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Abstract. Recent years have witnessed a surge of interests in Individual
Treatment Effect (ITE) estimation, which aims to estimate the causal
effect of a treatment (e.g., job training) on an outcome (e.g., employment
status) for each individual (e.g., an employee). Various machine learning
based methods have been proposed recently and have achieved satisfac-
tory performance of ITE estimation from observational data. However,
most of these methods overwhelmingly rely on a large amount of data
with labeled treatment assignments and corresponding outcomes. Un-
fortunately, a significant amount of labeled observational data can be
difficult to collect in real-world applications due to time and expense con-
straints. In this paper, we propose a Semi-supervised Individual Treat-
ment Effect estimation (SemiITE) framework with a disagreement-based
co-training style, which aims to utilize massive unlabeled data to better
infer the factual and counterfactual outcomes of each instance with lim-
ited labeled data. Extensive experiments on two widely used real-world
datasets validate the superiority of our SemiITE over the state-of-the-art
ITE estimation models.
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1 Introduction

Estimating individual treatment effect (ITE) is an important problem in causal
inference, which aims to estimate the causal effect of a treatment on an outcome
for each individual, e.g., “how would participating in a job training would influ-
ence the employment status of an employee?". ITE estimation plays an impor-
tant role in a wide range of areas, such as decision making and policy evaluation
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regarding healthcare [9,20], education [15], and economics [27]. A traditional
solution for this problem is to conduct randomized controlled trials (RCTs),
which randomly divide individuals into treatment group and control group with
different treatment assignments (e.g., participating in the job training or not),
and then estimate the causal effect of treatment assignment with the outcome
difference over these two groups. However, performing RCTs could be costly,
time-consuming, and even unethical [5,13]. To overcome these issues, different
from RCTs, many machine learning based methods [6,18,26,30] have been pro-
posed to estimate individual treatment effect directly from observational data
and have achieved great success in recent years.

Despite the great success the aforementioned machine learning based mod-
els have achieved in causal effect estimation, most of them often require a large
amount of labeled observational data (i.e., instances that come with treatment as-
signments and corresponding factual outcomes) in the training process. To show
how the amount of labeled observational data affects the ITE estimation perfor-
mance, we conduct an initial exploration by training two ITE estimation models
CFR [26] and TARNet [17] on the IHDP dataset [4] with different proportions
of labeled observational data. The ITE estimation prediction on the test data is
shown in Figure 1. Here, we adopt the widely used metrics of

√
εPEHE and εATE

[13] (more details can be seen in Section 4) to evaluate the performance of the
two models on ITE estimation. We can observe that the performance of these
two models is poor when the proportion of training data is low, but improves
significantly as the proportion increases to a large percentage. This example
demonstrates the indispensability of the large amount of labeled observational
data for existing state-of-the-art ITE estimation models. However, in many do-
mains such as health care, the labeled observational data is often very scarce.
The process of collecting such labeled observational data could take years and
be extremely expensive, or it may face serious ethical issues [14]. Fortunately,
unlabeled observational data (i.e., instances only with covariates) is easy to ob-
tain, and many studies [8,34] have shown that unlabeled data is also beneficial
to the performance of machine learning models. Exploiting unlabeled data for
ITE estimation can greatly reduce the cost of collecting labeled observational
data. Therefore, how to estimate ITE from limited labeled observational data
by using unlabeled data is a pressing issue in causal inference.

To tackle the above problem, in this paper, we propose to use co-training
framework [3] to harness the power of unlabeled observational data to aid ITE
estimation. Co-training is a popular semi-supervised learning framework that
has achieved great success in many problems. It first trains multiple diverse
base learners on the limited labeled data, then the trained base learners are
used to predict unlabeled data. At last, the most confident predictions of the
base learners on the unlabeled data are iteratively added into the labeled data
set. However, such co-training frameworks cannot be directly grafted into the
ITE estimation problem, mainly because of the following difficulties. First, the
existence of hidden confounders (i.e., the unobserved variables that influence
both the treatment and the outcome) may result in confounding bias in ITE
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Fig. 1: The performance of CFR [26] and TARNet [17] for ITE estimation on the IHDP
dataset with different proportions of labeled observational data (lower is better).

estimation, hence how to control the confounding bias is an issue to be addressed.
Second, traditional co-training framework relies on multiple views of data (e.g.,
the acoustic attribute view and pictorial attribute view for a movie sample) to
train multiple diverse base learners, otherwise the co-training degrades to self-
training [21]. However, it is hard to collect such observational data with multiple
views in causal inference, hence generating base causal models with diversity
is critical for learning the individual treatment effect. Third, most of existing
co-training frameworks [2,8,32] are mainly designed for classification problems.
When it comes to ITE estimation, which is naturally a regression problem in
most cases, base learners usually need to be re-trained to check whether the
candidate instance prediction reduces their error rate in each instance selection
round, which would increase the cost of computation and time. Thus designing
an appropriate co-training strategy for ITE estimation to avoid re-training issue
is also pressing.

To address the aforementioned difficulties, we propose a novel Semi-supervised
Individual Treatment Effect estimation framework (SemiITE ) via disagreement-
based co-training. SemiITE builds a shared module to capture the hidden con-
founders so as to alleviate the confounding bias. To effectively enhance the ITE
estimation performance under the semi-supervised setting, SemiITE generates
three base potential outcome prediction models with diversity in a variety of
ways. Moreover, to better utilize the unlabeled observational data, we design a
novel co-training strategy in SemiITE based on the disagreement information of
the three base models, which can select the most confident unlabeled instance
predictions directly without re-training in each instance selection round. The
following are the main contributions of our work:

– We formulate a novel research problem to utilize unlabeled observational
data in a co-training manner for better individual treatment effect estima-
tion.
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Fig. 2: An overview of the proposed semi-supervised ITE estimation framework Semi-
ITE with disagreement-based co-training that utilizes unlabeled instances.

– We design a novel disagreement-based co-training framework SemiITE for
semi-supervised individual treatment effect estimation, which can make use
of unlabeled instances effectively, eliminate confounding bias, and avoid the
re-training issue in each instance selection round.

– We perform extensive experiments and the results show that the proposed
ITE estimation framework SemiITE is superior to existing state-of-the-art
methods for ITE estimation when labeled observational data is limited.

2 Preliminaries

Notations. Let L = {(x1, t1, y
t1), ..., (xN , tN , y

tN )} denote the set of labeled
observational instances with covariates, treatment assignments, and correspond-
ing outcomes, where xi ∈ Rd, ti ∈ {0, 1}, yti represent the covariates, treatment
assignment, observed factual outcome given treatment assignment ti of instance
i, respectively; and N is the number of labeled instances. Let U = {x1, ...,xM}
denote the set of unlabeled instances only with covariates, where M is the num-
ber of unlabeled instances.
Problem Statement. We develop our framework based on the potential out-
come framework [24,25], which is widely used in causal inference. The individual
treatment effect of instance i is defined as τi = y1i −y0i . Noting that in real-world
scenarios, only one of the potential outcomes can be observed for each instance,
and the remaining unobserved potential outcome is also known as the counter-
factual outcome. Inferring the counterfactual outcome from observational data
is one of the most challenging tasks in causal inference [25]. Using the above,
we provide the formal problem statement as follows: given the set of labeled
observational instances L = {(xi, ti, y

ti)}Ni=1 and the set of unlabeled instances
U = {x1, ...,xM}, our goal is to learn ITE τi for each instance i from limited
labeled observational data by making use of massive unlabeled data.
Co-training. Co-training [3] is a widely used solution to utilize unlabeled data
to aid prediction in semi-supervised learning. In co-training, multiple base learn-
ers will be trained on the limited labeled data. Then for each base learner, the
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most confident predictions of unlabeled samples predicted by its peer base learn-
ers would be chosen to add into the labeled data set and the model will be refined
using the newly labeled data set. The above steps will repeat until no base learn-
ers update or a preset number of learning rounds has been executed.

3 Proposed Method

In this section, we elaborate the proposed SemiITE, a novel framework which can
utilize unlabeled instances for ITE estimation. Figure 2 depicts an overview of
SemiITE. The framework mainly contains three components: a shared module,
triple base potential outcome prediction models, and a co-training strategy.

More specifically, we first build a shared module to capture deep information
for each instance and to balance the latent representations of treatment group
and control group, then build three backbone neural network based models with
different structures and initializations to infer potential outcomes, noting that
the shared module and the three backbone models are integrated as an ensemble
model. We first train the ensemble model using labeled observational instance
set L, then in each round of the co-training, we select some instance(s) with its
predicted potential outcomes by fitting the unlabeled instances to the trained
ensemble model according to the disagreement information of the three backbone
prediction models and add them to the labeled instance set, until all the instances
in the unlabeled set U are selected or the number of training rounds reaches the
preset maximum.

3.1 Model Structure of SemiITE

First, we illustrate the model structure of the proposed framework. Generally, the
model structure of SemiITE contains a shared module which aims to capture the
hidden confounders and three potential outcome prediction models for inferring
individual treatment effect.
Shared module. To conduct unbiased ITE estimation [18], we capture the hid-
den confounders in the proposed framework by building a shared module with
a multi-layer neural network. This shared module maps the original covariates
to latent space and generates shared latent representation of each instance for
the following base potential outcome prediction models. Furthermore, as proved
in [26], the representations with closer distance between treatment and con-
trol groups can help mitigate the biases in causal effect estimation, thus we
refine the representations generated by the shared module to obtain balanced
representations between treatment group and control group towards more un-
biased ITE estimation, which will be introduced later. For the shared module
which is denoted as Ms, we aim to learn a representation learning function fs :
X ∈ Rd → Rm, which maps the observed covariates to an m-dimensional latent
space. Specifically, we parameterize the representation learning function fs by
stacking Ls neural network layers. The representations generated by the shared
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module for instance i can be formulated as follows:

hi = fs(xi) = ϕ(WLs
...ϕ(W 1xi + b1) + bLs

), (1)

where xi is the original covariates of instance i and hi ∈ Rm is the learned
representation of instance i by function fs, ϕ(·) denotes the ReLU activation
function, W S and bS (S = 1, 2, ..., Ls) are the learning weight matrix and bias
term of the S-th layer, respectively.
Triple base prediction models with diversity. To ensure the effectiveness
of the co-training strategy, the base models should be diverse, which can help
address the limited label issue [21,8], because if all of the base learners are identi-
cal, the training process with multiple learners will degrade to self-training with
a single learner. Conventional co-training based methods typically require suffi-
cient and redundant views of data to train the base learners in order to diversify
them [19,22]. Given that the requirement for data with sufficient views is too
stringent to meet in causal inference due to the expensive and time-consuming
nature of observational data collection, in this work we build three outcome pre-
diction models M1, M2, and M3 by stacking multiple neural network layers to
infer individual treatment effect for each instance and achieve the diversity of the
three outcome prediction models from the following several aspects. First, we let
the network structures of the three potential outcome prediction models differ.
We assign different values of the depth and width, i.e., the number of hidden
layers and neurons in each layer for each base model. Second, we let the learning
weights of network architecture of each base model to be initialized by different
methods. We take Gaussian random initialization, uniform random initializa-
tion, and Glorot initialization [10] on M1, M2, and M3, respectively. Third, we
use different optimization methods to update the three potential outcome pre-
diction models. In particular, we use stochastic gradient descent to optimize M1

and M2, Adam optimization to optimize M3. Fourth, we let Ms and M1 to be
updated together after adding selected instances with outcomes predicted by
M2 and M3 to the set of labeled instances while fixing the other modules. M2

and M3 will be updated separately while fixing the other modules, including the
shared module Ms.

Specifically, we aim to learn a prediction function fv : Rm → R (v = 1, 2, 3)
for each potential outcome prediction modelMv and parameterize the prediction
function fv by stacking multiple layers of neural network. With the representa-
tion hi of instance i by the aforementioned representation learning function fs(·)
and the corresponding treatment assignment ti ∈ {0, 1}, the predicted outcome
yi with treatment ti of instance i in model Mv (v = 1, 2, 3) can be computed by
the function fv as:

fv(hi, ti) =

{
ŷti=0
i = f0v (hi) if ti = 0

ŷti=1
i = f1v (hi) if ti = 1,

(2)

where f0v and f1v are parameterized by Lv fully connected layers followed by an
output layer for ti = 0 and ti = 1, respectively. More specifically, the formulation
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of function f tv (t = 0, 1) can be written as:

f tv(hi) = wtϕ(W t
Lv
...ϕ(W t

1hi + c1) + cLv ) + ct, (3)

where ϕ(·) denotes the ReLU activation function, W t
K and cK (K = 1, 2..., Lv)

are the weight matrix and bias term for the K-th hidden layer, respectively. wt

is the weight vector and ct is the corresponding bias term of the final prediction
layer.

Besides, we propose to utilize HSIC (Hilbert-Schmidt Independence Crite-
rion) [12] to enhance and quantify the diversity of the three base models by
measuring the dependence of the predicted factual outcomes from the three pre-
diction models. Assuming that the predicted factual outcomes by M1, M2, and
M3 for n samples are Y 1, Y 2, and Y 3 ∈ Rn, respectively, the diversity of the
three base models can be calculated as follows:

Ldiv =
∑

i,j∈{1,2,3},i<j

HSIC(Y i,Y j),

where HSIC(Y i,Y j) =
1

(n− 1)2
KiJKjJ .

(4)

Here, Ki and Kj are kernel matrices for prediction vectors Y i and Y j , respec-
tively. In this work, we use Gaussian kernel for computing the kernel matrix.
J = I − 1

n1, where I is identity matrix and 1 is the vector with all elements
of 1. Smaller HSIC value indicates stronger independence between the two vari-
ables. More details about the derivation can be found in [12]. Furthermore, based
on the three potential outcome prediction models with diversity, we can use the
disagreement information between them to design a novel co-training strategy
to avoid the re-training issue in each instance selection round. More details can
be found in section 3.3.

3.2 Loss Function

With the above network structure including Ms, M1, M2, and M3, we design a
loss term to combine these components for inferring potential outcomes in an
end-to-end manner.
Loss for predicted potential outcomes of M1, M2, and M3. First we need
to minimize the difference between the inferred factual outcome by function fv
(v = 1, 2, 3) and the observed factual outcome. We use mean squared error (MSE)
function to evaluate the predicted outcomes to approximate the observed factual
outcomes. Given the set of labeled observational instances L = {(xi, ti, y

ti)}Ni=1,
the loss term for the three outcome prediction models can be written as:

Lmse =

3∑
v=1

N∑
i=1

MSE(fv(fs(xi), ti), y
ti), (5)

Loss for representation balancing. Due to the fact that we only minimize
the error of factual outcomes in Eq. (5), whereas the counterfactual distribu-
tion generally differs from the factual distribution, which lead to a biased ITE
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estimation [17]. Therefore, it is necessary to balance the distributions of rep-
resentations generated by the shared module Ms between the treatment group
and the control group, which will help with the unbiased ITE estimation. Here,
following previous work [14], we use integral probability metric (IPM) to mea-
sure the difference between the representation distributions of instances in the
treatment group and those in the control group. We denote the balance term as
LIPM .
Diversity Term. Besides, we add the HSIC term Ldiv shown in Eq. (4) into
the overall loss function to control and ensure the diversity between the three
prediction base models in the training process.
Overall loss. To sum up, the final loss function of our proposed framework
SemiITE can be written as follows:

L = Lmse + αLIPM + βLdiv + γ‖θ‖22, (6)

where α, β, and γ are hyperparameters to control the trade-off between corre-
sponding loss term and other terms. ‖θ‖22 is the regular term imposed on all
learning parameters θ to avoid over-fitting.

3.3 Co-training Strategy via Disagreement

In this subsection, we introduce the co-training strategy of SemiITE, in which
the framework chooses the predictions of unlabeled instances predicted by the
three different potential outcome prediction models based on their disagreement
information, and the three models will be refined by these chosen unlabeled
instances iteratively. In addition, we illustrate that SemiITE avoids re-training
issue in each instance selection round, while such issue exists in previous work
[35,22] for regression with co-training.

Before introducing the proposed co-training strategy of SemiITE, we present
the re-training issue in traditional co-training for regression problem, which in-
creases the computational cost greatly. We take an example of traditional co-
training regression method [35] to present the issue. Two different regression
models are used in this method, which estimates the prediction confidence for
each unlabeled sample based on the following principle: whether the error rate of
regression model is reduced after adding new predicted sample from unlabeled
data set to the training data set. Thus, the method needs to calculate the error
reduction rate ∆xu

=
∑

xi∈L(yi − h(xi))
2 − (yi − h′(xi))

2 on the training set
for each candidate unlabeled instance xu, where h is the original learner and
h′ is the newly trained learner by adding xu to the training set. Finally, the
instance with the largest positive ∆xu would be chosen to add into the training
set. One can see that we need to re-train the model |U | times in each instance
selection round when the two regression models are parameterized (e.g., SVM,
Neural networks), which demands a lot of computational resources.

To address the above problem, we utilize the disagreement information of the
three outcome prediction models to select unlabeled instance without re-training
the models in each instance selection round. Next we introduce the co-training
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Algorithm 1 SemiITE
Input: The labeled set L = {(xi, ti, y

ti)}Ni=1, unlabeled set U = {xi}Mj=1, and
the maximum number of instance selection rounds T
Output: The shared module Ms and three outcome prediction models M1, M2,
and M3

1: Initialization:
2: Build network modules Ms, M1, M2, and M3

3: L1, L2, L3 = L
4: Train Ms, M1, M2, and M3 based on L in Eq. (6)
5: Training:
6: for t = 1→ T do
7: for v = 1→ 3 do
8: CLv= ∅
9: xu ← chosen unlabeled instance based on Eq. (7)

10: CLv= CLv ∪ (xu, 1, fk(fs(xu), 1)) (k 6= v)
11: xw ← chosen unlabeled instance based on Eq. (8)
12: CLv= CLv ∪ (xw, 0, fh(fs(xw), 0)) (h 6= k, v)
13: L̃v = Lv ∪ CLv

14: if v = 1 then
15: Train Ms and M1 on L̃v

16: else
17: Train Mv on L̃v

18: end if
19: end for
20: end for
21: return Ms, M1, M2 and M3

strategy of SemiITE to avoid the re-training issue when estimating individual
treatment effect. First, we utilize the set of labeled observational instances L
with treatment assignments and corresponding factual outcomes to train the
initialized holistic model, then we can obtain a trained inference model denoted
asM. Then we begin to conduct the co-training procedure to choose instances
from unlabeled set U for T rounds. In each round, we first fit the unlabeled
instances only with covariates into the trained inference modelM, then we can
obtain the potential outcomes yti=1

i |v and yti=0
i |v (v = 1, 2, 3) by the function

fv(hi, ti) for each unlabeled instance i. After that, we choose unlabeled instances
by the disagreement information between M1, M2, and M3 and add the selected
instances with their corresponding treatment assignment and predicted outcome
into the training set. More specifically, we take a strategy that if the disagreement
(i.e., the difference) between two outcome prediction models (e.g., M2 and M3)
on the prediction of instance i from unlabeled set U is minimal, then the two
outcome prediction models will teach the third outcome prediction model (e.g.,
M1) on this instance. Then we add the instance i with its covariates, treatment
assignment, and the corresponding outcome predicted by M2 and M3 into the
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training set of instances to train the third prediction modelM1. One can see that
there are two predicted outcomes (e.g., by M2 and M3) for an instance i with
ti, here we randomly choose one of the two outcomes as the prediction to add
into the trained set L. We take an example that chooses unlabeled instances for
training prediction model M1 by the disagreement of M2 and M3. The selection
formulation can be written as:

argmin
xu∈U

‖f2(fs(xu), t = 1)− f3(fs(xu), t = 1)‖2 (7)

argmin
xv∈U

‖f2(fs(xv), t = 0)− f3(fs(xv), t = 0)‖2, (8)

then we will add the selected instances with pseudo-labels and treatment assign-
ments (xu, tu = 1, f2(fs(xu), 1)) and (xv, tv = 0, f3(fs(xv), 0)) into the trained
set L to train Ms and M1 based on the loss function in Eq. (6) without MSE
losses of M2 and M3. Similarly, M2 and M3 will be updated by such instance
selection procedure while the shared module would be maintained when training
M2 and M3.

The summary of the proposed frameworkSemiITE is shown in Algorithm 1.
Noting that the proposed framework SemiITE avoids the re-training issue by
utilizing the disagreement information of the three outcome prediction models
in each instance selection round, which can greatly reduce the computational
cost of the co-training framework. After finishing the co-training procedure, we
can infer the individual treatment effect for an unseen instance by any of the
three potential outcome prediction models. We use M1 as an example to infer
the ITE of an unseen instance i: τ̂i = f1(fs(xi), 1)− f1(fs(xi), 0).

4 Experiments

In this section, we present the experimental results of the proposed framework
SemiITE, including ITE performance evaluation, ablation study, and hyperpa-
rameter study.

4.1 Experimental Setting

Datasets. We conduct the experiments on two benchmark real-world datasets
IHDP [4] and Job training [7], which have been widely used in previous works
of causal inference [26,17]. In IHDP, each instance’s covariates include 25 vari-
ables that measure various aspects of children and their mothers. The treatment
group’s infants receive intensive high-quality childcare and specialist home visits,
while the control group’s infants do not, and the outcome is the infants’ cognitive
test scores. In Job training, each instance is an employee with 17 covariates such
as age, education, and ethnicity. Instances in the treatment group participate
in job training, while those in the control group do not. The outcome of each
instance is the employment status.
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Fig. 3: ITE estimation performance comparison results for different methods on the
IHDP data and the Job training data. The horizontal axis represents the proportion of
labeled data, and the vertical one denotes the values of metrics (the lower the better).

Baselines. We compare the performance of the proposed framework SemiITE
on ITE estimation with the following state-of-the-art causal inference models:
(1) OLS-1 [26] is the ordinary linear regression model which treats the treat-
ment assignment as a covariate of an instance. (2) OLS-2 [26] are two separated
linear regression models for treatment (t = 1) and control (t = 0) instances. (3)
Nearest neighbor matching (NNM) [6] is a matching-based method that infers
the potential outcomes of an instance by using its nearby instances. Here, we
use the Euclidean distance to measure the similarity between two instances. (4)
Causal Effect Variational Autoencoder (CEVAE) [18] follows the causal struc-
ture of inference with proxies and builds deep latent variable model to estimate
the unknown latent space that summarizes the confounders and the causal ef-
fect. (5) Counterfactual Regression (CFR) [26] is a multilayer perceptron based
method to infer the counterfactual outcome and minimize the imbalance be-
tween treatment and control group. Here we use the Wasserstein-1 distance. (6)
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TARNet [17] is a variant of the CFR model, which does not have a built-in rep-
resentation balancing component. (7) GANITE [31] is a generative adversarial
net based model to infer ITE. (8) SITE [30] infers the ITE by capturing hidden
confounders and preserving local similarity of data. Due to the fact that the
baselines are full-supervised methods, to ensure the fairness of the comparison,
we adopt the manifold assumption [16] (i.e., the samples with similar inputs
should get similar outputs) and design a corresponding term to add into the loss
function for each baseline (except NNM). Assuming that the function f(xi, t)
denotes the predicted outcomes for a certain causal inference model (e.g., CFR)
where xi, t denote the original covariates and treatment assignment of unit i
respectively, then a corresponding term based on manifold assumption is added
into the loss function of the model:

Lm =
∑
t

N+M∑
i,j=1

wij(f(xi, t)− f(xj , t))
2, (9)

where N and M represent the number of labeled and unlabeled samples, respec-
tively. wij denotes the similarity between two units xi and xj . Here, we use the
Gaussian kernel to compute the similarity for each unit pair.
Evaluation Metrics. For the IHDP dataset, we adopt two widely used metrics
in causal inference for ITE estimation: (1) Rooted Precision in Estimation of

Heterogeneous Effect
√
εPEHE =

√
1
n

∑
i=1(τi − τ̂i)2, where τi = yti=1

i − yti=0
i

and τ̂i = ŷti=1
i − ŷti=0

i are the ground truth ITE and the inferred ITE, respec-
tively; and (2) Mean Absolute Error on ATE εATE = 1

n |
∑

i=1 τ̂i −
∑

i=1 τi|.
For the Job training dataset, we use εATE and policy risk, which is detailed in
previous work [17]. Lower values of all metrics denote better performance.

We spilt the data into training set, unlabeled data set, validation set, and test
set, where the size of training set is limited. For both IHDP and Job training, we
use different ratios of training data to evaluate the performance. We use {10%,
20%, 30%, 40%} of the whole data for labeled set of instances, {70%, 60%, 50%,
40%} for unlabeled set of instances to be selected in co-training rounds, and
the rest of the data is used for validation and test set (5% for validation and
15% for test). Regarding the hyperparameters of the proposed framework, we
utilize the grid search strategy to find the optimal hyperparameters combination
based on the results of validation set. Specifically, for the shared module Ms, we
set the number of hidden layer as 3, and the dimension of each hidden layer as
100. For the potential outcome prediction models Mv (v = 1, 2, 3), the number
of hidden layer varies in {2, 3, 4} and the dimension of each layer ranges in
{200, 300, 400, 500}. The trade-off hyperparameters α, β, and γ are set in range
{10−1, 10−2, 10−3, 10−4}. The maximum number of unlabeled instance selection
rounds T = 500. We use the predictions of M1 as the final inferred potential
outcomes and run the experiments 10 times and the average performance of
each method is reported. Besides, all codes are implemented by Python and we
use Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz 264G Memory, and NVIDIA
Corporation GP100GL.
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4.2 ITE Estimation Performance

We compare the proposed framework SemiITE against the aforementioned base-
line methods with respect to the ITE estimation performance. The results are
shown in Figure 3. By analyzing the experiment results we can conclude that:

– (i) The supervised state-of-the-art baselines have unsatisfactory performance
of ITE estimation when the proportion of labeled observation is low (e.g.,
below 20%), but their performance gradually improves with the increasing
of proportion of labeled data and achieve satisfactory level when the pro-
portion of labeled data is over 40%, which demonstrates that the existing
methods require a plenty of labeled observational instances to support their
effectiveness for ITE estimation.

– (ii) SemiITE clearly outperforms several supervised causal inference mod-
els with different ratios of labeled instances. And it is worthy to note that
the lower the proportion of labeled observational data is, the greater the
superiority of the proposed SemiITE over other causal inference models will
exhibit, which illustrates that SemiITE can utilize those unlabeled instances
effectively and extract the useful information from them for ITE estimation.

– (iii) The performance of SemiITE does not change significantly when the
proportion of labeled data changes, indicating that SemiITE is stable, be-
cause SemiITE can utilize unlabeled instances to infer potential outcomes
more precisely with limited labeled data. Its performance is not greatly af-
fected by the proportion of labeled data, which illustrates that SemiITE
would still be effective even if the labeled observational data is limited.

4.3 Ablation Study

Here we develop the following three variants of SemiITE to explore three com-
ponents of the framework for the individual treatment effect estimation.

– SemiITE w/o Shared Module : This variant does not contain the shared
module Ms in the framework, which means that we directly train the three
potential outcome models without capturing some hidden confounders. We
denote this variant as SemiITE w/o SM.

– SemiITE w/o representation balance : This variant does not balance
the distribution of representations generated by shared module Ms for the
treatment and control groups, i.e., the variant does not add the loss LIPM

into the overall loss function. We denote this variant as SemiITE w/o RB.
– SemiITE w/o model diversity : This variant does not consider the diver-

sity of the three prediction models and the diversity term Ldiv is not added
into the loss function. The same network structure, initialization, and op-
timization method are adopted for the three prediction models. We denote
this variant as SemiITE w/o MD.

We conduct the ablation study experiment to compare the performance of the
proposed SemiITE with the aforementioned variants. The results are shown in
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Figure 4. Due to the page limit, we only report the results on the IHDP dataset
with labeled instance proportion p = {10%, 20%}, but similar observations can
also be found in the other datasets and other settings. We have the following
observations:

– SemiITE w/o SM performs the worst, which demonstrates the importance
of capturing hidden confounders in individual treatment effect estimation.

– The performance of SemiITE w/o RB is also degraded, because it fails to
control the confounding bias, which is a common problem in causal inference.

– SemiITE w/o MD also performs worse than the original framework SemiITE
because the diversity of the three prediction models cannot be achieved,
which is important in co-training based semi-supervised learning.

SemiITE w/o SM

SemiITE w/o RB

SemiITE w/o MD
SemiITE

0.0

0.5

1.0

1.5

2.0

2.5

3.0
PEHE

ATE

(a) p = 10%
SemiITE w/o SM

SemiITE w/o RB

SemiITE w/o MD
SemiITE

0.0

0.5

1.0

1.5

2.0

2.5
PEHE

ATE

(b) p = 20%

Fig. 4: Ablation study of SemiITE on the IHDP dataset.

4.4 Hyperparameter Study

We further explore the impact of two important hyperparameters α and β in
Eq. (6) on the performance of the proposed co-training based semi-supervised
ITE estiamtion framework. We set the range of the two hyperparameters as
{10−1, 10−2, 10−3, 10−4} and the hyperparameter study results are shown in Fig-
ure 5. Due to the page limit, we only report the results for

√
εPEHE and εATE

on IHDP with labeled data proportion p = 10%. We have similar results for
other datasets with different settings of p. We can observe that the performance
is generally stable when the two hyperparameters vary, and the performance is
relatively better when α and β range in {0.001,0.01}, which demonstrates the
robustness of the proposed framework.

5 Related Work

Causal inference with machine learning. Machine learning based causal in-
ference methods have been shown to be effective in observational studies [13,29].
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(a)
√
εPEHE (b) εATE

Fig. 5: Hyperparameter study of SemiITE on IHDP with labeled data proportion p =
10%.

Among them, k-NN [23] is adopted as a matching strategy to find the instance
pair with the closest distance in covariates space but different treatment assign-
ments to obtain causal effect. OLS-1 and OLS-2 [28] infer the causal effect by
predicting the potential outcomes using linear regression models. Counterfactual
Regression (CFR) [26] casts counterfactual inference as a type of domain adapta-
tion problem and estimates individual treatment effect using neural network by
learning balanced representations for instances in control and treatment groups.
CEVAE [18] captures the hidden confounders to estimate unbiased causal effect
by mapping the original covariates to latent space with variational autoencoder
[1]. Yao et al. [30] proposed a local similarity preserved individual treatment
effect (SITE) estimation method based on deep representation learning, which
can capture the hidden confounders and preserve local similarity of data. How-
ever, all these methods are supervised in nature and require massive labeled
observational data.
Semi-supervised learning with co-training. The original co-training algo-
rithm was proposed by [3], which assumes that there are two independent, suf-
ficient, and redundant natural views in the sample space, then two separated
models can be trained on these two views. Without multiple views of data sam-
ple space, many co-training algorithms are proposed to mine useful information
from unlabeled data by a single view. For example, Goldman and Zhou [11] pro-
posed to train two different decision tree models from a single view. Zhou and
Li [33] adopted a re-sampling strategy to generate three sub-datasets from the
original dataset and train three diverse classification models on each generated
dataset. Zhou et al. [35] trained two K-NN regressors with different distance
orders and chose the predicted unlabeled samples by making the error rate of
the regressor reduced most after adding the unlabeled samples into training
set. Chen et al. [8] proposed to train three different CNN models with model
initialization, diversity augmentation, and pseudo-label editing in a co-training
framework. However, most co-training methods are designed for classification
and cannot be directly applied to the causal inference problem.
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6 Conclusion

In this work, we propose a semi-supervised individual treatment effect estimation
framework SemiITE via disagreement based co-training, which can effectively
utilize unlabeled instances to aid ITE estimation. SemiITE chooses the most
confident unlabeled instance predictions and then add them into the labeled
instance set by the disagreement information of the base prediction models via
a co-training strategy, which can avoid the re-training issue in each unlabeled
instance selection round. Finally, extensive experiments on two public real-world
datasets show the superiority of SemiITE on ITE estimation over the existing
ITE estimation methods when the labeled data is limited.
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