011 0.868±0.012

# Sample 31,600 8,937,475 31,600 9,381,020 31,600 31,600

TABLE VII
PERFORMANCE (AUCPRC) OF 6 ENSEMBLE METHODS WITH MISSING VALUES.

Missing Ratio RUSBoost10 SMOTEBoost10 UnderBagging10 SMOTEBagging10 Cascade10 SPE10

0% 0.424±0.061 0.762±0.011 0.355±0.049 0.782±0.007 0.610±0.051 0.783±0.015
25% 0.277±0.043 0.652±0.042 0.258±0.053 0.684±0.019 0.513±0.043 0.699±0.026
50% 0.206±0.025 0.529±0.015 0.161±0.013 0.503±0.020 0.442±0.035 0.577±0.016
75% 0.084±0.015 0.267±0.019 0.046±0.006 0.185±0.028 0.234±0.023 0.374±0.028

Because the number of base models significantly influences

the performance of ensemble methods, we test each method

with 10, 20 and 50 base models in its ensemble. We must note

that such comparison is not totally fair since over-sampling

methods need far more data and resources to train each base

model. In consideration of computational cost (SMOTEBoost
and SMOTEBagging generate a huge amount of synthetic

samples on large-scale highly-imbalanced dataset, see Table

VI), all ensemble methods were applied on the Credit Fraud

dataset with AUCPRC, F1-score, G-mean, MCC for evalua-

tion. For each method, we also list the total number of data

samples (# Samples.) that used for training all base models in

the ensemble. Table VI shows the experimental results of 5

ensemble methods and our proposed method:

• Comparing with other 3 under-sampling based ensemble

methods, SPE uses the same amount of training data but

significantly outperforms them over 4 evaluation criteria.

• Comparing with 2 over-sampling based ensemble methods,

SPE demonstrates competitive performance using far less

(around 1/300) training data.

• Over-sampling based methods are woefully sample-

inefficient. They generate a substantial number of synthetic

samples under high imbalance ratio. As a result, they further

enlarge the scale of training set thus need far more comput-

ing resources to train each base model. Higher imbalance

ratio and larger dataset can make this situation even worse.

We conduct more detailed experiments on Credit Fraud and

Payment Simulation datasets, as shown in Fig. 7. We can see

that although SPE uses little data for training, it can still obtain

a desirable result which is even better than over-sampling

based methods. Moreover, on both tasks SPE shows consistent

performance in multiple independent runs. Compared to SPE,

other methods are less stable and have greater randomness.

(a) Credit Fraud (b) Payment Simulation

Fig. 7. Generalized performance of ensemble methods on two real-world
tasks with the number of base classifiers (n) ranging from 1 to 100. Each
curve shows the results of 10 independent runs. Notice that the results of
SMOTEBoost and SMOTEBagging are missing on Payment Simulation task
due to lack of appropriate distance metric and large computational cost.

3) Robustness under Missing Values: Finally, we test the

robustness of different ensemble methods when there are

missing values in the dataset. It is also a common problem

that widely existing in real-world applications. To simulate the

situation of missing values, we randomly select values from all

features in both training and test datasets, then replace them

with meaningless 0. We tested all methods on the Credit Fraud

dataset, where 0% / 25% / 50% / 75% values are missing.

Results were reported in Table VII. We can observe that

SPE demonstrates robust performance under different level

of missing, while other methods performing poorly when the

missing ratio is high. We also notice that tested methods

show different sensitivity to missing values. For an example,

SMOTEBagging obtains results better than SMOTEBoost on

the original dataset, but this situation is reversed when the

missing ratio is greater than 50%.
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4) Sensitivity to Hyper-parameters: SPE has 3 key hyper-

parameters: number of base classifiers n, number of bins k and

hardness function H. In previous discussion we demonstrate

the influence of the number of base classifiers (n). Now

we conduct experiment to verify the impact of the number

of bins (k) and different choices of hardness function (H).

Specifically, we test SPE10 on two real-world tasks with k
ranging from 1 to 50, in cooperation with 3 different hardness

functions. They are Absolute Error (AE), Squared Error (SE)

and Cross Entropy (CE), where:

1) HAE(x, y, F ) = |F (x)− y|
2) HSE(x, y, F ) = (F (x)− y)2

3) HCE(x, y, F ) = −ylog(F (x))− (1− y)log(1− F (x))

The results in Fig. 8 show that our method is robust to different

selection of k and H. Note that k determines how detailed our

hardness distribution approximation is, thus setting a small k,

e.g., k < 10, may lead to poor performance.

(a) Credit Fraud (b) Payment Simulation

Fig. 8. Performance (mean of 10 independent runs) of SPE10 on two real-
world tasks using different number of bins (k) and hardness function (H).

VII. RELATED WORK

Imbalanced data classification has been a fundamental prob-

lem in machine learning [9], [10]. Many research works have

been proposed to solve such problem. This research field

is also known as Imbalance Learning. Recently, Guo et al.
provided a systematic review of existing methods and real-

world applications in the field of imbalance learning [5].

Most of proposed works employed distance-based methods

to obtain re-sampled data for training canonical classifiers

[12]–[14], [27]. Based on them, many works combine re-

sampling with ensemble learning [17], [33], [44], [45]. Such

strategies have proven to be very effective [46]. Distance-

based methods have several deficiencies. First, it is hard to

define distance on a real-world dataset, especially when it

contains categorical features or missing values. Second, the

cost of computing distances between each samples can be

huge when applying on large-scale datasets. Even though the

distance-based methods have been successfully used for re-

sampling, they do not guarantee desirable performance for

different classifiers due to their model-agnostic designs.

Some other methods try to assigning different weights to

samples rather than re-sampling the whole dataset [15], [16].

They require assistance from domain experts and may fail

when cooperating with batch training methods (e.g. neural

network). We prefer not to include such methods in this paper

because previous experiments [16] have shown that setting

arbitrary costs without domain knowledge do not allow them

to achieve their maximum potential.

There are some works in other domains (e.g. Active Learn-

ing [47], Self-paced Learning [48]) that adopt the idea of

selecting “informative” samples but focus on completely dif-

ferent problems. Specifically, an active learner interactively

queries the user to obtain the labels of new data points, while

a self-paced learning algorithm tries to present the training

data in a meaningful order that facilitates learning. However,

they perform the sampling without considering the overall

data distribution, thus their fine-tuning process can be easily

disturbed when the training set is imbalanced. In comparison,

SPE applies under-sampling + ensemble strategy to balance

the dataset, making it applicable to any canonical classifier. By

considering the dynamic hardness distribution over the whole

dataset, SPE performs adaptive and robust under-sampling

rather than blindly selecting “informative” data samples.

To summarize, traditional distance-based re-sampling meth-

ods ignore the difference of model capacity, thus may lead to

poor performance when cooperating with specific classifiers.

They also require additional computation to calculate distances

between samples, making them computationally inefficient,

especially on large datasets. Moreover, it is often difficult

to determine a clear distance metric in practice, as real-

world datasets may contain categorical features and missing

values. Most ensemble-based methods integrate such distance-

based re-sampling into their pipelines, thus are still negatively

affected by the above factors. Comparing with existing works,

SPE doesn’t require any pre-defined distance metric or com-

putation, making it easier to apply and more computationally

efficient. By self-paced harmonizing the hardness distribution

w.r.t the given classifier, SPE is adaptive to different models

and robust to noises and missing values.

VIII. CONCLUSIONS

In this paper we have described the problem of highly im-
balanced, large-scale and noisy data classification that widely

exists in real-world applications. Under such a scenario, we

have demonstrate that canonical machine learning / imbalance

learning approaches suffer from unsatisfactory results and low

computational efficiency.

Self-paced Ensemble, a novel learning framework for mas-

sive imbalance classification has been proposed in this pa-

per. We argue that all of the difficulties - high imbalance

ratio, overlapping between classes, presence of noises - are

critical for massive imbalance classification. Hence, we have

introduced the concept of classification hardness distribution

to integrate the information of these difficulties into our

learning framework. We conducted extensive experiments on

a variety of challenging real-world tasks. Comparing with

other methods, our framework has better performance, wider

applicability, and higher computational efficiency. Overall, we

believe that we have provided a new paradigm of integrating

task difficulties into the imbalance classification system. Var-

ious real-world applications can benefit from our framework.
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